重氮化反应

重氮化反应
重氮化反应

1.重氮化反应及其特点 (2)

四、重氮化操作技术 (3)

1.直接法 (3)

2.连续操作法 (3)

3.倒加料法 (4)

4.浓酸法 (5)

5.亚硝酸酯法 (6)

五、反应设备及安全生产技术 (6)

1.重氮化反应设备 (6)

2.安全生产技术 (8)

3.芳伯胺重氮化时应注意的共性问题 (12)

5.重氮化工艺 (13)

8.磺化工艺 (15)

1.重氮化反应及其特点

芳伯胺在无机酸存在下低温与亚硝酸作用,生成重氮盐的反应成为重氮化反应。工业上,常用亚硝酸钠作为亚硝酸的来源。反应通式为

Ar NH2+NaNO2 +2HX ArN2+ X- + 2H2O + NaX 式中,X可以是Cl、Br、NO3、HSO3等。工业生产上常采用硫酸、盐酸。

芳胺称作重氮组分,亚硝酸称为重氮化剂。亚硝酸易分解,故工业生产中常用亚硝酸钠与无机酸作用生成亚硝酸,以避免亚硝酸分解。

在重氮化过程中至反应终止时,要始终保持反应介质对刚果红试纸呈强酸性。如果酸量不足,可能导致生成的重氮盐与没有起反应的芳胺生成重氮氨基化合物。

ArN2X +ArNH2ArN NNH Ar + HX 在重氮化反应过程中,亚硝酸要过量或加入亚硝酸钠溶液的速度要适当,不能太慢,否则,也会生成重氮氨基化合物。

重氮化反应是放热反应,必须及时一处反应热。一般在0~10℃进行,温度过高,会使亚硝酸分解,同时加速重氮化合物的分解。重氮化反应结束时,过量的亚硝酸通常加入尿素或氨基磺酸分解掉,加入少量芳胺,使之与过量的亚硝酸作用。

四、重氮化操作技术

在重氮化反应中,由于副反应多,亚硝酸也具有氧化作用,而不同的芳胺所形成盐的溶解度也各有不同。隐藏,根据这些性质以及制备该重氮盐的目的不同,重氮化反应的操作方法基本上可分一下几种。

1.直接法

本法适用于碱性较强的芳胺,即含有给电子基团的芳胺,包括苯胺、甲苯胺、甲氧基苯胺、二甲苯胺、甲基萘胺、联苯胺和联甲氧基苯胺等。这些胺类与无机酸生成易溶于水但难以水解的稳定铵盐。

其操作方法是:将计算量(或稍过量)的亚硝酸钠水溶液在冷却、搅拌下,先快后慢的滴加到预先将芳胺溶于稀的无机酸水溶液并已冷却的稀酸水溶液中,进行重氮化,直到亚硝酸钠稍微过量为止。此法亦称正加法,应用最为普遍。

反应温度一般为0~10℃进行。盐酸用量一般为芳伯胺的3~4mol 为宜。水的用量一般应控制在到反应结束时,反应液总体积为胺量的10~12倍。应控制亚硝酸钠的加料速率,以确保反应正常进行。

2.连续操作法

本法也是适用于碱性较强芳伯胺的重氮化。工业上以重氮盐为合成中间体时多采用这一方法。由于反应过程的连续性。可较大地提高

重氮化反应的温度以增加反应速率。

重氮化反应一般在低温下进行,目的是为避免生成的重氮盐发生分解和破坏。采用连续化操作时,可使生成的重氮盐立即进入下步反应系统中,而转化为较稳定的化合物。这种转化反应的速率大于重氮盐的分解速率。连续操作可以利用反应产生的热量提高温度,加快反应速率,缩短反应时间,适合于大规模生产。工业生产上为实现连续操作,通常选择物料停留时间短。无返混的管式反应器。因重氮化温度较高,此法又称为“高温管道重氮化反应”。例如,由苯胺制备苯肼就是采用连续重氮化法,重氮化温度可提高到50~60℃。

又如:对氨基偶氮苯的生产中,由于苯胺重氮化反应及产物与苯胺进行偶合反应相继进行,可使重氮化反应的温度提高到90℃左右而不至引起重氮盐的分解,大大提高生产效率。

NH22

N2+Cl

-

NH2

N N NH2

3.倒加料法

本法适用于一些两性化合物,即含—SO3H、—COOH等吸电子基团的芳伯胺,如对氨基苯磺酸和对氨基苯甲酸、1-氨基萘-4-磺酸等。此类胺盐在酸液中生成两性离子的内盐沉淀,故不如溶于酸中,因而很难重氮化。如果先将其制成钠盐使之溶解度增加而易溶于水,则有利于重氮化反应。所以,在重氮化时先把它们溶于碳酸钠或氢

氧化钠溶液中制成钠盐,然后加入无机酸析出很细的沉淀,再加入亚硝酸钠溶液进行重氮化。其操作方法是:将这类化合物先与碱作用制成钠盐并溶于水中,再加入预先冷却的需要量的NaNO2溶液进行重氮化。对于溶解度更小的1-氨基萘-4-磺酸,可把等物质的量的芳胺和亚硝酸钠混合物在良好的搅拌下,加到预先经冷却的稀盐酸中进行反加法重氮化。

此法还适用于一些易于偶合的芳伯胺重氮化,使芳伯胺处于过量酸中形成铵盐而难与重氮盐发生偶合副反应。

4.浓酸法

本法适用于碱性很弱的芳伯胺,如2,4-二硝基苯胺、2-氰基-4-硝基蒽醌,或某些杂环α-位胺(如苯并噻唑衍生物)等。因其碱性弱,在稀酸中几乎完全以游离胺存在,不溶于稀酸,反应难以进行。但溶于浓酸(硫酸、硝酸和磷酸)或者有机溶剂(己酸和吡啶)中。为此常在浓硫酸或乙酸介质中进行重氮化。该重氮化方法是借助于最强的重氮化活泼质点(NO+),才使电子云密度显著降低的芳伯胺氮原子能够进行反应。其操作方法是:将该类芳伯胺溶解在浓硫酸中,加入亚硝酸钠液体或亚硝酸钠固体,在浓硫酸中的溶液中进行重氮化。

浓硫酸与亚硝酸钠生成亚硝酸硫酸。

NaNO2 + 2H2SO4NOHSO4 + H2O

由于亚硝酸硫酸放出亚硝酰正离子(NO+)较慢,可加入冰醋酸

或磷酸以加快亚硝酰正离子的释放而使反应加快。

NH2 NO2

NO2NaNO2/H2SO4/HAc

N2+HSO4

-

NO2

NO2

5.亚硝酸酯法

本法适用于将伯胺盐溶于醇、冰醋酸或其他有机溶剂(如DMF、丙酮等)中,用亚硝酸酯进行重氮化。常用的亚硝酸酯有亚硝酸戊酯、亚硝酸丁酯等。此法制成的重氮盐,可在反应结束后加入大量的乙醚,使其从有机溶剂中析出,再用水溶解,可得到纯度很高的稳定的固体重氮盐。例如固体2-氨基-4-硝基苯甲酸的重氮盐就是用亚硝酸异戊酯来制备的。在0℃将浓盐酸加到2-氨基-4-硝基苯甲酸在宜春和亚硝酸异戊酯的悬浮液中,在0℃搅拌30min,30℃搅拌20min,再在0℃搅拌10min,加乙醚来沉淀重氮盐,抽滤,真空干燥,产率90%。亚硝酸异戊酯可由异戊醇和亚硝酸钠反应制得。

五、反应设备及安全生产技术

1.重氮化反应设备

重氮化一般采用间歇操作,选择釜式反应器。因重氮化水溶液体积很大,反应器的容积可达10~20m3。某些金属或金属盐,如Fe、Cu、Zn、Ni等能加速重氮盐分解,因此重氮反应器不易直接使用金

属材料。大型重氮反应器通常为内衬耐酸砖的钢槽或直接选用塑料制反应器。小型重氮反应器设备通常为钢制加内衬。用稀硫酸重氮化时,可用搪铅设备,其原因是铅与硫酸可形成硫酸铅保护膜;若用浓硫酸,可用钢制反应器;若用盐酸,引起对金属腐蚀性较强,一般用搪玻璃设备。图7-1是重氮化锅示意图。这种设备的特点除了可安装搅拌装置外,设和直接向设备中投碎冰块降温。底部略呈倾斜,下方侧部有出料口,以利于物料放尽。

连续重氮化反应可采用多釜串联或管式反应器,其重氮化温度高,反应物停留时间短,生产效率高。对难容芳伯胺可在砂磨机中进行连续重氮化。

今年各大公司相继开发成功自动分析等先进仪器装置安装在连续重氮化和偶合的设备上并实现联动,自动调节重氮化反应时亚硝酸钠加入速率以及控制反应的pH及终点,从而提高了生产能力、产品的收率和质量。

图7-2是汽巴-嘉基公司推荐的连续重氮化工艺装置。储槽1为芳胺的盐酸溶液,储槽2是水,按规定速度用其泵打到反应器中。亚硝酸钠溶液则由储槽3进入反应器4。9~12是极性电压控制系统。反应器4中的温度由一个循环装置控制。反应物料由反应器4经过过滤器16溢流至反应器5。重氮化反应在带有夹套的反应器5中完成。重氮化液用泵压料经过过滤装置送往储槽22。25是反应器5的液面高度控制装置。

2.安全生产技术

重氮化反应广泛应用于医药、农药、炸药、燃料等工业生产过程,尤其在燃料工业,有半数以上有机合成燃料是通过重氮化工艺合成的。重氮化反应时危险性比较大的生产工艺技术,危险因素主要存在以下几个方面。

(1)原辅料与产品的危险因素芳香族胺类都属于可燃有机物质,生产用量大,且具有毒性;亚硝酸钠属于二级无机氧化剂,受热175℃时分解,大量的亚硝酸钠遇到有机物或更强的氧化剂,如氯酸钾、高锰酸钾时能引起燃烧甚至爆炸;盐酸和硫酸具有较强的酸性;重氮化产物常以盐的形式存在,其化学性质非常活泼。重氮盐只在水溶液中和较低的温度下稳定,升高温度则发生分解。在干燥状态下重氮盐更不稳定,特别是含有硝基的重氮盐,受热、摩擦或撞击容易分解爆炸。在酸性介质中,有些金属如铁、铜、锌等还能促使重氮化合物激烈分解。

(2)生产工艺操作的危险因素

①反应物料配比与投料速率

重氮化反应速率比较慢,因此要求亚硝酸钠投料速率缓慢。如果投料过快,必会造成滞后(局部性亚硝酸钠过量),而引起火灾爆炸事故。详见影响因素。

②生产操作温度

重氮盐一般在低温下稳定。当翻译温度超过5℃,重氮盐就会分解,即使在0℃时其水溶液也只能保持数小时。已知反应温度没升高

10℃,其分解速率加快2倍,尤其是芳环上具有供电子取代基的重氮盐分解速率增加的更快。同时在较高反应温度下,反应釜内过量的亚硝酸也会加速分解,产生大量的一氧化氮气体,其会进一步与空气发生氧化反应生成二氧化氮,同时释放出大量热。

2NO + O22NO2⊿H= - 113kJ/mol

故较高反应温度引起的亚硝酸分解也会导致爆炸着火的危险。若一氧化氮逸出,遇到有机物质还有引起着火的危险。

③后处理过的摩擦、受热

生产过程中,反应产物重氮盐作为产品还需经过过滤、干燥、研磨、混合等处理。由于摩擦、受热、撞击,粉尘粘在热源上,或者流动输送中产生的静电,都有可能引起重氮盐的火灾爆炸事故。例如苯氨基重氮苯受强烈振动、受热至150℃,或被急剧加热至熔点(98~99℃)以上即发生爆炸。

④生产中泄露

重氮化反应中,过量亚硝酸钠会使反应系统逸出NO、Cl2等有毒有害的刺激性气体。参加反应的芳伯胺亦具有毒性,特别是活泼的芳伯胺,毒性更强。所以反应设备应密闭,要求设备、环境的通风要有保证,以保证生产安全。

(3)安全生产技术要点造成重氮化反应失控的原因可能有:原料质量、配料比、投料次序、反应时间、数量不符合规定、操作失误等,引起剧烈反应使反应器内压力突然增高;搅拌、冷却系统停止运转而引起聚热升温,搅拌、冷却系统虽运转正常,但因物料的黏度

大,不能得到充分冷却,一直局部聚热升温,使反应器内压力升高;设备长期运行,未进行检修、清洗,致使换热面积垢增多,热阻增大,热交换量下降,生产危险性增加。

①原料、产品的安全运输和储存。相互起激烈反应的芳胺和亚硝酸钠必须粪车运输,隔离存放;产品重氮盐搬运时必须轻装轻卸,杜绝摩擦、撞击;储存时,重氮盐、亚硝酸钠应远离火源、电源和其他热源,避开日光照射。例如3-(2-羟基乙氧基)-4-吡咯基-1-苯重氮氯化锌盐,储存温度应低于30℃,若超过35℃则必须采取相应的降温措施,否则会引起分解放热,导致火灾爆炸事故。

②严格控制投料量和速度。亚硝酸钠投料完毕,应用淀粉碘化钾试纸检测,呈微蓝色则表示投料量合适。若发现亚硝酸钠过量较多,应及时用尿素等碱性物质中和过量的亚硝酸钠。亚硝酸钠投料速度根据方案的碱性不同会有所差异,当芳胺的碱性较强时,亚硝酸钠的投料速度一定要缓慢。

③严格控制操作条件。生产过程中,重氮化反应和重氮盐产物干燥的操作条件,特别是温度必须严格控制重氮化反应温度一般控制在0~5℃或更低,否则易发生燃烧、爆炸生产事故。重氮盐干燥时的温度,根据其性质不同,干燥温度亦有所不同。如快色素红B异重氮盐和快色素苯胺异重氮盐的干燥温度应分别控制在55℃和100℃以下,否则会发生燃烧爆炸。

④配置安全装置和设备。重氮化反应釜应配置也为、流速、温度、压力、搅拌等基本反应参数的自动监控、自动超限报警和自动应

急控制联动装置;重氮盐干燥设备应配置温度测量、加热热源开关、惰性气体保护的联锁装置。

物料干燥时的出料宜采用悬浮或溶液出料法,且流速不宜过快,一面在机械或压力出料的摩擦作用下引起爆炸。干燥室应安装温度计和防爆门,加热蒸汽管道应安装压力计。重氮化合物的粉碎、研磨车间应配有良好的通风设备。

重氮化反应釜应安装有伸向室外高空的不燃材料制成的气体排放管,以释放氧化氮气体。此管上影安装阻火器,并定期检查、用水清洗管中的积留物。

⑤处理工艺安全管理。应采用陶瓷、玻璃或木质设备进行重氮化反应或储存重氮化合物,不用铁、铜、锌等金属设备。重氮化反应完毕后,应将场地和设备用水冲洗干净。停用的重氮化反应釜要储满清水,废水直接排入下水道。重氮盐的后处理工序中,要疆场清洗粉碎车间设备上的粉尘,防止物料洒落在干燥车间的热源上,或凝结在输送设备的摩擦部位。特别要注意的是,通风管道中若残留干燥的胺,遇氮的氧化物也能重氮化并比东发热而自燃,因此要经常清理、冲刷通风管道。

⑥严格按岗位操作规程和岗位安全生产操作法操作。2007年11月27日,某科技有限公司5车间分散蓝79号滤饼重氮化工序B7厂房发生爆炸,造成8人死亡的安全生产事故,就是因为重氮化反应保湿操作时,操作工未将加热蒸汽阀门关到位,造成重氮化反应釜在保湿过程中被继续加热;操作工脱岗,未能及时发现重氮化釜内温度

升高,未能及时查找原因和调整控制,致使重氮化釜内重氮盐剧烈分解,发生化学爆炸。其生产装置自动化水平低,重氮化反应系统没有安装自动化控制系统和自动紧急停车系统;重氮化岗位操作规程不完善,没有制定有针对性的应急措施;应急指挥和救援处置不当,造成抢险人员伤亡。由上例重氮化生产安全事故可看出,重氮化生产安全隐患多且复杂,必须严格按岗位操作规程和岗位安全生产操作法操作,操作工上岗前必须进行培训且应具备一定的操作经验和生产事故处理能力,以做到万无一失,确保生产安全。

3.芳伯胺重氮化时应注意的共性问题

经重氮化反应制备的产物众多,其反应条件、操作方法也不尽相同,但在进行重氮化时,以下几个方面却是共同具有的,应予以足够的重视。

重氮化反应所用原料应纯净且不含异构体。若原料颜色过深或含有树脂状物,说明原料中含有较多氧化物或已部分分解,在使用前应先进行精制(如蒸馏、重结晶)。原料中含有无机盐,如氯化钠,一般不会产生有害影响,但在计算时必须扣除。

重氮化反应的终点控制要准确。由于重氮化反应是定量进行的,亚硝酸钠用量不足或过量均严重影响产品质量。因此事先必须进行纯度分析,并精确计算用量,以确保终点的准确。

重氮化反应的设备要有良好的传热措施。由于重氮化是放热反应,无论间歇法还是连续法,强烈的搅拌都是必须的,以有利于传质

和传热,同时反应设备应具有足够的传热面积和良好的移热措施,以确保重氮化反应安全进行。

重氮化过程必须注意安全生产。重氮化合物对热和光都极不稳定,因此必须防止其受热和强光照射,并保持生产环境的潮湿。

5.重氮化工艺

重氮化是使芳伯胺变为重氮盐的反应。通常是把含芳胺的有机化合物在酸性介质中与亚硝酸钠作用,使其中的胺基(-NH2)转变为重氮基(-N=N-)的化学反应。

重氮化广泛应用于燃料工业,如偶氮燃料和活性染料等70%的产品是通过重氮化反应生产出来的。重氮化时中间体、偶氮染料、偶氮颜料以及某些药物等生成的一个重要过程。用重氮化反应还可以生产一些医药、农药、炸药等产品。

(1)重氮化反应危险性分析

重氮化反应的主要火灾危险性在于所产生的重氮盐,如重氮盐酸盐(C6H5N2Cl)、重氮硫酸盐(C6H5N2HSO4),特别是含有硝基的重氮盐,如重氮二硝基苯酚[(NO2)2N2C6H2OH]等,它们在温度稍高或光的作用下极易分解,有的甚至在室温下亦能分解。一般每升高10℃,分解速度加快2倍。在干燥状态下,有些重氮盐不稳定,活力

大,受热或摩擦、撞击能分解爆炸。含重氮盐的溶液若洒落在地上、蒸汽管道上,干燥后亦能引起着火或爆炸。在酸性介质中,有些金属如铁、铜、锌等能心促使重氮化合物激烈分解,甚至引起爆炸。

作为重氮剂的芳胺类化合物都是可燃的有机物质,在一定条件下也有着火和爆炸爆炸的危险。

重氮化生产过程所使用的亚硝酸钠是无机氧化剂,在175℃时分解,能与有机物反应发生着火或爆炸。亚硝酸钠并非强氧化剂,所以当遇到比其氧化性强的氧化剂时,则具有还原性。故遇到氯酸钾、高锰酸钾等强氧化剂时有发生着火或爆炸的可能。

在重氮化的生产过程中,若反应温度过高、亚硝酸钠的投料过快或过量,均会增加亚硝酸的浓度,加速物料的分解,产生大量的氧化氮气体,有引起着火爆炸的危险。

(2)重氮化反应的安全措施

重氮化生产过程的操作应当在水溶液或潮湿状态下进行,反应温度一般控制在0~5℃。应按照操作规程严格配比,适时投料,尤应注意不使亚硝酸钠过量,可通过检查反应物料中的酸度加以检测。

用重氮盐生产染料或其他产品时,在反应过程中要检查半成品中有无残留未转化的重氮盐存在,如有,则反应仍需继续进行,直至重氮盐完全转化为止。在反应完毕放料后,宜将场地和设备用水冲洗干净,停用的重氮化反应器应储满水,废水应直接排入下水道,以免残留的重氮盐干燥后被摩擦起火爆炸。

重氮盐干燥时,须严格控制温度。快色素红B异重氮盐的干燥温

度应控制在55℃以下,快色素苯胺异重氮盐的干燥温度不得超过100℃,否则会造成着火或爆炸事故。

进行重氮化反应的设备和储存重氮剂的容器,忌用铁、铜、锌等金属制造,宜采用木质或陶质的。另外,重氮化反应器上应有伸向室外高空排放氧化氮气体的放空管,并应经常清理其中的残积物。

重氮化生产过程所使用的芳胺类化合物和亚硝酸钠等原料,要妥善保管,与性质相互抵触的物质隔离存放,且应远离火源。

8.磺化工艺

磺化是在有机化合物分子中引入磺(酸)基(-SO3H)的反应,是有机合成中的一个重要单元过程。由于磺化所用的原料都是可燃物和氧化剂,而且都是在高温和加压的条件下进行,故火灾的危险性很大。

磺化按过程可分为直接磺化和间接磺化两种。直接磺化法在工业中应用较多,常见的主要有苯与硫酸磺化生产苯磺酸,硝基苯与发烟硫酸直接磺化生产间氨基苯磺酸钠等。间接磺化法主要有用有机化合物的活泼卤原子(卤代烷、卤代侧链芳烃)与亚硫酸钠、钾或铵等在高温加压条件下作用生成磺酸盐等。如氯代烷与亚硫酸钠进行间接磺化生成烷基磺酸盐。

磺化反应的危险性及其安全措施在于:

①要保证原料的质量。生产所用的原料和磺化剂都必须是纯净的物质,不允许混入易燃物和水等有害的杂质。如三氧化硫是氧化剂,遇到硝基苯易燃的物质会很快引起着火;另外三氧化硫的腐蚀性很弱,但遇水时则生成硫酸,同时放出大量的热,使反应温度升高,不仅会造成沸溢或使磺化反应导致燃烧反应而引起着火或爆炸,还会因硫酸具有很强的腐蚀性,增加了对设备的腐蚀和破坏。因此,磺化釜色水套夹套不得漏水,热电偶测试管不得漏油。

②要保证正确的投料顺序和投料速度。由于生产所用的原料苯、硝基苯、氯苯等都是可燃物,而磺化剂浓硫酸、发烟硫酸、氯磺酸都是氧化性物质,且有的是强氧化剂,所以二者在相互作用的条件下进行磺化是十分危险的,以为已经具备了可燃物与氧化剂作用发生放热反应的燃烧条件。这种谎话反应若投料顺序颠倒、投料速度过快、搅拌不良、冷却效果不佳等,都有可能造成反应温度升高,使磺化反应变为燃烧反应,引起着火或爆炸事故。所以,磺化反应必须严格控制投料速度,并保证控制设备完好。又如,三氧化硫是氧化剂,投料时若先投了三氧化硫,后投硝基苯就会全部与三氧化硫迅速氧化,并产生大量的热,发生燃烧反应,造成起火或爆炸事故。所以磺化的投料顺序千万不能颠倒,应先投被磺化的物料,后投磺化剂。

③严格控制反应温度。磺化反应是放热反应,若在反应过程中得不到有效的冷却和良好的搅拌,都有可能引起反应温度超高,以至于发生燃烧反应,造成爆炸或起火事故。因此,搅拌设备要定期检修,对搅拌器的涡轮与蜗杆轴承的润换、搅拌机的传动皮带等都要及时检

查,发生故障及时消除,不许带病运行。

④要加强对设备及操作的监控。磺化设备应企业报安全使用的检测和独立操作功能的计算机监控系统。温度的检测使用不会滞后和失误的无惯性仪表,测得数据应当留有副本,以备查对。同时,磺化釜应有一定的强度,要安设相应的符合要求的安全阀、爆破片、温度计、事故储槽等安全设施和灭火设施。

⑤应加强对操作人员的技术培训。为保证磺化过程的安全运行,操作人员应当经过严格的技术培训,必须掌握当运行偏离正常工艺规程参数和出现着火事故时应当采取的操作动作。操作人员还应当了解工艺过程、工艺设备、操作条件、防火自动化控制和火灾时应急灭火措施,以最大限度减少火灾损失。

重氮化反应

重氮化反应 diazo-reaction 一级胺与亚硝酸在低温下作用生成重氮盐的反应。例如: 脂肪族、芳香族和杂环的一级胺都可进行重氮化反应。通常,重氮化试剂是由亚硝酸钠与盐酸作用临时产生的。除盐酸外,也可使用硫酸、过氯酸和氟硼酸等无机酸。脂肪族重氮盐很不稳定,能迅速自发分解;芳香族重氮盐较为稳定。芳香族重氮基可以被其他基团取代,生成多种类型的产物。所以芳香族重氮化反应在有机合成上很重要。 重氮化反应的机理是首先由一级胺与重氮化试剂结合,然后通过一系列质子转移,最后生成重氮盐。重氮化试剂的形式与所用的无机酸有关。当用较弱的酸时,亚硝酸在溶液中与三氧化二氮达成平衡,有效的重氮化试剂是三氧化二氮。当用较强的酸时,重氮化试剂是质子化的亚硝酸和亚硝酰正离子。因此重氮化反应中,控制适当的pH值是很重要的。芳香族一级胺碱性较弱,需要用较强的亚硝化试剂,所以通常在较强的酸性下进行反应。 概述 芳香族伯胺和亚硝酸作用生成重氮盐的反应标为重氮化,芳伯胺常称重氮组分,亚硝酸为重氮化剂,因为亚硝酸不稳定,通常使用亚硝酸钠和盐酸或硫酸使反应时生成的亚硝酸立即与芳伯胺反应,避免亚硝酸的分解,重氮化反应后生成重氮盐。 重氮化反应可用反应式表示为: Ar-NH2 + 2HX + NaNO2--—Ar-N2X + NaX + 2H20 重氮化反应进行时要考虑下列三个因素: 一、酸的用量 从反应式可知酸的理论用量为2mol,在反应中无机酸的作用是,首先使芳胺溶解,其次与亚硝酸销生成亚硝酸,最后生成重氮盐。重氮盐一般是容易分解的,只有在过量的酸液中才比较稳定,所以重氮化时实际上用酸量过量很多,常达 3mol,反应完毕时介质应呈强酸性(pH值为3),对刚果红试纸呈蓝色.重氮过程中经常检查介质的pH值是十分必要的。 反应时若酸用量不足,生成的重氮盐容易和未反应的芳胺偶合,生成重氮氨基化合物: Ar-N2Cl + ArNH2——Ar-N=N—NHAr + HCl 这是一种自我偶合反应,是不可逆的,一旦重氮氨基物生成,即使补加酸液也无法使重氮氨基物转变为重氮盐,因此使重氮盐的质量变坏,产率降低。在酸量不足的情况下,重氮盐容易分解,温度越高,分解越快。 二、亚硝酸的用量 重氮化反应进行时自始至终必须保持亚硝酸稍过量,否则也会引起自我偶合反应。重氮化反应速度是由加入亚硝酸钠溶液加速度来控制的,必须保持一定的加料速度,过慢则来不及作用的芳胺会和重氮盐作用生成自我偶合反应。亚硝酸钠溶液常配成30%的浓度使用.因为在这种浓度下即使在-15℃也不会结冰。 反应时检定亚硝酸过量的方法是用碘化钾淀粉试纸试验,一滴过量亚硝酸液的存在可使碘化钾淀粉试纸变蓝色。由于空气在酸性条件下也可位碘化钾淀粉试纸氧化变色,所以试验的时间以0.5-2s内显色为准。

重氮化反应的安全注意事项资料讲解

重氮化反应的安全注 意事项

重氮化反应的火灾危险性 重氮化反应所产生的重氮盐,在温度稍高或光的作用下,即易分解,有的甚至在室温时也能分解,每当温度升高10C,其分速度便加快2倍。在干燥状态下,有些重氮盐不稳定,活力大,受热或摩擦、撞击,能分解爆炸。含重氮盐的溶液若洒落在地上、蒸汽管道上,干燥后亦能燃烧或 重氮化反应所产生的重氮盐,在温度稍高或光的作用下,即易分解,有的甚至在室温时也能分解,每当温度升高10C,其分速度便加快2倍。在干燥状态下,有些重氮盐不稳定,活力大,受热或摩擦、撞击,能分解爆炸。 含重氮盐的溶液若洒落在地上、蒸汽管道上,干燥后亦能燃烧或爆炸。重氮化反应使用的亚硝酸钠是二级无机氧化剂,在175C时分解,能引起有机物燃烧或爆炸,亚硝酸钠还具有还原剂的性质,遇比他强的氧化剂能被戽化而导致燃烧或爆炸;在重氮化反应时,若温度过高,亚硝酸钠的投料过快和过量,会增加亚硝酸的浓度,加速物料的分解,产生大量的氧气体,亦有引起爆炸着火的危险。 第一,注意温度,最好实测用电子显示。在通盐水降温的情况下准备些冰,随时往釜里加。一般最好零度以下。 第二控制亚钠滴加速度,不要太快。一般控制到五十分左右。如果出现冒红烟现象,应停止滴加。可能温度高了或搅拌速度慢搅不开。 第三如果用的是硫酸,配酸水是要慢慢把酸加水里。以免放热过快喷出。 第四如果需要重氮盐时,一定注意保存,因为重氮盐不稳定。接触空气或高温易放热着火,

重氮化反应过程楼上的给了很好的建议,我这里提醒重氮化的后处理.因为1年的时间在我身边见到两次重氮化反应后处理发生了爆炸:一次是反应结束后浓缩,由于浓缩过干,反应罐盖都抛了好远,重伤一人;另外一次是重氮物烘料,本来是常温真空烘料的,由于半夜烘箱的蒸汽加热阀漏蒸汽,烘箱内温失控,发生大爆炸,整栋房子都塌了,幸运的是晚上车间没有人,要不后果不堪设想.我建议在小试工艺的时候就进行改进,能不浓缩的就不要浓缩,能不结晶出来的就不要结晶,在结晶抽滤的时候也见到爆炸发生过,最好用溶剂处理后直接往下一步反应.为了安全去杂到后面再想办法. 1、安全问题,亚硝酸钠是强致癌物质,在操作的时候一定要带好防护措施,再是得到的重氮盐尽量直接下步反应,拿出来也是很危险的事情。 2、反应过程问题,滴加亚硝酸溶液要慢,严格控制滴加温度在0度左右,如果直接进行下一步的卤代或者还原的话,建议每一次反应完以后都进行清洗,如果长期不清洗的话,重氮盐分解后的杂质积累到一定程度就会影响下一步的反应,甚至造成0收率!

偶联反应及举例

偶联反应[编辑] 偶联反应,也写作偶合反应或耦联反应,是两个化学实体(或单位)结合生成一个分子的有机化学反应。狭义的偶联反应是涉及有机金属催化剂的碳-碳键形成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。在偶联反应中有一类重要的反应,RM(R = 有机片段, M = 主基团中心)与R'X的有机卤素化合物反应,形成具有新碳-碳键的产物R-R'。[1]由于在偶联反应的突出贡献,根岸英一、铃木章与理查德·赫克共同被授予了2010年度诺贝尔化学奖。[2] 偶联反应大体可分为两种类型: ?交叉偶联反应:两种不同的片段连接成一个分子,如:溴苯 (PhBr)与氯乙烯形成苯乙烯(PhCH=CH2)。 ?自身偶联反应:相同的两个片段形成一个分子,如:碘苯 (PhI)自身形成联苯 (Ph-Ph)。 反应机理[编辑] 偶联反应的反应机理通常起始于有机卤代烃和催化剂的氧化加成。第二步则是另一分子与其发生金属交换,即将两个待偶联的分子接于同一金属中心上。最后一步是还原消除,即两个待偶联的分子结合在一起形成新分子并再生催化剂。不饱和的有机基团通常易于发生偶联,这是由于它们在加合一步速度更快。中间体通常不倾向发生β-氢消除反应。[3] 在一项计算化学研究中表明,不饱和有机基团更易于在金属中心上发生偶联反应。[4]还原消除的速率高低如下: 乙烯基-乙烯基> 苯基-苯基> 炔基-炔基> 烷基-烷基 不对称的R-R′形式偶联反应,其活化能垒与反应能量与相应的对称偶联反应R-R与R′-R′ 的平均值相近,如:乙烯基-乙烯基> 乙烯基-烷基> 烷基-烷基。 另一种假说认为,在水溶液当中的偶联反应其实是通过自由基机理进行,而不是金属-参与机理。[5] §催化剂[编辑] 偶联反应中最常用的金属催化剂是钯催化剂,有时也使用镍与铜催化剂。钯催化剂当中常用的如:四(三苯基膦)钯等。钯催化的有机反应有许多优点,如:官能团的耐受性强,有机钯化合物对于水和空气的低敏感性。 如下一些关于钴催化的偶联反应的综述[6],钯[7][8][9][10][11]和镍[12]介导的反应以及它们的应用[13][14]。 §离去基团[编辑] 离去基团X在有机偶联反应中,常常为溴、碘或三氟甲磺酰基。较理想的离去基团为氯,因有机氯化合物相对其他的这些离去基团更廉价易得。与之反应的有机金属化合物还有锡、锌或硼。 §操作条件[编辑]

重氮化和重氮化合物

一.重氮化和重氮化合物 1.重氮化反应及影响因素 芳香族伯胺和亚硝酸作用生成重氮盐的反应称为重氮化。   重氮化反应要在强酸中进行,实际上是亚硝酸作用于铵离子。由于亚硝酸不稳定,通常使用亚硝酸钠和盐酸或硫酸,使反应生成的亚硝酸立刻与芳伯胺反应,避免亚硝酸的分解。为了使反应能顺利进行,必须首先把芳伯胺转化为铵正离子。芳胺的碱性较弱,因此重氮化要在较强的酸中进行。有些芳胺碱性非常弱,要用特殊的方法才能进行重氮化。 重氮化是放热反应,重氮盐对热不稳定,因此要在冷却的情况下进行,一般都用冰盐浴冷却,并调节亚硝酸钠的加入速度,维持反应温度在0℃附近,由于重氮盐不稳定,一般就用它们的溶液,随做随用。固体重氮盐遇热或震动、摩擦,都将发生爆炸,必需应用某些稳定性好的固体重氮盐时,也需谨慎小心。 自重氮化反应发现以来,人们为了弄清楚其反应的影响因素,对重氮化反应的机理进行了反复研究,已普遍接受了重氮化反应的亚硝化学说即重氮化反应是由亚硝酸产生的亲电质点对游离芳伯胺基进行亲电取代反应的机理,其反应的主要影响因素如下。 (1).酸的影响 酸的影响主要考虑酸的种类、用量及浓度的影响。 重氮化所用的酸,从反应速度来说,以盐酸或氢溴酸等最快,硫酸与硝酸较次。由反应式可以看出酸的理论用量为2摩尔,在反应中无机酸的作用是:首先是使芳胺溶解,其次可和亚硝酸钠生成亚硝酸,最后是生成稳定的重氮盐。重氮盐一般来讲是容易分解的,只有在过量的酸液中才稳定,所以重氮化时实际上酸用量过量很多,常达3~4摩尔。反应完毕时介质应呈强酸性,PH值为3,对刚果红试剂呈蓝色,重氮化过程经常检查介质的PH值是十分重要的。反应时若酸量不足,生成的重氮盐容易和未反应的芳胺偶合,生成重氮胺基化合物。

偶联反应

偶联反应 目录 偶联反应 常见的偶联反应包括 偶联反应具体说明 偶联反应所需要注意的 用途 Suzuki反应 偶联反应 偶联反应(英文:Coupled reaction),也作偶连反应、耦联反应、氧化偶联,是由两个有机化学单位(molecules)进行某种化学反应而得到一个有机分子的过程.这里的化学反应包括格氏试剂与亲电体的反应 偶联反应 (Grinard),锂试剂与亲电体的反应,芳环上的亲电和亲核反应(Diazo,Addition-Elimination),还有钠存在下的Wutz反应,由于偶联反应 (Coupled Reaction)含义太宽,一般前面应该加定语.而且这是一个比较非专业化的名词. 狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。进行偶联反应时,介质的酸碱性是很重要的。一般重氮盐与酚类的偶联反应,是在弱碱性介质中进行的。在此条件下,酚形成苯氧负离子,使芳环电子云密度增加,有利于偶联反应的进行。重氮盐与芳胺的偶联反应,是在中性或弱酸性介质中进行的。在此条件下,芳胺以游离胺形式存在,使芳环电子云密度增加,有利于偶联反应进行。如果溶液酸性过强,胺变成了铵盐,使芳环电子云密度降低,不利于偶联反应,如果从重氮盐的性质来看,强碱性介质会使重氮盐转变成不能进行偶联反应的其它化合物。偶氮化合物是一类有颜色的化合物,有些可直接作染料或指示剂。在有机分析中,常利用偶联反应产生的颜色来鉴定具有苯酚或芳胺结构的药物。 常见的偶联反应包括 反应名称--年代--反应物A--反应物B --类型--催化剂--注 Wurtz反应 1855 R-X sp³ 自身偶联 Na Glaser偶联反应 1869 R-X sp 自身偶联 Cu Ullmann反应 1901 R-X sp² 自身偶联 Cu Gomberg-Bachmann反应 1924 R-N2X sp² 自身偶联以碱作介质

重氮化和偶合反应

重氮化 重氮化和偶合反应是重要的有机合成反应,在精细化工中有很重要的地位,该类反应在染料合成中应用很广,是两个主要的工序。可合成酸性、冰染、直接、分散、活性、阳离子等类型的染料,还可合成各类黄色、红色偶氮型有机颜料。 一.重氮化和重氮化合物 1.重氮化反应及影响因素 芳香族伯胺和亚硝酸作用生成重氮盐的反应称为重氮化。 重氮化反应要在强酸中进行,实际上是亚硝酸作用于铵离子。由于亚硝酸不稳定,通常使用亚硝酸钠和盐酸或硫酸,使反应生成的亚硝酸立刻与芳伯胺反应,避免亚硝酸的分解。为了使反应能顺利进行,必须首先把芳伯胺转化为铵正离子。芳胺的碱性较弱,因此重氮化要在较强的酸中进行。有些芳胺碱性非常弱,要用特殊的方法才能进行重氮化。 重氮化是放热反应,重氮盐对热不稳定,因此要在冷却的情况下进行,一般都用冰盐浴冷却,并调节亚硝酸钠的加入速度,维持反应温度在0℃附近,由于重氮盐不稳定,一般就用它们的溶液,随做随用。固体重氮盐遇热或震动、摩擦,都将发生爆炸,必需应用某些稳定性好的固体重氮盐时,也需谨慎小心。 自重氮化反应发现以来,人们为了弄清楚其反应的影响因素,对重氮化反应的机理进行了反复研究,已普遍接受了重氮化反应的亚硝化学说即重氮化反应是由亚硝酸产生的亲电质点对游离芳伯胺基进行亲电取代反应的机理,其反应的主要影响因素如下。 (1).酸的影响 酸的影响主要考虑酸的种类、用量及浓度的影响。 重氮化所用的酸,从反应速度来说,以盐酸或氢溴酸等最快,硫酸与硝酸较次。由反应式可以看出酸的理论用量为2摩尔,在反应中无机酸的作用是:首先是使芳胺溶解,其次可和亚硝酸钠生成亚硝酸,最后是生成稳定的重氮盐。重氮盐一般来讲是容易分解的,只有在过量的酸液中才稳定,所以重氮化时实际上酸用量过量很多,常达3~4摩尔。反应完毕时介质应呈强酸性,PH值为3,对刚果红试剂呈蓝色,重氮化过程经常检查介质的PH值是十分重要的。反应时若酸量不足,生成的重氮盐容易和未反应的芳胺偶合,生成重氮胺基化合物。 这是一种自偶合反应,是不可逆的。一旦重氮胺基物生成,即使再补加酸液,也无法使重氮胺基物转变为重氮盐,从而使重氮盐的质量变差,产率降低。在酸量不足的情况下,重氮盐还易分解,温度愈高,分解愈快。 酸的浓度的影响主要考虑使芳胺形成铵离子的能力、铵盐水解生成游离的芳胺以及亚硝酸的电离几个方面。 当无机酸的浓度增加时,平衡向胺盐生成的方向移动,游离胺的浓度降低,重氮化的速度变慢。另一方面,反应中还存在着亚硝酸的电离平衡。 酸浓度的增加可抑制亚硝酸的电离而加速重氮化。一般来讲当无机酸浓度较低时,这一影响是主要的,而降低游离胺的浓度的影响是次要的,此时随酸的浓度增加,重氮化速度增加。但随着酸浓度增加,使芳胺形成铵离子的影响逐渐变为主要的,这时继续增加酸的浓度便降低游离胺的浓度,就使反应速度下降。 (2).不同的反应物及浓度的影响

重氮化反应

1.重氮化反应及其特点 (2) 四、重氮化操作技术 (3) 1.直接法 (3) 2.连续操作法 (3) 3.倒加料法 (4) 4.浓酸法 (5) 5.亚硝酸酯法 (6) 五、反应设备及安全生产技术 (6) 1.重氮化反应设备 (6) 2.安全生产技术 (8) 3.芳伯胺重氮化时应注意的共性问题 (12) 5.重氮化工艺 (13) 8.磺化工艺 (15)

1.重氮化反应及其特点 芳伯胺在无机酸存在下低温与亚硝酸作用,生成重氮盐的反应成为重氮化反应。工业上,常用亚硝酸钠作为亚硝酸的来源。反应通式为 Ar NH2+NaNO2 +2HX ArN2+ X- + 2H2O + NaX 式中,X可以是Cl、Br、NO3、HSO3等。工业生产上常采用硫酸、盐酸。 芳胺称作重氮组分,亚硝酸称为重氮化剂。亚硝酸易分解,故工业生产中常用亚硝酸钠与无机酸作用生成亚硝酸,以避免亚硝酸分解。 在重氮化过程中至反应终止时,要始终保持反应介质对刚果红试纸呈强酸性。如果酸量不足,可能导致生成的重氮盐与没有起反应的芳胺生成重氮氨基化合物。 ArN2X +ArNH2ArN NNH Ar + HX 在重氮化反应过程中,亚硝酸要过量或加入亚硝酸钠溶液的速度要适当,不能太慢,否则,也会生成重氮氨基化合物。 重氮化反应是放热反应,必须及时一处反应热。一般在0~10℃进行,温度过高,会使亚硝酸分解,同时加速重氮化合物的分解。重氮化反应结束时,过量的亚硝酸通常加入尿素或氨基磺酸分解掉,加入少量芳胺,使之与过量的亚硝酸作用。

四、重氮化操作技术 在重氮化反应中,由于副反应多,亚硝酸也具有氧化作用,而不同的芳胺所形成盐的溶解度也各有不同。隐藏,根据这些性质以及制备该重氮盐的目的不同,重氮化反应的操作方法基本上可分一下几种。 1.直接法 本法适用于碱性较强的芳胺,即含有给电子基团的芳胺,包括苯胺、甲苯胺、甲氧基苯胺、二甲苯胺、甲基萘胺、联苯胺和联甲氧基苯胺等。这些胺类与无机酸生成易溶于水但难以水解的稳定铵盐。 其操作方法是:将计算量(或稍过量)的亚硝酸钠水溶液在冷却、搅拌下,先快后慢的滴加到预先将芳胺溶于稀的无机酸水溶液并已冷却的稀酸水溶液中,进行重氮化,直到亚硝酸钠稍微过量为止。此法亦称正加法,应用最为普遍。 反应温度一般为0~10℃进行。盐酸用量一般为芳伯胺的3~4mol 为宜。水的用量一般应控制在到反应结束时,反应液总体积为胺量的10~12倍。应控制亚硝酸钠的加料速率,以确保反应正常进行。 2.连续操作法 本法也是适用于碱性较强芳伯胺的重氮化。工业上以重氮盐为合成中间体时多采用这一方法。由于反应过程的连续性。可较提高重氮

重氮化反应 氨基变肼 PHENYLHYDRAZINE

Organic Syntheses, Coll. Vol. 1, p.442 (1941); Vol. 2, p.71 (1922). PHENYLHYDRAZINE [Hydrazine, phenyl-] Submitted by G. H. Coleman Checked by J. B. Conant and H. R. Thompson. 1. Procedure In a 12-l. round-bottomed flask, fitted with a mechanical stirrer, is placed 1045 cc. of concentrated commercial hydrochloric acid (sp. gr. 1.138). The flask is surrounded with a freezing mixture of ice and salt, and, when the contents are at 0°, stirring is started and 500 g. of cracked ice is added, or more ice can be added and the external cooling dispensed with; then 372 g. (364 cc., 4 moles) of aniline, also cooled to 0°, is run in during five minutes. The mixture is treated with 500 g. more of cracked ice, and a cold solution (0°) of 290 g. (4 moles) of technical sodium nitrite dissolved in 600 cc. of water is allowed to run in slowly (twenty to thirty minutes) from a separatory funnel, the end of which is drawn to a small tip and reaches nearly to the bottom of the flask. During this addition, the stirrer is operated rather vigorously, and the temperature is kept as near 0° as possible by the frequent addition of cracked ice (about 1 kg.). In the meantime, a sodium sulfite solution is prepared by dissolving 890 g. (20 moles) of sodium hydroxide, of about 90 per cent purity, in about 1 l. of water and then diluting to 6 l. A few drops of phenolphthalein solution are added and sulfur dioxide passed in, first until an acid reaction is indicated and then for two or three minutes longer. During the addition of the sulfur dioxide, the solution is cooled with running water. On account of the strong alkaline solution, the original color produced by the phenolphthalein is very faint, but this slowly increases until it becomes deep just before the acid point is reached. It is best to remove a small sample of the liquid from time to time, dilute with three or four volumes of water, and add a drop more of phenolphthalein(Note 1). The sodium sulfite solution is placed in a 12-l. flask and cooled to about 5°. Approximately 500 g. of cracked ice is added, and then, with mechanical stirring, the diazonium salt solution is run in as rapidly as possible (Note 2). The mixture becomes a bright orangered. The flask is now warmed to about 20° on a steam bath, until the solid sodium sulfite, which has separated while cooling, redissolves. The total amount of liquid is now about 10 l. One-half of this is poured into another 12-l. flask, and both halves are warmed on the steam bath to 60–70°, until the color becomes quite dark (thirty to sixty minutes). Sufficient hydrochloric acid (300–400 cc.) is now added (Note 3) to each flask to make the solutions acid to litmus. The heating is continued and the color gradually becomes lighter until, after four to six hours, the solutions have become nearly colorless; they may be heated overnight, if desired. To the hot solutions is now added about one-third of their volume of concentrated hydrochloric acid

重氮化反应

重氮化反应 重氮化反应虽是一个古老的反应,但其产物作为有机合成的重要试剂和中间体,在生物医药等精细化工领域有着广泛应用。有半数以上的有机合成燃料是通过重氮化工艺合成的,芳香族伯胺和亚硝酸作用(在强酸介质下)生成重氮盐的反应称为重氮化。重氮化反应的危险系数高,属高危工艺。 一、重氮化反应的特点 芳伯胺在无机酸存在下低温与亚硝酸作用,生成重氮盐的反应成为重氮化反应。工业上,常用亚硝酸钠作为亚硝酸的来源。反应通式为 式中,X可以是Cl、Br、NO3、HSO3等。工业生产上常采用硫酸、盐酸。 芳胺称作重氮组分,亚硝酸称为重氮化剂。亚硝酸易分解,故工业生产中常用亚硝酸钠与无机酸作用生成亚硝酸,以避免亚硝酸分解。 在重氮化过程中至反应终止时,要始终保持反应介质对刚果红试纸呈强酸性。如果酸量不足,可能导致生成的重氮盐与没有起反应的芳胺生成重氮氨基化合物。

在重氮化反应过程中,亚硝酸要过量或加入亚硝酸钠溶液的速度要适当,不能太慢,否则,也会生成重氮氨基化合物。 重氮化反应是放热反应,必须及时一处反应热。一般在0~10℃进行,温度过高,会使亚硝酸分解,同时加速重氮化合物的分解。重氮化反应结束时,过量的亚硝酸通常加入尿素或氨基磺酸分解掉,加入少量芳胺,使之与过量的亚硝酸作用。 二、重氮化操作技术 在重氮化反应中,由于副反应多,亚硝酸也具有氧化作用,而不同的芳胺所形成盐的溶解度也各有不同。根据这些性质以及制备该重氮盐的目的不同,重氮化反应的操作方法基本上可分一下几种。 1、直接法 此法适用于碱性较强的芳胺,即含有给电子基团的芳胺,包括苯胺、甲苯胺、甲氧基苯胺、二甲苯胺、甲基萘胺、联苯胺和联甲氧基苯胺等。这些胺类与无机酸生成易溶于水但难以水解的稳定铵盐。 其操作方法是:将计算量(或稍过量)的亚硝酸钠水溶液在冷却、搅拌下,先快后慢的滴加到预先将芳胺溶于稀的无机酸水溶液并已冷却

重氮化和偶合反应讲解学习

重氮化和偶合反应

重氮化 重氮化和偶合反应是重要的有机合成反应,在精细化工中有很重要的地位,该类反应在染料合成中应用很广,是两个主要的工序。可合成酸性、冰染、直接、分散、活性、阳离子等类型的染料,还可合成各类黄色、红色偶氮型有机颜料。 一.重氮化和重氮化合物 1.重氮化反应及影响因素 芳香族伯胺和亚硝酸作用生成重氮盐的反应称为重氮化。 重氮化反应要在强酸中进行,实际上是亚硝酸作用于铵离子。由于亚硝酸不稳定,通常使用亚硝酸钠和盐酸或硫酸,使反应生成的亚硝酸立刻与芳伯胺反应,避免亚硝酸的分解。为了使反应能顺利进行,必须首先把芳伯胺转化为铵正离子。芳胺的碱性较弱,因此重氮化要在较强的酸中进行。有些芳胺碱性非常弱,要用特殊的方法才能进行重氮化。 重氮化是放热反应,重氮盐对热不稳定,因此要在冷却的情况下进行,一般都用冰盐浴冷却,并调节亚硝酸钠的加入速度,维持反应温度在0℃附近,由于重氮盐不稳定,一般就用它们的溶液,随做随用。固体重氮盐遇热或震动、摩擦,都将发生爆炸,必需应用某些稳定性好的固体重氮盐时,也需谨慎小心。 自重氮化反应发现以来,人们为了弄清楚其反应的影响因素,对重氮化反应的机理进行了反复研究,已普遍接受了重氮化反应的亚硝化学说即重氮化反应是由亚硝酸产生的亲电质点对游离芳伯胺基进行亲电取代反应的机理,其反应的主要影响因素如下。 (1).酸的影响

酸的影响主要考虑酸的种类、用量及浓度的影响。 重氮化所用的酸,从反应速度来说,以盐酸或氢溴酸等最快,硫酸与硝酸较次。由反应式可以看出酸的理论用量为2摩尔,在反应中无机酸的作用是:首先是使芳胺溶解,其次可和亚硝酸钠生成亚硝酸,最后是生成稳定的重氮盐。重氮盐一般来讲是容易分解的,只有在过量的酸液中才稳定,所以重氮化时实际上酸用量过量很多,常达 3~4摩尔。反应完毕时介质应呈强酸性,PH值为3,对刚果红试剂呈蓝色,重氮化过程经常检查介质的PH值是十分重要的。反应时若酸量不足,生成的重氮盐容易和未反应的芳胺偶合,生成重氮胺基化合物。 这是一种自偶合反应,是不可逆的。一旦重氮胺基物生成,即使再补加酸液,也无法使重氮胺基物转变为重氮盐,从而使重氮盐的质量变差,产率降低。在酸量不足的情况下,重氮盐还易分解,温度愈高,分解愈快。 酸的浓度的影响主要考虑使芳胺形成铵离子的能力、铵盐水解生成游离的芳胺以及亚硝酸的电离几个方面。 当无机酸的浓度增加时,平衡向胺盐生成的方向移动,游离胺的浓度降低,重氮化的速度变慢。另一方面,反应中还存在着亚硝酸的电离平衡。 酸浓度的增加可抑制亚硝酸的电离而加速重氮化。一般来讲当无机酸浓度较低时,这一影响是主要的,而降低游离胺的浓度的影响是次要的,此时随酸的浓度增加,重氮化速度增加。但随着酸浓度增加,使芳胺形成铵离子的影响逐渐变为主要的,这时继续增加酸的浓度便降低游离胺的浓度,就使反应速度下降。 (2).不同的反应物及浓度的影响

最新偶联反应

偶联反应 ——《百度百科》 自由基偶联反应 酯等羰基化合物在金属还原下,会形成双分子偶联产物(偶姻反应)。例如: COOEt 3 O OH COOEt COOEt OH O 3 芳基重氮盐与不饱和化合物在氯化亚酮的作用下,可以发生芳基化反应(Meerwein 反应)。例如: PhN 2 + + OCOCH 3 3 37o C H 3C Ph O N 2+ Cl - O 2N O O O O NO 2 35-45% + CuCl 1924年Gomberg 和Bachmann 发现,芳香重氮盐在碱性条件下与其它芳香族化合物偶联生成联苯或联苯衍生物。反应是通过自由基历程进行的。 N 2+Cl -+ 五、过渡金属催化偶联反应 偶联反应(Coupling reaction )是两个化学实体(或单位)结合生成一个分子的有机化学反应。狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。下面对各种偶联反应作简单介绍。 1)Wurtz-Fittig 反应 1855年,法国化学家Wurtz 发现卤代烷和金属钠作用后,生成了含碳原子数增加1倍的烷烃。上述反应对伯卤代烷较为适宜,叔卤代烷则形成烯烃。反应可能形成有机钠中间体,属于S N 2历程。例如: EtOOC I 23 COOEt EtOOC 德国化学家费提希用金属钠、卤代烷和卤代芳烃一起反应,得到了烷基芳烃,称为“武

尔兹-费提希反应”。本法收率较高,副产物容易分离,是一种重要的制备烷基芳烃方法。 2)Glaser 偶联反应 1869年,Glaser 发现末端炔烃在亚铜盐、碱以及氧化剂作用下,可以形成二炔烃化合物。例如: 4O 60% 3)Ullmann 反应 Ullmann 偶合反应是有机合成中构建碳—碳键最重要的方法之一。Ullmann 偶合反应首次报道1901年, 它通常是利用铜作为催化剂, 催化卤代芳烃发生偶合反应生成联苯及其衍生物。一般反应式为: 2 ArX Pd(0)或Pd(II) X= Cl 、Br 、I Ar-Ar 目前该反应的底物范围、反应条件以及催化剂等都有了较大的改进。例如: NC OTf NC CN 85% 23 4) Cadiot-Chodkiewicz 偶联反应 炔基卤化物与末端炔烃在亚铜盐催化下,可以形成二炔烃。例如: CBr R +HC R' 2R R' 76% R = CH 3(CH 2)13; R' = CH 2CH 2CH 2COOH 5)Castro-Stephens 偶联反应 反应性较低的芳基卤化物与炔化亚铜反应,可生成收率很高的炔基芳香化合物。 6)Kumada 偶联反应 格氏试剂与卤代烃在Ni 或Pd 催化下,会发生偶联反应。该反应由Kumada 在1972年发现。 格氏试剂与卤代烷烃、乙烯基卤、卤代芳烃在Ni 催化下的偶联反应,成本低,易于工业化。不过,该反应局限于哪些直接不会与格氏试剂反应的卤代烃。因此,该反应在合成苯乙烯型化合物以及不对称联苯型化合物时比较适用。 R R' X MgBr R R' + Cl Cl + 2 n-BuMgBr 在Pd 催化下,卤代烃的反应性大小顺序为:I >Br >Cl ;而在Ni 催化下,其活性顺序为:Cl> I> Br 。上式中dppe 为Ph 2PCH 2CH 2PPh 2的缩写。 7)Heck 反应 Heck 反应是一类重要的卤代芳烃烯基化、形成新的C —C 键的合成反应,1972年由Heck 发现,近几年来一直是催化化学和有机化学的研究热点。Heck 反应是由一个不饱和卤代烃(或三氟甲磺酸盐)和一个烯烃在碱和钯催化下生成取代烯烃的一个反应。催化剂主要有氯化钯,醋酸钯,三苯基膦钯,CuI 等;载体主要有三苯基膦,BINAP 等;所用的碱主要有三乙胺,碳酸钾,醋酸钠等。溶剂以DMF 、NMP 等极性非质子溶剂为主。

重氮化反应

1.重氮化反应及其特点................................................................. 2. .. 四、重氮化操作技术................................................................ 3. .. 1.直接法................................................................. 3. .. 2.连续操作法................................................................. 3. .. 3.倒加料法................................................................. 4. .. 4.浓酸法................................................................. 5. .. 5.亚硝酸酯法................................................................. 6. .. 五、反应设备及安全生产技术................................................................ 6. . 1.重氮化反应设备................................................................. 6. .. 2.安全生产技术................................................................. 8. .. 3.芳伯胺重氮化时应注意的共性问题................................................................ 1.. 2

偶联反应

——《百度百科》 自由基偶联反应 酯等羰基化合物在金属还原下,会形成双分子偶联产物(偶姻反应)。例如: COOEt 3 O OH COOEt COOEt OH O 3 芳基重氮盐与不饱和化合物在氯化亚酮的作用下,可以发生芳基化反应(Meerwein 反应)。例如: PhN 2 + + OCOCH 3 CH 3 37o C H 3C Ph O N 2+ Cl - O 2N O O O O NO 2 35-45% + CuCl 1924年Gomberg 和Bachmann 发现,芳香重氮盐在碱性条件下与其它芳香族化合物偶联生成联苯或联苯衍生物。反应是通过自由基历程进行的。 N 2+Cl -+ 五、过渡金属催化偶联反应 偶联反应(Coupling reaction )是两个化学实体(或单位)结合生成一个分子的有机化学反应。狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。下面对各种偶联反应作简单介绍。 1)Wurtz-Fittig 反应 1855年,法国化学家Wurtz 发现卤代烷和金属钠作用后,生成了含碳原子数增加1倍的烷烃。上述反应对伯卤代烷较为适宜,叔卤代烷则形成烯烃。反应可能形成有机钠中间体,属于S N 2历程。例如: EtOOC I 2Na, PhCH 3 COOEt EtOOC 德国化学家费提希用金属钠、卤代烷和卤代芳烃一起反应,得到了烷基芳烃,称为“武尔兹-费提希反应”。本法收率较高,副产物容易分离,是一种重要的制备烷基芳烃方法。 2)Glaser 偶联反应 1869年,Glaser 发现末端炔烃在亚铜盐、碱以及氧化剂作用下,可以形成二炔烃化合物。例如:

偶联反应及举例

偶联反应,也写作偶合反应或耦联反应,是两个化学实体(或单位)结合生成一个分子的有机化学反应。狭义的偶联反应是涉及有机金属催化剂的碳-碳键形成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。在偶联反应中有一类重要的反应,RM(R = 有机片段, M = 主基团中心)与R'X的有机卤素化合物反应,形成具有新碳-碳键的产物R-R'。[1]?由于在偶联反应的突出贡献,根岸英一、铃木章与理查德·赫克共同被授予了2010年度诺贝尔化学奖。?[2] 偶联反应大体可分为两种类型: 交叉偶联反应:两种不同的片段连接成一个分子,如:溴苯?(PhBr)与氯乙烯形成苯乙烯(PhCH=CH2)。 自身偶联反应:相同的两个片段形成一个分子,如:碘苯?(PhI)自身形成?联苯?(Ph-Ph)。 反应机理[编辑] 偶联反应的反应机理通常起始于有机卤代烃和催化剂的氧化加成。第二步则是另一分子与其发生金属交换,即将两个待偶联的分子接于同一金属中心上。最后一步是还原消除,即两个待偶联的分子结合在一起形成新分子并再生催化剂。不饱和的有机基团通常易于发生偶联,这是由于它们在加合一步速度更快。中间体通常不倾向发生β-氢消除反应。[3] 在一项计算化学研究中表明,不饱和有机基团更易于在金属中心上发生偶联反应。[4]还原消除的速率高低如下: 乙烯基-乙烯基 > 苯基-苯基 > 炔基-炔基 > 烷基-烷基 不对称的R-R′形式偶联反应,其活化能垒与反应能量与相应的对称偶联反应R-R与R′-R′的平均值相近,如:乙烯基-乙烯基 > 乙烯基-烷基 > 烷基-烷基。 另一种假说认为,在水溶液当中的偶联反应其实是通过自由基机理进行,而不是金属-参与机理。[5] §催化剂[编辑] 偶联反应中最常用的金属催化剂是钯催化剂,有时也使用镍与铜催化剂。钯催化剂当中常用的如:四(三苯基膦)钯等。钯催化的有机反应有许多优点,如:官能团的耐受性强,有机钯化合物对于水和空气的低敏感性。 如下一些关于钴催化的偶联反应的综述[6],钯[7][8][9][10][11]和镍[12]介导的反应以及它们的应用[13][14]。 §离去基团[编辑] 离去基团X在有机偶联反应中,常常为溴、碘或三氟甲磺酰基。较理想的离去基团为氯,因有机氯化合物相对其他的这些离去基团更廉价易得。与之反应的有机金属化合物还有锡、锌或硼。 §操作条件[编辑] 虽然大多的偶联反应所涉及的试剂都对于水和空气极其敏感,但不可认为所有的有机偶联反应需要绝对的无水无氧条件。有些有机钯介导的反应就可在水溶液中,使用三苯基膦和硫酸

最新有机反应和反应机理总结

有机反应和反应机理总结 有机反应:在一定的条件下,有机化合物分子中的成键电子发生重新分布,原有的键断裂,新的键形成,从而使原分子中原子间的组合发生了变化,新的分子产生。这种变化过程称为有机反应(organic reaction)。 一级反应:在动力学上,将反应速率只取决于一种化合物浓度的反应称为一级反应。 二级反应:在动力学上,将反应速率取决于两种化合物浓度的反应称为二级反应。 一、按化学键的断裂和生成分类 协同反应:在反应过程中,旧键的断裂和新键的形成都相互协调地在同一步骤中完成的反应称为协同反应。协同反应往往有一个环状过渡态。它是一种基元反应。 自由基型反应:由于分子经过均裂产生自由基而引发的反应称为自由基型反应。自由基型反应分链引发、链转移和链终止三个阶段:链引发阶段是产生自由基的阶段。由于键的均裂需要能量,所以链引发阶段需要加热或光照。链转移阶段是由一个自由基转变成另一个自由基的阶段,犹如接力赛一样,自由基不断地传递下去,像一环接一环的链,所以称之为链反应。链终止阶段是消失自由基的阶段,自由基两两结合成键,所有的自由基都消失了,自由基反应也就终止了。 离子型反应:由分子经过异裂生成离子而引发的反应称为离子型反应。离子型反应有亲核反应和亲电反应,由亲核试剂进攻而发生的反应称为亲核反应,亲核试剂是对原子核有显著亲和力而起反应的试剂。由亲电试剂进攻而发生的反应称为亲电反应。亲电试剂是对电子有显著亲合力而起反应的试剂。 二、按反应物和产物的结构关系分类 加成反应:两个或多个分子相互作用,生成一个加成产物的反应称为加成反应。 取代反应:有机化合物分子中的某个原子或基团被其它原子或基团所置换的反应称为取代反应。 重排反应:当化学键的断裂和形成发生在同一分子中时,会引起组成分子的原子的配置方式发生改变,从而形成组成相同,结构不同的新分子,这种反应称为重排反应。 消除反应:在一个有机分子中消去两个原子或基团的反应称为消除反应。可以根据两个消去基团的相对位置将其分类。若两个消去基团连在同一个碳原子上,称为1,1-消除或

重氮化和重氮盐的反应综述

重氮化和重氮盐的反应综述 一、重氮化 芳香族伯胺和亚硝酸作用生成重氮盐的反应标为重氮化,芳伯胺常称重氮组分,亚硝酸为重氮化剂,因为亚硝酸不稳定,通常使用亚硝酸钠和盐酸或硫酸使反应时生成的亚硝酸立即与芳伯胺反应,避免亚硝酸的分解,重氮化反应后生成重氮盐。 重氮化反应可用反应式表示为: Ar-NH2 + 2HX + NaNO2--—Ar-N2X + NaX + 2H20 重氮化反应进行时要考虑下列三个因素: 1、酸的用量 从反应式可知酸的理论用量为2mol,在反应中无机酸的作用是,首先使芳胺溶解,其次与亚硝酸钠生成亚硝酸,最后生成重氮盐。重氮盐一般是容易分解的,只有在过量的酸液中才比较稳定,所以重氮化时实际上用酸量过量很多,常达3mol,反应完毕时介质应呈强酸性(pH值为3),对刚果红试纸呈蓝色.重氮过程中经常检查介质的pH 值是十分必要的。反应时若酸用量不足,生成的重氮盐容易和未反应的芳胺偶合,生成重氮氨基化合物: Ar-N2Cl + ArNH2——Ar-N=N—NHAr + HCl

这是一种自我偶合反应,是不可逆的,一旦重氮氨基物生成,即使补加酸液也无法使重氮氨基物转变为重氮盐,因此使重氮盐的质量变坏,产率降低。在酸量不足的情况下,重氮盐容易分解,温度越高,分解越快。 2、亚硝酸的用量 重氮化反应进行时自始至终必须保持亚硝酸稍过量,否则也会引起自我偶合反应。重氮化反应速度是由加入亚硝酸钠溶液加速度来控制的,必须保持一定的加料速度,过慢则来不及作用的芳胺会和重氮盐作用生成自我偶合反应。亚硝酸钠溶液常配成30%的浓度使用.因为在这种浓度下即使在-15℃也不会结冰。反应时检定亚硝酸过量的方法是用碘化钾淀粉试纸试验,一滴过量亚硝酸液的存在可使碘化钾淀粉试纸变蓝色。由于空气在酸性条件下也可位碘化钾淀粉试纸氧化变色,所以试验的时间以0.5-2s内显色为准。亚硝酸过量对下一步偶合反应不利,所以过量的亚硝酸常加入尿素或氨基磺酸以消耗过量亚硝酸。亚硝酸过量时,也可以加入少量原料芳伯胺,使和过量的亚础酸作用而除去。 3、反应温度 重氯化反应一般在0-5℃进行,这是因为大部分重氮盐在低温下较稳定,在较高温度下重氮盐分解速度加快的结果。另外亚硝酸在较高温度下也容易分解。重氮化反应温度常取决于重氮盐的稳定性,对-氨

相关文档
最新文档