茶黄素的制备、分析、分离及功能活性研究进展

茶黄素的制备、分析、分离及功能活性研究进展
茶黄素的制备、分析、分离及功能活性研究进展

动态膜分离技术研究进展

文章编号:1007-8924(2007)04-0091-05专题综述 动态膜分离技术研究进展 李晓波,胡保安,顾 平 (天津大学环境科学与工程学院,天津300072) 摘 要:介绍动态膜分离技术的概念,着重讨论影响动态膜分离性能的相关因素以及动态膜 在污水处理中的应用效果,指出动态膜技术具有良好的应用前景,但目前仍处于试验阶段,尚需深入研究. 关键词:动态膜;污水处理;研究进展中图分类号:TQ028.8 文献标识码:A 膜分离技术是当今水处理领域研究的热点,国内外均做了大量的研究工作[1-5],然而,膜污染及膜组件昂贵的价格是阻碍膜技术广泛应用的主要原因.动态膜分离技术采用大孔径材料制作膜组件,降低了膜组件的造价;同时,已有研究表明,动态膜的渗透性能更佳、抗污染能力显著提高[6-8].因此,动态膜作为一项新型的特殊膜分离技术正越来越多地受到国内外水处理技术研究者的关注[9-13]. 1 动态膜分离技术 动态膜作为一种分离技术,包含动态膜的载体 及动态膜分离层本身.动态膜的载体指用来承载动态膜的大孔径材料,一般价格低廉、易得,常见的有不锈钢丝网、普通筛网、工业滤布、筛绢等多孔材料和一些高分子材料,如烧结聚氯乙烯管等.动态膜分离层是动态膜分离技术的主体,指依附于动态膜载体之上、执行分离功能的滤饼层或污泥层.它是通过错流过滤或死端过滤的方式将某种固体或胶体微粒沉淀在载体表面上形成的.用于形成动态膜的粒子种类较多,有粘土类矿物、粉状活性炭(PAC )、ZrO 2、MnO 2、聚乙烯醇(PVA )等,也可用被处理的废液中的某种物质作为成膜物质沉淀在载体上形成动态膜,如自生生物动态膜的成膜物质为污水中的活性污泥.目前国内外关于动态膜分离技术的研究主要 集中在影响动态膜分离性能的因素及操作参数的优化方面. 2 影响动态膜分离性能的因素 2.1 pH 的影响 p H 对ZrO 2动态膜和MnO 2动态膜的影响较为 明显,这是由于MnO 2动态膜和大多数ZrO 2动态膜都是通过化学反应来生成膜粒子的. ZrO 2粒子的形成有两种方法:一种是提高含Zr 4+溶液,如无水ZrCl 4的水溶液的p H 来形成[14], 另一种是将ZrOCl 2加入到硫酸溶液中而形成[15].Zr 的水合氧化物在不同p H 下的特性不同,其粒子大小也不同.p H 较低时所生成的粒子粒径较小,随着p H 升高,粒径也逐渐升高.由于小颗粒需要更长的时间堵塞载体的孔隙,所以形成动态膜所需的时间也更长.Altman 等[16]的研究表明,动态膜的形成时间从p H 为3.5时的120min 减少到p H 为6时的45min ;Rumyantsev 等[16]的研究结果则分别是100min 和小于45min.蛋白质的截留率与p H 的关系不是很明显,p H 为3.5、5和6时形成的动态膜的截留率大于p H 为4时的动态膜. MnO 2是KMnO 4的还原产物,其反应式为4KMnO 4+6HCOONa =4MnO 2↓+2K 2CO 3+ 3Na 2CO 3+3H 2O +CO 2↑ 收稿日期:2005-09-06;修改稿收到日期:2006-01-17 作者简介:李晓波(1970-),男,河南省人,博士生,主要从事水污染治理技术的研究. 第27卷 第4期膜 科 学 与 技 术 Vol.27 No.4 2007年8月MEMBRAN E SCIENCE AND TECHNOLO GY Aug.2007

现代分离科学与技术复习题(1)

1、名词解释 1)分配系数,指一定温度下,处于平衡状态时,组分在流动相中的浓度和在固 定相中的浓度之比,以K表示。分配系数与组分、流动相和固定相的热力学性质有关,也与温度、压力有关。在不同的色谱分离机制中,K有不同的概念:吸附色谱法为吸附系数,为选择性系数(或称交换系数),凝胶色谱法为渗透参数 2)絮凝,使水或液体中悬浮微粒集聚变大,或形成絮团,从而加快的,达到固 -液分离的目的,这一现象或操作称作 3)层析分离,是利用各组分(、、分子的形状与大小、分子的电荷性与)的不 同,将多组分混合物进行分离的方法。主要是利用不同物质在固定和流动相上的亲和性差异,利用移动速度的不同进行分离。 4)吸附分离,吸附是利用吸附剂对液体或气体中某一组分具有选择性吸附的能 力,使其富集在吸附剂表面,再用适当的洗脱剂将其解吸达到分离纯化的过程 5)分子印迹技术分子印迹技术是指为获得在空间结构和结合位点上与某一分 子(印迹分子) 完全匹配的聚合物的实验制备技术。 6)反渗析,利用反渗透膜选择性的只能通过溶剂(通常是水)的性质,对溶液 施加压力,克服溶液的渗透压,使溶剂通过反渗透膜而从溶液中分离出来的过程。 7)共沉淀分离,共分离法是富集痕量组分的有效方法之一,是利用溶液中主沉 淀物(称为)析出时将共存的某些微量组分载带下来而得到分离的方法 8)离子交换分离,通过分子中的活性离子将溶液中带相反电荷的物质吸附在离 子交换剂上,然后用适当的洗脱溶剂将吸附物质再从离子交换剂上洗脱下来,达到分离的目的。 9)沉降分离,在外力场作用下,利用分散相和连续相之间密度差,使之发生相 对运动而实现非均相混合物分离。 10)液膜分离,液膜萃取,也称液膜分离,是将第三种液体展成膜状以隔开两个 液相,使料液中的某些组分透过液膜进入接收液,从而实现料液组分的分离。 11)临界胶团浓度,分子在溶剂中缔合形成的最低浓度 12)液膜分离, 13)反相色谱,根据流动相和相对不同,液相色谱分为和反相色谱。流动相大于 固定相极性的情况,称为反相色谱。合相色谱可作反相色谱。

现代分离方法与技术期末复习

一、名词解释: 分离:利用混合物中各组分在物理或化学性质上的差异,通过适当的装置或方法,使各组分分配至不同的空间区域或者在不同的时间依次分配至同一空间区域的过程。 富集:通过分离,使目标组分在某空间区域的浓度增大。 浓缩:将溶剂部分分离,使溶质浓度提高的过程。 纯化:通过分离使某种物质的纯度提高的过程 分离科学:研究从混合物中分离、纯化或富集某些组分以获得相对纯物质的过程的规律、仪器制造技术及其应用的一门学科。 回收率:0 100Q R Q ?实际回收量回收率=%欲回收总量 富集倍数:富集倍数=待分离组分的回收率/基体回收率 分离因子S :两种物质被分离的程度。回收率R 相差越大,分离效果越好。设A 为目标组分,B 为共存组分,则A 对B 的分离因子S A,B 为,0,0,//A A B A B B A B R Q Q S R Q Q == 氢键:氢原子在分子中与电负性较大的原子X 形成共价键时,还可以吸引另一个电负性较大、且含有孤对电子的原子Y ,形成较弱化学结合。 分配平衡常数:在一定温度下,当某一溶质在互不相容的两种溶剂中达到分配平衡时,该溶质在两相中的浓度之比 分配比(D ):某种物质在两相之间各形态总浓度的比值[][]A i org org i A aq i aq i A C D C A ==∑∑ 相比:有机相和水相两相体积之比 直接溶剂萃取:可溶于水的有机分子(如羧酸、醇类、糖)因具有明显疏水性,可以直接从水相萃取到有机相。 间接溶剂萃取:无机离子通过与萃取剂形成疏水化合物后,再被有机相萃取。 协同萃取效应:混合萃取剂同时萃取某一物质时,其分配比显着大于相同浓度下各单一萃取剂分配比之和。 相对保留值:组分2与组分1调整保留值之比:r 21 = t′R2 / t′R1= V′R2 / V′R1 分配系数:在某温度T 时,组分在两相间达到分配平衡时的浓度之比。即s m c K c = 保留时间(t R ):组分从进样到柱后出现浓度极大值时所需的时间; 死时间(t M ):不与固定相作用的气体(如空气)的保留时间; 高效毛细管电泳色谱:是指离子或带电粒子以毛细管为分离室,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的液相分离分析技术。 复合膜:是以微孔膜或超滤膜作支称层,在其表面覆盖以厚度仅为0.1~0.25μm 的致密的均质膜作壁障层构成的分离膜。使得物质的透过量有很大的增加。 泡沫吸附分离:泡沫分离根据表面吸附的原理,利用通气鼓泡在液相中形成的气泡为载体 对液相中的溶质或颗粒进行分离,因此又称泡沫吸附分离。 超分子分离:超分子是两种以上的化学物种通过分子间的非共价键相互作用缔结而成的具有特定空间结构和功能的聚集体。利用超分子对不同分子的选择性不同进行的分离为超分子分离。 分子蒸馏:是基于不同物质分子运动的平均自由程的差异而进行的分离。 分子印迹:是合成对某种特定分子具有特异选择性结合的高分子聚合物的技术。 加速溶剂萃取:ASE 用溶剂从固体或半固体样品中快速提取目标物质;通过高温(50?200OC )和高压(10?20MPa )加快提取速度。 双水相萃取:将两种聚合物水溶液混合时,当聚合物浓度达到一定值,体系会自然分成互不相溶的两相,称为双水相,被萃取物在两个水相之间的分配就是双水相萃取。 超临界流体萃取:以超临界流体为流动相,直接从固体(粉末)或液体样品中萃取目标物质的分离方法。 调整保留值:调整保留时间为色谱保留时间与死时间之差,即 ,同理 峰底宽:即色谱峰宽,用来衡量色谱峰宽度的参数,Wb 分离度:两相邻组分色谱峰保留值之差与色谱峰平均底宽之比 二、问答题 罗氏极性参数:对于一种溶剂,可得到3种模型化合物在该溶剂中的相对溶解能He,Hd 和Hn 。它们的和即为此种溶剂的总极性p',即:p' = He + Hd + Hn 溶剂选择性三角形的作用:尽管溶剂种类很多,但可以归于有限的几个选择性组。在同一选择性组中的各种溶剂,都具有非常接近的3个选择性参数,因此在分离过程中都有类似的性能,若要通过选择溶剂改善分离,就要选择不同组的溶剂。 选择溶剂的一般步骤:1. 选择与溶质极性相等的溶剂:要使溶质在溶剂中溶解度达到最大,首先要使溶质和溶剂的极性相等。2. 调整溶剂的选择性:在维持极性相等的前提下,更换溶剂种类,使分离选择性达到最佳。 微滤、超滤、纳滤和反渗透膜分离技术的异同:相同点:推动力都是压力差。不同点:微孔膜是均匀的多孔薄膜,膜孔径在0.02~10μm 之间,可以截留悬浮粒子,操作压强在0.01~0.2MPa ;超滤膜为不对称膜,其膜孔径在1-20nm 之间,操

新型膜分离技术研究进展

新型膜分离技术研究进展 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。 关键词:膜分离;原理;应用;进展 膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。 1膜分离技术的分离原理和特点 1.1纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200-1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技术,是国内外研究的热点。余跃等[1]废水进行了去除COD和脱色的研究。结果表明,纳滤技术可有效地去除印染废水中的色度和COD。 1.2超滤 超滤的截留相对分子质量在1000-100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。徐超等[2]在中试中采用浸没式超滤膜代替传统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果,设备费用降低了。 1.3微滤 微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05-10μm之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。微滤分离的实质是利用膜的“筛分”作用来进行的。即:比膜孔大的颗粒的机械截留、颗粒间相互作用及颗粒与膜表面的吸附、颗粒间的桥架作用这三种方式来实现的。 1.4反渗透 反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和自然渗透的方向相反,故称反渗透。学界对于反渗透分离机理的解释主要流行以下理论:溶解一扩散模型、优先吸附一毛细孔流理论、氢键理论。 自从上个世纪90年代邓宇发明了非加压吸附渗透海水淡化法以来,反渗透用于海水淡化的研究得到了极大发展[3]。在重金属废水处理领域,美国芝加哥API工艺公司采用B一9芳香族聚酞胺中空纤维膜组件处理镀镍漂洗水,废水中Niz+的分离率为92%[4]。 1.5电驱动膜

分离分析论文资料

膜分离技术与分子蒸馏技术 摘要:分离分析技术在生产和生活中有着广泛的用途,选择合适的分离分析方法关乎着实验与生产的成败,根据物质的性质不同所采用的的分离技术也有所差别,本文主要对膜分离技术和分子蒸馏技术的原理特点及在医药方面的应用做了简单的介绍。 关键词:膜分离技术分子蒸馏技术原理特点应用 前言 膜分离技术是一项新兴的高效分离技术,已经被国际公认为20世纪末到21世纪中期最有发展前途的一项重大高新生产技术,成为世界各国研究的热点,目前已被广泛应用医药、食品、化工、环保等各个领域;分子蒸馏技术是一种特殊的液液分离技术,它产生于20世纪20年代,是伴随着人们对真空状态下气体运动理论的深入研究以及真空蒸馏技术的不断发展而逐渐兴起的一种新的分离技术。目前,分子蒸馏技术已成为分离技术中的一个重要分支。 1 膜分离技术 1.1膜分离技术的原理及特点 膜分离是利用具有一定选择透过特性的过虑介质,以外界能量或化学位差为推动力,对多组分混合物进行物理的分离、纯化和富集的过程。膜分离法有许多的种类,虽然各种膜分离过程具有不同的原理和特征,即使用的膜不同,推动力、截流组分不同,适用的对象和要求也不同,但其共同点为过程简单、经济、节能、高效,无两次污染。大多数膜分离过程中物质不发生相变,分离系数较大,操作温度可为常温,可直接放大,可专一配膜等。相对与传统工艺,膜分离具有以下优点:艺简化,一次性投资少,方便维护、操作简便,运行费用低,节省资源;运行无相变,不破坏产品结构,分离效率高,提高产品的收率和质量;不需用溶剂或溶剂用量大大减少,因而废水处理也变得更加容易[1]。 1.2 膜分离技术的种类 目前,国内外在制药和医疗上常用的膜分离技术主要有微滤、超滤、纳滤、

国内外茶多酚生产技术发展对照

国内外茶多酚生产技术发展对照 (1)国外生产技术发展现状 超临界C02提取(SCFE)技术应用的研究,西德、日本发展很快,1982年西德已建成一座超临界C02提取酒花生产线,年处理能力为5000吨。日本科学家用超临界C02提取技术,从甜叶菊甙中提取分离甜味配糖体的研究,已获得成功。各国学者相继着手研究超临界与其他单元操作联合的趋势。如吸收、吸附、蒸馏,化学反应等。化学反应和蒸馏联合操作,已有明显的发展,同时在高压下相平衡的有关理论得到新的发展。 运用SCFE技术从茶叶里提取茶多酚已有十多年的历史了,该技术发展到今天,超临界C02萃取已不是单独使用的技术,而是多种技术相互组合,多种功能相互补充,使超临界C02萃取技术更加完善,更加成熟。 目前茶多酚生产技术开发转入到亚洲国家,如:印度、斯里兰卡和中国等国家,而美国、北美、欧洲和日本等发达国家却把主要精力集中在对茶多酚医学应用和科学研究及开发新产品的生产技术上。 (2)国内生产技术发展现状 目前,国内已建和在建的茶多酚工厂总计约有三、四十家,但真正具有市场竞争力(产品质量、规模、成本和效益)的只有三、四家。其主要原因在于现有工厂全部采用的是传统的溶剂提取法及沉淀分离,没有高新技术手段,产品质量差,综合成本高,在食品添加剂行业价格无法与一些合成的抗氧剂竞争。在医药行业利用超临界萃取组合技术生产茶多酚厂家约有十几家,但都规模较小,科技水平也不高。 红河唐人生物发展有限公司利用茶叶资源实施茶酚功能性成份产业化开发项目采用超临界萃取技术与膜过滤等相关的先进技术结合,形成具有世界领先水平的茶多酚提取技术,并在提取技术上有所创新,使产品纯度更高,咖啡因含量更低,更加符合工业化生产对原料、溶剂的使用要求;该生产技术还有收率高、建设投资少、能耗低、无溶剂及无农药残留,无"废水、废渣"排放等洁净生产的特点,从而有利于茶多酚有效地在医药和食品工业中应用。

新型膜分离技术的研究进展

收稿日期:2011-04-18 作者简介:陈默(1986—),硕士研究生,从事含能化合物的合成研究;王建龙,教授,博士生导师,通讯联系人,主要从事含能化合物合成及炸药中间体的制备、 应用及开发。新型膜分离技术的研究进展 陈 默,曹端林,李永祥,王建龙 (中北大学化工与环境学院,山西太原030051) 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、 电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。关键词:膜分离;原理;应用;进展中图分类号:TQ028.8 文献标识码:A 文章编号:1008-021X (2011)05-0031-03 Research Progress of Membrane Technology CHEN Mo ,CAO Duan -lin ,LI Yong -xiang ,WANG Jian -long (College of Chemical Engineering and Environment ,North University of China ,Taiyuan 030051,China )Abstract :The membrane extraction technique is a new type extraction technique with high efficiency ,high speed and saving energy.Membrane separation technology is applied widely as a new kind of separation technology.The separation mechanism and characteristics of different kinds of membrane technologies were introduced ,including electrodialysis ,reverse osmosis ,nanofiltration ,ultrafiltration ,microfiltration ,gas separation ,pervaporation ,membrane reactor.Further more ,the application and current problems of different membrane technologies were extensively summarized.Finally ,application prospect of membrane separation technology was presented.Key words :membrane separation ;principle ;application ;progress 膜分离技术主要是采用天然或人工合成高分子 薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。1膜分离技术的分离原理和特点1.1 纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200 1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技 术, 是国内外研究的热点。余跃等[1] 对纳滤技术处理印染废水进行了去除COD 和脱色的研究。结果 表明, 纳滤技术可有效地去除印染废水中的色度和COD 。Salzgitter Flachstahl 电镀厂采用膜技术处理 镀锌废水, 回收其中的Zn 2+ 和H 2SO 4,其结果达到了设计要求[2]。常江等[3] 在完成用新型纳滤膜处 理模拟含Ni 2+ 废水实验室研究的基础上,进行了电 镀镍漂洗废水的纳滤膜处理及镍和水回收利用的工业试验,为大规模工业应用提供了参考数据。杨青等[4] 研究报道将DK 型与NF90型纳滤膜组合可适用于治理高浓度、高盐分的吡啉农药废水污染。1.2 超滤 超滤的截留相对分子质量在1000 100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。 徐超等 [5] 在中试中采用浸没式超滤膜代替传 统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果, 设备费用降低了。罗涛等[6] 采用混凝沉淀-超滤工艺对微污染原水进行试验,结果表明,组合

现代分离技术

看看现代分离技术整理 1.传质分离过程分为哪两个分离过程? 平衡分离过程和速率分离过程 2.从不同的角度对分离效率有不同的评价指标 ①分离方法和角度②产品纯度 分离速率,分辨率,浓缩比,纯化程度,回收率。 3.写出5种使用能量媒介和5种使用物质媒介的分离操作。 能量媒介:精馏、萃取精馏、吸收蒸出、再沸蒸出、共沸精馏、结晶 物质媒介:萃取、浸提、吸收、吸附、液液萃取 4.萃取精馏的定义。 1)定义:加入的新组分不和原物系中的组分形成恒沸物,只改变组分间的相对挥发度,而其沸点比物系中其它组分的沸点高的分离过程。 2)萃取剂的作用:改变组分的相对挥发度。加入萃取剂与其中一个组分形成正偏差溶液(非理想溶液),与另外一个组分形成理想溶液(负偏差溶液),来改变相对挥发度。 3)萃取精馏塔中对萃取剂的要求: 不形成恒沸物 沸点要高 改变相对挥发度 不能分层 选择性强 溶解度大 沸点高,挥发度小 热稳定性和化学稳定性好 适宜的物性 使用安全无毒,对设备不腐蚀,污染小,环境友好,价格低廉,来源丰富 5)萃取精馏塔中回收段的作用: 使溶剂不在塔顶出现,达到回收效果。 如果不设回收段会使塔顶物料中含有高浓度的溶剂。 去除塔顶产品中可能夹带的溶剂,对于某些沸点很高的溶剂可不使用

6)萃取精馏塔塔顶产品不合格能否通过加大回流比的方法来使塔顶产品合格? 不能,因为加大回流比会使塔顶到塔底溶剂的浓度降低,液相流率增加, 将使液相中溶剂浓度xS 下降, 而使被分离组分间的相对挥发度 (a12)S 减小,分离效果变差。 7)精馏段萃取剂浓度的公式推导: 萃取剂的挥发度比所处理物料的挥发度低得多,用量较大,故在塔板上基本维持一固定的浓度值,“恒定浓度”即 假定:a 恒摩尔流;b 精馏段总物料衡算: 萃取剂物料衡算: (A ) 设萃取剂S 对被分离组分的相对挥发度为 (B) A=B (C ) 8) 提馏段萃取剂浓度的公式推导: 溶剂对被分离组分的相对挥发度一般很小,当β≈0 时,式(C)可简化为: 类似地,提馏段溶剂浓度: 1 ,,+=n s n s x x 0 =sD x D L S V +=+sD s s Dx Lx S Vy +=+S D L S Lx y S S -+-=β s s s s s s s s s y y y y x x x x x x y y y x x y y 21212121111++=++=--=βs s s s s x x x x x x x 2211211αα++=221121x x x x s s αα++=i is i x x α∑∑=1)1(,11+-=∴--=s s s s s s s x x y x x y y βββ 1)1(+-?=-+-s s s x x S D L S Lx ββRD S S L S L S x S +=≈-≈)1(β???? ??-'+-=S S x W L S x 1)1(ββ )1()1(S S x D L S x ---=ββ

生物化工及膜分离技术研究进展

动态与信息 专题报道 生物化工及膜分离技术研究进展 现代生物技术是新兴高技术领域中的重要技术之一,是21世纪高新技术的核心。它在生物学、分子生物学、细胞生物学和生物化学等基础上发展起来,是以重组DNA技术和细胞融合技术为基础,基因工程、细胞工程、酶工程和发酵工程四大先进技术所组成的新技术群。大力发展生物技术及其产业已成为世界各国经济发展的战略重点,目前最具代表性的应用领域是生物医药和农业。生物技术与化学工程相结合而形成的生物化工技术已成为生物技术的重要组成部分。生物化工技术为生物技术提供了多种高效率的反应器、新型分离介质、工艺控制技术和后处理技术,从而可以促进生物技术不断更新和提高;因而新兴的生物化工技术已经成为当今世界高技术竞争的重要焦点之一。生物化工产品的分离技术也被称为生物技术的下游加工术,是整个生物技术的重要组成部分,它的成功与否,是决定生物技术成果能否转变为具有实用价值和竞争力的产品的重要因素。生物化工产品的分离与化学物质的分离相比具有一定的特殊性,产品大多要求高纯度并具有一定的生物活性,因其易受化学、物理和生物等外界环境因素的破坏而发生变性,因而生化分离过程一般要求在快速、低温、洁净的条件下进行。总之,生物化工产品的分离技术具有一定特殊性。 1 生物化工分离过程的重要性及一般步骤生物化工分离过程是生物化学工程的重要组成部分,一般指的是从发酵液或酶反应液中分离生物产品,它是生物技术转化为生产力过程中不可或缺的重要环节。生物产品一般是从杂质含量远远高于产物的悬浮液中进行分离的,而且产品要求纯度较高,只有经过分离加工过程,才可以制得符合规定要求的产品,因此分离是生物化工工业化的必需手段。与此同时,进行生化分离过程十分困难,这是由于产物原料液的含量极低与产物的高纯度要求之间的差异造成的,而且分离的方法复杂,因此,开发新的分离工艺手段也是提高经济效益的手段。由于生物化工产品不同(如酶或代谢产物),所采用的分离方法也不同。但大多数生物化工分离过程常采用4个分离步骤:1)对发酵液或酶反应液预处理,进行固液分离。在这个步骤中过滤和离心是常用的基本单元操作。在过滤操作中有时为了减少过滤介质的阻力,采用了膜分离技术。但该过程对产物的含量改善作用很小。2)进一步分离。此步骤使产物的含量增加。常用的分离方法有吸附、萃取等,如合成ATP 时用颗粒活性炭作吸附剂。3)高度分离。在这个步骤中分离技术对产物具有一定的选择性,典型方法有层析、电泳等。4)精制,先进行结晶析出再干燥即可。合成ATP时,用离子交换树脂进行浓缩,最后用五氧化二磷干燥器进行减压干燥,可得ATP成品。生物化工过程中常用的分离方法如蒸馏、萃取、过滤、结晶、 元操作过程,而另一些则为新近发展的分离技术,如细胞膜破碎技术(包括球磨破碎和化学破碎等)、膜分离、色层分离等。在此着重介绍膜分离技术。 2 膜分离技术概述 膜分离技术被认为是20世纪末至21世纪中期最有发展前途,甚至会导致一次工业革命的高新技术之一,成为当今世界各国研究热点。膜分离作为一种新发展的高新分离技术,其应用领域不断扩大,广泛应用于化工、食品、水加工业、医药、环境保护、生物技术、能源工程等领域,并发挥了巨大的作用。我国对膜分离技术的研究是从20世纪60年代对离子交换膜的研究开始的。从60年代的反渗透技术到90年代的渗透汽化技术,我国的膜分离技术得到了迅速的发展。经过几十年的努力,目前我国在膜分离技术研究开发方面已成功地研制出一批具有实用价值、接近或达到国际先进水平的成果,如无机膜反应分离技术等。 3 膜分离技术的原理及优点 膜分离是指用半透膜作为障碍层,借助于膜的选择渗透作用,在能量、浓度或化学位差的作用下对混合物中的不同组分进行分离提纯。由于半透膜中滤膜孔径大小不同,可以允许某些组分透过膜层,而其它组分被保留在混合物中,以达到一定的分离效果。利用膜分离技术来进行分离具有如下优点:膜分离过程装置比较简单,同时操作方 032化 学 试 剂2008年3月

现代分离方法与技术期末复习资料

一、名词解释: 分离:利用混合物中各组分在物理或化学性质上的差异,通过适当的装置或方法,使各组分分配至不同的空间区域或者在不同的时间依次分配至同一空间区域的过程。 富集:通过分离,使目标组分在某空间区域的浓度增大。 浓缩:将溶剂部分分离,使溶质浓度提高的过程。 纯化:通过分离使某种物质的纯度提高的过程 分离科学:研究从混合物中分离、纯化或富集某些组分以获得相对纯物质的过程的规律、仪器制造技术及其应用的一门学科。 回收率:0 100Q R Q ?实际回收量回收率=%欲回收总量 富集倍数:富集倍数=待分离组分的回收率/基体回收率 分离因子S :两种物质被分离的程度。回收率R 相差越大,分离效果越好。设A 为目标组分,B为共存组分,则A 对B的分离因子S A ,B为,0,0,//A A B A B B A B R Q Q S R Q Q == 氢键:氢原子在分子中与电负性较大的原子X 形成共价键时,还可以吸引另一个电负性较大、且含有孤对电子的原子Y,形成较弱化学结合。 分配平衡常数:在一定温度下,当某一溶质在互不相容的两种溶剂中达到分配平衡时,该溶质在两相中的浓度之比 分配比(D ):某种物质在两相之间各形态总浓度的比值[][]A i org org i A aq i aq i A C D C A ==∑∑ 相比:有机相和水相两相体积之比 直接溶剂萃取:可溶于水的有机分子(如羧酸、醇类、糖)因具有明显疏水性,可以直接从水相萃取到有机相。 间接溶剂萃取:无机离子通过与萃取剂形成疏水化合物后,再被有机相萃取。 协同萃取效应:混合萃取剂同时萃取某一物质时,其分配比显著大于相同浓度下各单一萃取剂分配比之和。 相对保留值:组分2与组分1调整保留值之比:r21 = t′R 2 / t′R1= V′R2 / V′R1 分配系数:在某温度T 时,组分在两相间达到分配平衡时的浓度之比。即s m c K c = 保留时间(t R ):组分从进样到柱后出现浓度极大值时所需的时间; 死时间(tM ):不与固定相作用的气体(如空气)的保留时间; 高效毛细管电泳色谱:是指离子或带电粒子以毛细管为分离室,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的液相分离分析技术。 复合膜:是以微孔膜或超滤膜作支称层,在其表面覆盖以厚度仅为0.1~0.25μm 的致密的均质膜作壁障层构成的分离膜。使得物质的透过量有很大的增加。 泡沫吸附分离:泡沫分离根据表面吸附的原理,利用通气鼓泡在液相中形成的气泡为载体 对液相中的溶质或颗粒进行分离,因此又称泡沫吸附分离。 超分子分离:超分子是两种以上的化学物种通过分子间的非共价键相互作用缔结而成的具有特定空间结构和功能的聚集体。利用超分子对不同分子的选择性不同进行的分离为超分子分离。 分子蒸馏:是基于不同物质分子运动的平均自由程的差异而进行的分离。 分子印迹:是合成对某种特定分子具有特异选择性结合的高分子聚合物的技术。 加速溶剂萃取:ASE 用溶剂从固体或半固体样品中快速提取目标物质;通过高温(50~200OC )和高压(10~20MPa)加快提取速度。 双水相萃取:将两种聚合物水溶液混合时,当聚合物浓度达到一定值,体系会自然分成互不相溶的两相,称为双水相,被萃取物在两个水相之间的分配就是双水相萃取。 超临界流体萃取:以超临界流体为流动相,直接从固体(粉末)或液体样品中萃取目标物质的分离方法。 调整保留值:调整保留时间为色谱保留时间与死时间之差,即 ,同理 峰底宽:即色谱峰宽,用来衡量色谱峰宽度的参数,Wb 分离度:两相邻组分色谱峰保留值之差与色谱峰平均底宽之比 二、问答题 罗氏极性参数:对于一种溶剂,可得到3种模型化合物在该溶剂中的相对溶解能He ,H d和Hn 。它们的和即为此种溶剂的总极性p',即:p' = H e + Hd + Hn 溶剂选择性三角形的作用:尽管溶剂种类很多,但可以归于有限的几个选择性组。在同一选择性组中的各种溶剂,都具有非常接近的3个选择性参数,因此在分离过程中都有类似的性能,若要通过选择溶剂改善分离,就要选择不同组的溶剂。 选择溶剂的一般步骤:1. 选择与溶质极性相等的溶剂:要使溶质在溶剂中溶解度达到最大,首先要使溶质和溶剂的极性相等。2. 调整溶剂的选择性:在维持极性相等的前提下,更换溶剂种类,使分离选择性达到最佳。 微滤、超滤、纳滤和反渗透膜分离技术的异同:相同点:推动力都是压力差。不同点:微孔膜是均匀的多孔薄膜,膜孔径在0.02~10μm之间,可以截留悬浮粒子,操作压强在0.01~0.2MPa;超滤膜为不对称膜,其

现代分离技术试题

填空部分: 1、我们测定气相色谱仪灵敏度时,如果用102-白色担体,邻苯二甲酸二壬酯固定液, 此时按两相所处的状态属于(气—液) 色谱;按固定相性质属于(填充柱) 色谱; 按展示方式属于(冲洗) 色谱;按分离过程所依据的物理化学原理属于(分配)色谱。2、液相色谱分析中常用以低压汞灯为光源,波长固定式的紫外(UV)检测器,它是以 低压汞灯的最强发射线(253.8)nm做为测定波长。 3、根据分离原理的不同,液相色谱可分为(液—液);(液—固);(离子交换);(凝胶)色谱法。 4、固定相分为(液体)和(固体)固定相两大类。固体固定相可分为(吸附剂), (高分子多孔小球),(化学键合)固定相三类。 5、保留值大小反映了(组分)与(固定相)之间作用力的大小,这些作用力包括 (定向力),(诱导力),(色散力),(氢键作用力)等。 6、柱温选择主要取决于样品性质。分析永久性气体,柱温一般控制在(50℃以上); 沸点在300℃以下的物质,柱温往往控制在(150℃以下);沸点300℃以上的物质, 柱温最好能控制在(200℃以下);高分子物质大多分析其裂解产物。若分析多组分 宽沸程样品,则可采用(程序升温);检测器可采用(FID)。

7、在气相色谱分析中,载气钢瓶内贮存气体都有明显的标记,如氮气,瓶外漆(黑色),用黄色标写“氮”;氢气漆(深绿色),红色标写“氢”。 8、固定液按相对极性可粗分为(五)类,异三十烷是(非极性)固定液,属(0)级;β,β,—氧二丙腈是(强极性)固定液,属(5)级。 9、采用TCD检测器时,要注意先(通载气)后(加桥电流)并且(桥电流)不可过大,否则易烧损铼钨丝。 10、色谱基本参数测量与计算的关键是(控制色谱操作条件的稳定)。 11、气相色谱中,对硫、磷化合物有高选择性和高灵敏度的检测器是火焰光度检测器(FPD)和硫磷检测器(SPD); 对大多数有机化合物有很高灵敏度的是氢火焰离子化检测器(FID)。 12、某色谱峰峰底宽为50秒,它的保留时间为50分,在此情况下,该柱子理论板数有(57600)块。 13、液相色谱中较常用的检测器有(紫外UV),(示差折光),(荧光)三种;而我校GC—16A气相色谱仪带有(热导检测器TCD),(氢火焰离子化检测器FID),(火焰光度检测器FPD),(电子捕获检测器ECD)四种检测器。 15、高效液相色谱根据样品与固定相,流动相的相互作用大致可分为(吸附色谱),(分配色谱),(离子交换色谱),(凝胶色谱)四种分离方式。

儿茶素转化形成聚酯型儿茶素和茶黄素变化规律的初步研究

儿茶素转化形成聚酯型儿茶素和茶黄素变化规律的初步研究随着人们物质和精神生活的逐步提高,越来越多的人选择喝茶作为强身健体和陶冶情操的生活方式。作为六大茶类之一的红茶,其销量最大。 茶黄素和聚酯型儿茶素是儿茶素在多酚氧化酶作用下形成的两类重要氧化产物,且与红茶的品质密切相关。本文以儿茶素、茶黄素和聚酯型儿茶素为指标,在建立高效液相色谱法及优化浸提条件的基础上,对其在红茶加工及体外酶促氧化试验中的变化情况做了系统研究。 初步得出以下结论:1.建立了茶叶中TSs(TSA、TSB、TSC)和TFs(TF、TF-3-G、TF-3’-G和TFDG)同时检测的高效液相色谱分析方法。采用日本 cosmosil5C18-AR-Ⅱ柱(4.6mm×250mm),两个流动相分别为50mmol/L磷酸和100%乙腈,流速为0.8mL/min,柱温为35℃,检测波长为280nm,外标法定量。 该方法具有较好的重复性、精密性、稳定性,此方法可用于茶叶中聚酯型儿茶素和茶黄素的同时测定。2.在单因素试验的基础上,选择液料比、浸提试剂浓度、浸提温度作为因子,通过三元二次通用旋转组合设计试验优化TSs浸提条件。 结果表明:浸提试剂浓度、浸提温度对TSs浸出量的影响差异极显著,料液比对其影响差异显著,主因子效应为浸提试剂浓度>浸提温度>液料比。最佳浸提条件为48%甲醇,70℃,29.41:1mL/g,10min。 在此条件下,TSs浸出量为11.63mg/g,与模型预测值11.70mg/g接近。3.通过比较不同固样方式和保存方式对TSs含量的影响,确定冷冻干燥和液氮保存为最佳的固样方式和保存方式。 在此基础上,进一步探讨发酵温度和干燥温度对儿茶素氧化形成TFs和TSs 含量的影响。结果表明:23℃发酵温度有利于TFs的合成,而31℃有利于TSs

膜分离技术研究进展+文献名称

膜分离技术研究进展 组员:吴佳曦、张雯辉、郭志新、李耀睿、刘汉飞、王伦、张振斌膜分离技术在近20年发展迅速,其应用已从早期的脱盐发展到化工、轻工、石油、冶金、电子、纺织、食品、医药等工业废水、废气的处理,原材料及产品的回收与分离和生产高纯水等,是适应当代新产业发展的重要高新技术。膜分离技术不但在工业领域得到广泛应用,同时正在成为解决能源、资源和环境污染问题的重要技术和可持续发展的技术基础。 膜分离是借助于膜,在某种推动力的作用下,利用流体中各组分对膜的渗透速率的差别而实现组分分离的过程。目前常见的膜分离过程可分为以下几种,电渗析(Electrodialysis,ED)、反渗透(Reverse osmosis,RO)、微滤(Microfiltration,MF)、超滤(Ultrafiltration,UF)、纳滤(Nanofiltration,UF)和液膜分离等。 膜技术具有分离效率高、能耗低、无相变、操作简便、无二次污染、分离产物易于回收、自动化程度高等优点,在水处理领域具有相当的技术优势,是现代分离技术中一种效率较高的分离手段。 在环境过程中膜分离技术以其独特的作用而被广泛用于水的净化与纯化过程中。下面分类介绍一下膜分离技术的研究现状。 1 电渗析技术研究现状(刘汉飞) 电渗析是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择渗透性(与膜电荷相反的离子透过膜,相同的离子则被膜截留),使溶液中的离子作定向移动以达到脱除或富集电解质的膜分离操作。它可使电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。电渗析技术普遍应用于食品生化行业以及废水处理。下面分类对这几方面的应用现状做一介绍。 1.1 电渗透技术在食品行业中的应用 利用电渗析技术对酱油进行脱盐处理,可以制得低盐酱油并基本保持酱油原有风味,但要损失一部分作为酱油指标的氨基酸态氮和有机酸等有效成分,从而将酱油的含盐量降低。但国内尚无这方面的报导,刘贤杰等采用电渗析技术进行了酱油脱盐的研究。研究结果显示:原酱油食盐含量19.4%,经电渗析处理后,酱油含量降至约9%,食盐以外的有效成分也有一些被除去,比较明显的是作为酱油品质指标的氨基酸态氮,有约8%的损失。酱油风味大致不变,证明了电渗

《生物产品分离分析技术》教学大纲

《生物产品分离分析技术》教学大纲 Separation and Analysis of Bioproducts 课程编码:27A11417 学分: 4.0 课程类别:专业必修课 计划学时:64 其中讲课:32 实验:32 适用专业:生物技术 推荐教材:顾觉奋主编,《分离纯化工艺原理》,中国医药科技出版社,2002。 参考书目:1. 欧阳平凯编著,《生物分离原理及技术》,化学工业出版社,2010。 2. 严希康主编,《生物物质分离工程》,化学工业出版社,2010。 3. 俞俊棠主编,《新生物工艺学(下)》,化学工业出版社,2002。 4. 李俊玲主编,《生物产品分离分析技术实验》,济南大学出版社,2016。 课程的教学目的与任务 通过本课程的学习,使学生了解生物体系的基本特点及对分离过程的特殊要求,掌握生物物质的分离纯化方法的基本原理、工业操控方式与操控因素及其适用性。培养学生结合基础知识分析解决试验研究和工业化生产可能遇到的根本问题的能力。通过对本课程的学习,能使学生针对不同产品的特性,较好地运用各种分离技术来设计合理的提取、精制的工艺路线,并能从理论上解释各种现象,提高分析问题和解决问题的能力。 课程的基本要求 通过本课程的学习,使学生了解生物体系的基本特点及对分离过程的特殊要求,掌握生物物质的分离纯化方法的基本原理、工业操控方式与操控因素及其适用性。培养学生结合基础知识分析解决试验研究和工业化生产可能遇到的根本问题的能力。 各章节授课内容、教学方法及学时分配建议(含课内实验) 第一章:绪论建议学时:2 [教学目的与要求] 掌握生物分离工程在生物工程领域的地位,生物分离过程的特点以及生物分离过程的分类。 [教学重点与难点] 准确理解生物分离过程的特点。难点:正确理解生物分离过程与普通化工产品分离的区别,准确理解生物分离过程的特点。 [授课方法] 以课堂讲授为主,课堂讨论和课下自学为辅。 [授课内容] 1.生物分离工程的历史及应用;2.生物分离过程的特点。 第二章:发酵液的预处理和固液分离建议学时:4

现代分离技术

现代分离技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

看看现代分离技术整理 1.传质分离过程分为哪两个分离过程? 平衡分离过程和速率分离过程 2. 从不同的角度对分离效率有不同的评价指标 ①分离方法和角度②产品纯度 分离速率,分辨率,浓缩比,纯化程度,回收率。 3.写出5种使用能量媒介和5种使用物质媒介的分离操作。 能量媒介:精馏、萃取精馏、吸收蒸出、再沸蒸出、共沸精馏、结晶 物质媒介:萃取、浸提、吸收、吸附、液液萃取 4.萃取精馏的定义。 1)定义:加入的新组分不和原物系中的组分形成恒沸物,只改变组分间的相对挥发度,而其沸点比物系中其它组分的沸点高的分离过程。 2)萃取剂的作用:改变组分的相对挥发度。加入萃取剂与其中一个组分形成正偏差溶液(非理想溶液),与另外一个组分形成理想溶液(负偏差溶液),来改变相对挥发度。 3)萃取精馏塔中对萃取剂的要求: ?不形成恒沸物 ?沸点要高 ?改变相对挥发度 ?不能分层 选择性强 溶解度大 沸点高,挥发度小 热稳定性和化学稳定性好 适宜的物性

使用安全无毒,对设备不腐蚀,污染小,环境友好,价格低廉,来源丰富 5)萃取精馏塔中回收段的作用: 使溶剂不在塔顶出现,达到回收效果。 如果不设回收段会使塔顶物料中含有高浓度的溶剂。 去除塔顶产品中可能夹带的溶剂,对于某些沸点很高的溶剂可不使用 6)萃取精馏塔塔顶产品不合格能否通过加大回流比的方法来使塔顶产品合格? 不能,因为加大回流比会使塔顶到塔底溶剂的浓度降低,液相流率增加, 将使液相中溶剂浓度xS 下降, 而使被分离组分间的相对挥发度 (a12)S 减小,分离效果变差。 7)精馏段萃取剂浓度的公式推导: 萃取剂的挥发度比所处理物料的挥发度低得多,用量较大,故在塔板上基本维持一固定的浓度值,“恒定浓度”即 假定:a 恒摩尔流;b 精馏段总物料衡算: 萃取剂物料衡算: (A ) 设萃取剂S 对被分离组分的相对挥发度为 1 ,,+=n s n s x x 0 =sD x D L S V +=+sD s s Dx Lx S Vy +=+S D L S Lx y S S -+-= β s s s s s s s s s y y y y x x x x x x y y y x x y y 2 121212 1111++=++=--=βs s s s s x x x x x x x 2211211αα++=221121x x x x s s αα++=i is i x x α∑∑=1-s s s x y y β

相关文档
最新文档