应用时间序列分析

应用时间序列分析与预测

摘要:随着我国经济的快速发展,政府对教育投入规模不断扩大。本文基于财政教育支出的数据,利用ARIMA模型,对我国未来几年的教育支出进行了定量预测。预测结果显示:该模型预测值与实际数据相比误差小,预测结果较为精确。

关键词:时间序列教育支出平稳性ARIMA模型预测

知识结构:

时间序列是指同一种现象在不同时间上的相继观察值排列而成的一组数字序列。现实中的时间序列一般是长期趋势、循环变动、季节性变动以及随机变动等几种变化形式的叠加或组合。

对时间序列进行观察、研究、找寻它的变化发展的规律,预测它未来的走势即时间序列分析,作为时间序列分析的主要用途就是预测,即通过对预测目标本身时间序列的处理,研究预测目标的变化趋势。时间序列预测方法的基本思想是:预测一个现象的未来变化时,用该现象的过去行为来预测未来。即通过时间序列的历史数据揭示现象随时间变化的规律,将这种规律延伸到未来,从而对该现象的未来做出预测。

ARIMA模型是迄今为止运用最广泛的时间序列预测方法。ARIMA模型是通过差分等方法将非平稳序列转变为平稳随机序列,再运用目前已经相当成熟的ARMA模型进行拟合,效果十分显著。对于非平稳时间序列,首先必须将其差分d次,把它变为平稳的,然后用ARMA(p,q)作为它的模型,那么就说这个原始的时间序列是ARIMA(p,d,q),即自回归求和移动平均模型(其中p指自回归项数,d指序列成为平稳之前必须取其差分的次数,而q指移动平均数)。显然,ARIMA(p,d,q)模型的实质就是d阶差分运算与ARMA(p,q)模型的组合。

而对于ARMA(p,q)模型,它是一类常用的随机时序模型,它是一种精度较高的时间序列预测方法。其基本思想是:某些时间序列是依赖于时间t的一族随机变量,构成该时序的单个序列值虽然具有不确定性,但整个序列的变化却有一定的规律可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构和特征,达到最小方差意义下的最预测。在现实生活中,我们常常运用ARMA(p,q)模型对经济体进行预测和分析,得到较为满意的效果。

ARMA(p,q)模型有三种基本类型:自回归(AR:Auto-regressive)模型、移动平均(MA :Moving Average )模型以及自回归移动平均(ARMA :Auto-regressive Moving Average)模型。

(1)自回归模型(AR)

如果时间序列y t ,是它的前期值和随机项的线性函数,即可表示为:

11....t t p t p t y y y φφε--=+++

则该时间序列是p 阶自回归序列,记为AR(P)。随机项t ε,与之后变量不相关,t ε是相互独立的随机性序列,且服从均值为0、方差为2

σ的正态分布。

(2)移动平均模型(MA)

如果时间序列y t ,是它的当期和前期的随机误差项的线性函数,即可表示为:

11......t t t q t q y εθεθε--=---

则称该时间序列是q 阶移动平均序列,记为MA(q)。移动平均过程无条件平稳。 (3)自回归移动平均模型(ARMA)

如果时间序列y t ,是它的当期和前期的随机误差项以及前期值的线性函数,即可表示:

1111......t t p t p t t q t q y y y φφδεθεθε----=++++--- 则称y t 是自回归移动平均,

记为ARMA(p ,q)。ARMA(p,q)模型等于无穷阶的AR 或MA 过程。当该过程平稳时,它的均值不随时间变化

1...p μφμφμδ=+++,由此得过程平稳的一个必要条件,即

12...1p φφφ+++<。

应用举例:

我国财政教育支出的ARIMA(p,q)模型 1、数据的选择及平稳化处理

本文的所有数据处理过程均使用Eviews6.0进行。

1,000

2,0003,0004,0005,0006,0007,00055

60

65

70

75

80

85

90

95

00

05

10

EDUCATION

图(1)1952-2010我国财政教育支出序列图

由上图可见,该序列不具有明显的周期变化和季节波动,但呈现出明显的增长趋势,是非平稳的,而ARMA(p,q)模型应用有一个前提条件,就是要求时间序列是平稳的,也就是其均值与时间无关,其方差是有限的。在现实经济生活中,许多时间序列都是非平稳的,把非平稳序列转化为平稳序列最常用的方法是对数和差分方式。为保证信息的准确,尽量避免过度差分,在此,先考虑用对数来消解数据的趋势性。

LNEDU

9

8

7

6

5

4

3

2

556065707580859095000510

图(2)原始数据取对数序列图

由图2可见,序列仍呈现明显增长趋势,是非平稳的,鉴于其趋近于线性增长,故对其做一阶差分以期望平稳。

X

.6

.4

.2

.0

-.2

-.4

556065707580859095000510

图(3)原始数据取对数后一阶差分x序列图

从图可以初步判断,x序列平稳,这只是直观感觉,需进一步采用ADF单位根检验来精确判断。

2、单位根检验

下面采用单位根检验,检验结果如下:

表1单位根检验

ADF统计量education x=d(log(education))

Augmented -1.339845 -5.126837

Dickey-Fuller test

1%-2.613010 -2.613010

5%-1.947665 -1.947665

10%-1.612573 -1.612573

结论非平稳平稳

从表中数据可以看出,X序列ADF检验结果表明X是平稳的,因此ARIMA(p,d,q)的差分阶数d=1。

3、非纯随机性检验:

对平稳序列还需进行纯随机性检验。因为纯随机性序列就没有了分析的必要,对于平稳的非纯随机性序列才可以进行ARMA(p,q) 模型拟合。纯随机性序列通常观察所得平稳序列的自相关系数和偏相关系数图来判断。

图(4)x的自相关图和偏自相关图

如图所示,显然x不是纯随机性序列,因此可以对此序列进行ARMA建模。

4、模型的识别定阶与参数估计

利用自相关图和偏相关图找出适当得p、d、q值,ARIMA模型选择原则如下:

表2 ARIMA模型选择原则

模型自相关系数偏相关系数

AR(p) 拖尾P阶截尾

MA(q) Q阶截尾拖尾

ARMA(p,q) 拖尾拖尾

通过观察可以看出七阶差分后序列的自相关系数和偏相关系数都是截尾的,所以我们初步确定采用ARMA模型的疏系数形式进行拟合。通过使用软件多次推算,利用AIC 和SC 准

则选出最优的模型形式为:

a

(1-B) log (education) =C+ (1-θ1B6-θ2B7)

t

利用最小二乘法估计参数得:

表3 回归结果

参数系数标准差t p

C 0.108616 0.022368 4.855780 0.0000

MA(6) 0.414895 0.106382 3.900064 0.0003

MA(7) 0.595402 0.106297 5.601330 0.0000

R-squared 0.499196 Mean dependent var 0.110115

Adjusted R-squared 0.480985 S.D. dependent var 0.137918

S.E.of regression 0.099360 Akaike info criterion -1.729793

Sum squared resid 0.542984 Schwarz criterion -1.623218

Log likelihood 53.16398 Hannan-Quinn criter. -1.688280

F-statistic 27.41170 Durbin-Watson stat 1.621746

Prob(F-statistic) 0.000000

最终模型为:

a

(1-B) log (edu) =0.108616+ (1+0.414895B6+0.595402B7)

t

5、模型的检验

模型的检验主要是检验模型的有效性。一个模型是否有效主要看它提取信息是否充分。一个好的拟合模型应该能够提取观察值序列中几乎所有的样本相关信息,换言之,拟合残差项中将不含任何相关信息,即残差项序列应该为随机性序列。得到残差的自相关图和偏相关图见下:

图(5)残差的Q 统计量检验图

由图可以看出模型残差的自相关系数和偏相关系数都在置信区间内,与零无显著差异,初步可以认为残差是线性无关的,趋近于随机性序列。再作残差关于其滞后一阶的散点图:

-.4-.3-.2-.1.0.1

.2.3.4-.4

-.2

.0.2

.4

E0

E 0(-1)

图(6) 残差的Q 统计量检验图

由图六可知,残差为序列无关。因此,可以认为该模型是可取的,可用于接下来的预测。

6、预测及其效果分析

下面利用上面时间的ARMA 模型对某一时间段进行预测检验,我们首先利用ARMA 模型对2008年到2010年的财政教育投资进行预测,预测值和实际值比较如下:(单位:亿元)

表4预测值和实际值比较

实际值

预测值

绝对误差 相对误

差(%) 相对

误差

平均值(%)

2008年 5389.397 5416.991 27.59361 0.1200

0.853

2009年 6006.770 6080.457 73.68692 1.2267

2010年

6550.633 6604.361 53.72758 0.8202

图(7)预测值与实际值的图形趋势

从图可以看出,预测值与实际值的相对误差小,说明该模型在短期内预测比较准确,但随着预测期的逐渐增大,预测误差可能会逐渐增大。下面是对2011年到2013年的情况进行预测:(单位:亿元)

ARIMA(0,1,(6,7))对2011年-2013年预测

时间2011 2012 2013

预测值7337.1828020.6899114.252

总的来说,ARIMA模型的建立过程已经结束,模型整体好,达到预期效果。ARMA模型从定量的角度反应了一定的问题,作出了较为精确的预测,尽管不能完全代表现实,但对我国教育事业蒸蒸日上的今天,我们把握教育支出的趋势具有较好的借鉴意义。

参考文献

[1]高铁梅.计量经济分析方法与建模[M].北京:清华大学出版社,2009,5.

[2]郭惠英.计量经济学模型方法与应用[M].北京:中国物资出版社,2002,11.

[3]徐国祥.统计预测与决策[M].上海:上海财经大学出版社,2005,8.

[4]易丹辉.数据分析与eviews应用[M].北京:中国统计出版社,2008,10.

时间序列分析方法及应用7

青海民族大学 毕业论文 论文题目:时间序列分析方法及应用—以青海省GDP 增长为例研究 学生姓名:学号: 指导教师:职称: 院系:数学与统计学院 专业班级:统计学 二○一五年月日

时间序列分析方法及应用——以青海省GDP增长为例研究 摘要: 人们的一切活动,其根本目的无不在于认识和改造世界,让自己的生活过得更理想。时间序列是指同一空间、不同时间点上某一现象的相同统计指标的不同数值,按时间先后顺序形成的一组动态序列。时间序列分析则是指通过时间序列的历史数据,揭示现象随时间变化的规律,并基于这种规律,对未来此现象做较为有效的延伸及预测。时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界的目的。而且运用时间序列模型还可以预测和控制现象的未来行为,由于时间序列数据之间的相关关系(即历史数据对未来的发展有一定的影响),修正或重新设计系统以达到利用和改造客观的目的。从统计学的内容来看,统计所研究和处理的是一批有“实际背景”的数据,尽管数据的背景和类型各不相同,但从数据的形成来看,无非是横截面数据和纵截面数据两类。本论文主要研究纵截面数据,它反映的是现象以及现象之间的关系发展变化规律性。在取得一组观测数据之后,首先要判断它的平稳性,通过平稳性检验,可以把时间序列分为平稳序列和非平稳序列两大类。主要采用的统计方法是时间序列分析,主要运用的数学软件为Eviews软件。大学四年在青海省上学,基于此,对青海省的GDP十分关注。本论文关于对1978年到2014年以来的中国的青海省GDP(总共37个数据)进行时间序列分析,并且对未来的三年中国的青海省GDP进行较为有效的预测。希望对青海省的发展有所贡献。 关键词: 青海省GDP 时间序列白噪声预测

应用时间序列分析第4章答案

河南大学: 姓名:汪宝班级:七班学号:1122314451 班级序号:68 5:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。 解:具体解题过程如下:(本题代码我是做一问写一问的) 1:观察时序图: data wangbao4_5; input x@@; time=1949+_n_-1; cards; 54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802 ; proc gplot data=wangbao4_5; plot x*time=1; symbol1c=black v=star i=join; run; 分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展. X t=a+b t+I t t=1,2,3,…,60 E(I t)=0,var(I t)=σ2 其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。

时间序列分析试卷及答案3套

时间序列分析试卷1 一、 填空题(每小题2分,共计20分) 1. ARMA(p, q)模型_________________________________,其中模型参数为 ____________________。 2. 设时间序列{}t X ,则其一阶差分为_________________________。 3. 设ARMA (2, 1): 1210.50.40.3t t t t t X X X εε---=++- 则所对应的特征方程为_______________________。 4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是 _______________________。 5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。 6. 对于一阶自回归模型MA(1): 10.3t t t X εε-=-,其自相关函数为 ______________________。 7. 对于二阶自回归模型AR(2): 120.50.2t t t t X X X ε--=++ 则模型所满足的Yule-Walker 方程是______________________。 8. 设时间序列{}t X 为来自ARMA(p,q)模型: 1111t t p t p t t q t q X X X φφεθεθε----=++++++L L 则预测方差为___________________。 9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。 10. 设时间序列{}t X 为来自GARCH(p ,q)模型,则其模型结构可写为_____________。 二、(10分)设时间序列{}t X 来自()2,1ARMA 过程,满足 ()()2 10.510.4t t B B X B ε -+=+, 其中{}t ε是白噪声序列,并且()()2 t t 0,E Var εεσ==。

时间序列分析考试卷及答案

考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟 注:B 为延迟算子,使得1 -=t t Y BY ;?为差分算子,1--=?t t t Y Y Y 。 一、单项选择题(每小题3 分,共24 分。) 1. 若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。 A. MA(2) B.ARMA(1,1) C.AR(2) D.MA(1) 2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。 A. )1(MA B.)1(AR C.)1,1(ARMA D.)2(MA 3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。 (A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ, 4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B )。 A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1) 5. AR(2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。 A.0 B.64.0 C. 1 6.0 D. 2.0 6.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。 A.5.0- B. 25.0 C. 4.0- D. 8.0 7. 若零均值平稳序列{}t X ?,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。 A. MA(2) B.)2,1(IMA C.)1,2(ARI D.ARIMA(2,1,2) 8. 记?为差分算子,则下列不正确的是( C )。 A. 12-?-?=?t t t Y Y Y B. 212 2--+-=?t t t t Y Y Y Y C. k t t t k Y Y Y --=? D. t t t t Y X Y X ?+?=+?) ( 二、填空题(每题3分,共24分); 1. 若{}t Y 满足: 1312112---Θ-Θ--=??t t t t t e e e e Y θθ, 则该模型为一个季节周期为

《时间序列分析及应用:R语言》读书笔记

《时间序列分析及应用:R语言》读书笔记 姓名:石晓雨学号:1613152019 (一)、时间序列研究目的主要有两个:认识产生观测序列的随机机制,即建立数据生成模型;基于序列的历史数据,也许还要考虑其他相关序列或者因素,对序列未来的可能取值给出预测或者预报。通常我们不能假定观测值独立取自同一总体,时间序列分析的要点是研究具有相关性质的模型。 (二)、下面是书上的几个例子 1、洛杉矶年降水量 问题:用前一年的降水量预测下一年的降水量。 第一幅图是降水量随时间的变化图;第二幅图是当年降水量与去年降水量散点图。 win.graph(width=4.875, height=2.5,pointsize=8) #这里可以独立弹出窗口 data(larain) #TSA包中的数据集,洛杉矶年降水量 plot(larain,ylab='Inches',xlab='Year',type = 'o') #type规定了在每个点处标记一下 win.graph(width = 3,height = 3,pointsize = 8) plot(y = larain,x = zlag(larain),ylab = 'Inches',xlab = 'Previous Year Inches')#zlag 函数(TSA包)用来计算一个向量的延迟,默认为1,首项为NA

从第二幅图看出,前一年的降水量与下一年并没有什么特殊关系。 2、化工过程 win.graph(width = 4.875,height = 2.5,pointsize = 8) data(color) plot(color,ylab = 'Color Property',xlab = 'Batch',type = 'o') win.graph(width = 3,height = 3,pointsize = 8) plot(y = color,x = zlag(color),ylab = 'Color Property',xlab = 'Previous Batch Color Property') len <- length(color) cor(color[2:len],zlag(color)[2:len])#相关系数>0.5549 第一幅图是颜色属性随着批次的变化情况。

时间序列习题(含答案)

一、单项选择题 1.时间数列与变量数列() A都是根据时间顺序排列的B都是根据变量值大小排列的 C前者是根据时间顺序排列的,后者是根据变量值大小排列的 D前者是根据变量值大小排列的,后者是根据时间顺序排列的 2.时间数列中,数值大小与时间长短有直接关系的是() A平均数时间数列B时期数列C时点数列D相对数时间数列 3.发展速度属于() A比例相对数B比较相对数C动态相对数D强度相对数 4.计算发展速度的分母是() A报告期水平B基期水平C实际水平D计划水平5.某车间月初工人人数资料如下: 则该车间上半年的平均人数约为() A 296人 B 292人 C 295 人 D 300人 6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为() A150万人B150.2万人C150.1万人D无法确定 7.由一个9项的时间数列可以计算的环比发展速度( )

A 有8个 B 有9个 C 有10个 D 有7个 8.采用几何平均法计算平均发展速度的依据是( ) A 各年环比发展速度之积等于总速度 B 各年环比发展速度之和等于总速度 C 各年环比增长速度之积等于总速度 D 各年环比增长速度之和等于总速度 9.某企业的产值2005年比2000年增长了58.6%,则该企业2001—2005年间产值的平均发展速度为( ) A 5 %6.58 B 5%6.158 C 6 %6.58 D 6%6.158 10.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( ) A 简单平均法 B 几何平均法 C 加权序时平均法 D 首末折半法 11、时间序列在一年内重复出现的周期性波动称为( ) A 、长期趋势 B 、季节变动 C 、循环变动 D 、随机变动 1.C 2.B 3.C 4.B 5.C 6.C 7.A 8.A 9.B 10.D 11、B 二、多项选择题 1.对于时间数列,下列说法正确的有( ) A 数列是按数值大小顺序排列的 B 数列是按时间顺序排列的 C 数列中的数值都有可加性 D 数列是进行动态分析的基础

应用时间序列分析 -

姓名:葛国峰学号:1122307851 编号:33 习题2.3 2.解: data b; input y@@; time=intnx('month','1jan1975'd,_n_-1); format time data; cards; 330.45 330.97 331.64 332.87 333.61 333.55 331.90 330.05 328.58 328.31 329.41 330.63 331.63 332.46 333.36 334.45 334.82 334.32 333.05 330.87 329.24 328.87 330.18 331.50 332.81 333.23 334.55 335.82 336.44 335.99 334.65 332.41 331.32 330.73 332.05 333.53 334.66 335.07 336.33 337.39 337.65 337.57 336.25 334.39 332.44 332.25 333.59 334.76 335.89 336.44 337.63 338.54 339.06 338.95 337.41 335.71 333.68 333.69 335.05 336.53 337.81 338.16 339.88 340.57 341.19 340.87 339.25 337.19 335.49 336.63 337.74 338.36 ; run; proc gplot; plot y*time; symbol1v=dot i=join c=black w=3; proc arima data=b; identify var=y nlag=24; run; (1)序列图:

时间序列分析及其应用

时间序列分析及其应用 摘要:本文介绍了目前时间序列分析的发展状况以及应用情况,对常见的几种趋势拟合及其预测方法进行了简要叙述。 关键词:时间序列趋势建模 1 引言 时间序列分析是一种动态数据处理的统计方法。该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。它包括一般统计分析(如自相关分析,谱分析等),统计模型的建立与推断,以及关于时间序列的最优预测、控制与滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则侧重研究数据序列的互相依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。时间序列是按时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来 事物的发展。时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。二是考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。 2 时间序列分析的趋势及建模 时间序列分析的成分有:(1)长期趋势,即时间序列随时间的变化而逐渐增加或减少的长期变化的趋势;(2)季节变动,即时间序列在一年中或固定时间内,呈现出的固定规则的变动;(3)循环变动,即

沿着趋势线如钟摆般地循环变动;(4)不规则变动,即在时间序列中由于随机因素影响所引起的变动。 时间序列建模基本步骤是:用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据;根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。然后辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。 主要的趋势拟合方法有平滑法、趋势线法和自回归模型。对于很多情况,时间序列具有季节趋势,比如气象学中的气温、降雨量,水文学中雨季和干季的河流水量等等。这就需要分析时间序列时,将季节趋势考虑在内。季节性预测法的基本步骤是(1)对原时间序列求移动平均,以消除季节变动和不规则变动,保留长期趋势;(2)将原序列y除以其对应的趋势方程值(或平滑值),分离出季节变动(含不规则变动),即季节系数=tsci/趋势方程值(tc或平滑值);(3)将月度(或季度)的季节指标加总,以由计算误差导致的值去除理论加总值,得到一个校正系数,并以该校正系数乘以季节性指标从而获得调整后季节性指标;(4)求预测模型,若求下一年度的预测值,延长趋势线即可;若求各月(季)的预测值,需以趋势值乘以各月份(季

时间序列分析基于R——习题答案

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下

(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图 2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251

-0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 LB=4.83,LB统计量对应的分位点为0.9634,P 值为0.0363。显著性水平=0.05 ,序列不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 ()0t E x =,2 1 () 1.96 10.7 t Var x ==-,22 0.70.49 ρ ==,22 φ = 3.2 1715 φ= ,2 115 φ =

3.3 ()0t E x =,10.15 () 1.98(10.15)(10.8 0.15)(10.80.15) t Var x +==--+++ 10.8 0.70 10.15 ρ= =+,2 10.80.150.41 ρ ρ=-=,3 210.80.150.22 ρ ρρ=-= 1110.70 φρ==,22 20.15 φ φ==-,33 φ = 3.4 10c -<<, 1121,1,2 k k k c c k ρρρρ--? =?-??=+≥? 3.5 证明: 该序列的特征方程为:3 2 --c 0c λλλ+=,解该特征 方程得三个特征根: 11 λ=,2 c λ =3 c λ =-无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。证毕。 3.6 (1)错 (2)错 (3)对 (4)错 (5) 3.7 该模型有两种可能的表达式:11 2 t t t x ε ε-=-和 1 2t t t x εε-=-。 3.8 将1 23 100.50.8t t t t t x x C εεε---=++-+等价表达为

应用时间序列分析简答题

1.简述非平稳时间序列的确定性因素分解方法及其优缺点:确定性因素分解方法产生于长期的实践。序列的各种变化可以归纳为三大因素的影响:(1)长期趋势波动,包括长期趋势和无固定周期的循环波动(2)季节性变化,包括所有具有固定周期的循环波动(3)随机波动,包括除了长期趋势波动和季节性变化之外的其他因素的综合因素。优点:原理简单;操作方便;易于理解。缺点:(1)只能提取强劲的确定性信息,对随机性信息浪费严重(2)它把所有序列的变化归纳为四大因素的综合影响,却始终无法提供明确有效的方法判断各大因素之间明确的作用关系。 2.比较传统的统计分析与时间序列分析数据结构并说明引入序列平稳性的意义: (1)根据数理统计学常识,传统的统计分析的随机变量越少越好,而每个变量获得的样本信息越多越好。因为随机变量越少,分析的过程越简单,而样本容量越大,分析的结果越可靠。(2)时间序列数据分析的结构有它的特殊性。对随机序列{…,1x ,2x ,…t x …}而言,它在任意时刻t 的序列值t x 都是一个随机变量,而且由于时间的不可重复性,该变量在任意一个时刻只能获得唯一的一个样本观察值。(3)时间序列分析的数据结构的样本信息太少,如果没有其他的辅助信息,通常这种数据结构是没有办法进行分析的。序列的平稳性概念的提出可以有效地解决这个困难。 3.什么是模型识别?模型识别的基本原则是什么?计算出样本自相关系数和偏自相关系数的值之后,就要根据他们表现出来的性质,选择适当的ARMA 模型拟合观察值序列。这个根据样本自相关关系数和偏自相关系数的性质估计自相关阶数p ?和移动平均阶数q ?的过程即是模型识别过程。ARMA 模型定阶基本原则如下表: 4.简述单整和协整分析的含义。(1)单整是处理伪回归问题的一种方式。如果一个时间序列经过一次差分变成平稳的,则称原序列是1阶单整的,记为I (1)。一般地,如果时间序列经过d 次差分后变成平稳序列,而经过d-1次差分仍不平稳,则称原序列是d 阶单整序列,记为I (d )。(2)假定回归模型t k 1i it i 0t y εχββ++=∑=

应用时间序列分析习题答案

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221 +++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .021102112 12112011φρφρφρφρρφφρφρφρ 解得:???==15 /115/721φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 (1)非平稳 (2) (3)典型的具有单调趋势的时间序列样本自相关图 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图 (1)自相关系数为: (2)平稳序列 (3)白噪声序列 ,序列不能视为纯随机序列。LB=,LB统计量对应的分位点为,P值为。显著性水平=0.05 (2)非平稳 (3)非纯随机 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机

第三章习题答案 ()0t E x =,2 1() 1.9610.7 t Var x ==-,2 20.70.49ρ==,220φ= 1715φ=,2115 φ= ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 10c -<<, 1121,1,2 k k k c c k ρρρρ--? = ?-??=+≥? 证明: 该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根: 11λ= ,2λ= 3λ= 无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。证毕。 (1)错 (2)错 (3)对 (4)错 (5) 该模型有两种可能的表达式:11 2 t t t x εε-=-和12t t t x εε-=-。 将123100.50.8t t t t t x x C εεε---=++-+等价表达为 ()23 23223310.82010.510.8(10.50.50.5)t t t B CB x B B CB B B B εε-+-=-=-+++++L 展开等号右边的多项式,整理为 2233 4423243 4 10.50.50.50.50.80.80.50.80.50.5B B B B B B B CB CB +++++--?-?-+++L L L

时间序列分析-王燕-习题4答案

6、 方法一:趋势拟合法 income<-scan('习题4.6数据.txt') ts.plot(income) 由时序图可以看出,该序列呈现二次曲线的形状。于是,我们对该序列进行二次曲线拟合: t<-1:length(income) t2<-t^2 z<-lm(income~t+t2) summary(z) lines(z$fitted.values, col=2) 方法二:移动平滑法拟合 选取N=5 income.fil<-filter(income,rep(1/5,5),sides=1) lines(income.fil,col=3)

7、(1) milk<-scan('习题4.7数据.txt') ts.plot(milk) 从该序列的时序图中,我们看到长期递增趋势和以年为固定周期的季节波动同时作用于该序列,因此我们可以采用乘积模型和加法模型。在这里以加法模型为例。 z<-scan('4.7.txt')

ts.plot(z) z<-ts(z,start=c(1962,1),frequency=12) z.s<-decompose(z,type='additive') //运用加法模型进行分解z.1<-z-z.s$seas //提取其中的季节系数,并在z中减去(因为是加法模//型)该季节系数 ts.plot(z.1) lines(z.s$trend,col=3) z.2<-ts(z.1) t<-1:length(z.2) t2<-t^2 t3<-t^3 r1<-lm(z.2~t) r2<-lm(z.2~t+t2) r3<-lm(z.2~t+t2+t3) summary(r1)

时间序列分析的理论与应用综述_罗芳琼

第24卷第3期2009年6月柳 州 师 专 学 报Jour nal of Liuzhou Teachers College Vo l .24N o .3 Jun .2009  [收稿日期]2008-11-25  [基金项目]广西自然科学基金(0832092);广西教育厅科研项目(200707M S061);柳州师专基金项目(LSZ 2008A 002)  [作者简介]罗芳琼(1971—),女(壮族),广西忻城人,讲师,研究方向:计算机网络及神经网络应用;吴春梅(1970—),女,讲师,研究方向:计算机应用及神经网络应用。 时间序列分析的理论与应用综述 罗芳琼,吴春梅 (柳州师范高等专科学校数学与计算机科学系,广西柳州 545004) 摘 要:时间序列分析提供的理论和方法是进行大型高难度综合课题研究的工具之一。其预测和评估技术相对比较完善,其预测情景也比较明确。近年来已有很多学者对于时间序列的研究取得了极其丰硕的成果,有的甚至在时间序列分析方法的基础上,研究出新的预测方法,在应用中求创新求发展。笔者从基本理论与应用等方面对时间序列分析进行了综述,同时阐述了它未来的发展趋势。 关键词:时间序列分析;非线性;数据挖掘 中图分类号:O236 文献标识码: A 文章编号: 1003-7020(2009)03-0113-05 时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻划某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界之目的,而且运用时间序列模型还可以预测和控制现象的未来行为。许多经济、金融、商业等方面的数据都是时间序列数据,对这些数据进行分析、处理和研究,从中挖掘有用信息是广大工作者当前研究的焦点之一。目前时间序列的预测和评估技术相对比较完善,其预测情景也比较明确,综合他人的智慧、借助各种资料,本文介绍了时间序列分析的基本理论及其进展,阐述了它目前的应用领域及未来的发展趋势。 1 时间序列分析产生的背景 7000年前的古埃及人把尼罗河涨落的情况逐天记录下来,就构成所谓的时间序列。对这个时间序列长期的观察使他们发现尼罗河的涨落非常有规律。象古埃及人一样按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列,对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。早期的时间序列分析通常都是通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析。古埃及人发现尼罗河泛滥的规律就是依靠这种分析方法。但随着研究领域的不断拓广,在很多研究领域中随机变量的发展通常会呈现出非常强的随 机性,人们发现依靠单纯的描述性时序分析已不能准确地寻找出随机变量发展变化的规律,为了更准确地估计随机序列发展变化的规律,从20世纪20年代开始,学术界利用数理统计学原理分析时间序列,研究的重心从表面现象的总结转移到分析序列值内在的相关关系上,由此开辟了一门应用统计学科—时间序列分析[1]。 时间序列分析方法最早起源于1927年数学家Yule 提出建立自回归模型(AR 模型)来预测市场变化的规律。1931年,另一位数学家在AR 模型的启发下,建立了移动平均模型(M A 模型),初步奠定了时间序列分析方法的基础。20世纪60年代后,时间序列分析方法迈上了一个新的台阶,在工程领域方面的应用非常广泛。近几年,随着计算机技术和信号处理技术的迅速发展,时间序列分析理论和方法更趋完善。 2 时间序列分析的基本思想与理论进展 不论是经济领域中每年的产值、国民收入、某一商品在某一市场上的销量、价格变动等,或是社会领域中某一地区的人口数、医院患者人数、铁路客流量等,还是自然领域的太阳黑子数、月降水量、河流流量等等,都形成了一个时间序列。根据这些时间序列,较精确地找出相应系统的内在统计特性和发展规律 113

实验·6-时间序列分析的spss应用

实验6 时间序列分析的spss应用 6.1 实验目的 学会运用SPSS统计软件创建时间数列,熟练掌握长期趋势线性模型拟合和季节变动测定的SPSS方法与技能。 6.2 相关知识(略) 6.3 实验内容 6.3.1 用SPSS统计软件创建时间序列的创建 6.3.2用SPSS统计软件处理长期趋势线性模型的拟合(最小二乘法、指数平滑法)及预测。 6.3.3掌握测定季节变动规律的SPSS测定方法。 6.4实验要求 6.4.1准备实验数据 6.4.2用SPSS统计软件创建彩电出口数量的时间序列 6.4.3用最小二乘法测定长期趋势,拟合线性趋势方程,并进行趋势预测。 6.4.4测定彩电出口数量的季节变动规律。 6.4.5用指数平滑法预测2014和2015年的彩电出口数量。 6.5 实验步骤 6.5.1 实验数据 为了研究某国彩电出口的情况,某研究机构收集了从2003-2013年某国彩电出口的月度数据,如表6-1所示。 表6-1 我国 2003-2013年的我国彩电出口的月度数据(单位:万台)1月2月3月4月5月6月7月8月9月10月11月12月2003年12.53 13.73 24.45 28.75 32.45 31.11 25.94 32.98 43.49 42.94 63.29 77.28 2004年30.01 39.63 29.77 42.74 32.25 31.94 32.27 32.59 32.92 30.98 47.44 52.82 2005年24.08 16.42 31.24 29.33 31.88 30.09 28.08 32.99 44.99 47.57 50.36 75.19 2006年39.02 25.81 43.38 37.34 39.22 39.87 51.10 50.99 55.16 62.78 57.75 72.20 2007年28.76 39.38 46.10 39.41 38.74 40.18 45.59 43.31 46.68 54.17 53.65 61.12 2008年28.87 21.23 35.82 26.97 32.33 24.53 29.39 31.96 38.22 39.24 52.95 68.41

时间序列分析课后习题答案1

时间序列分析课后习题答案(上机) 第二章 2、 3283303323343363383403421975 197619771978 19791980 (1)时序图如上:序列具有明显的趋势和周期性,该序列非平稳。 (2)样本自相关系数: (3)该样本自相关图上,自相关系数衰减为0的速度缓慢,且有正弦波状,显示序列具有趋势和周期,非平稳。 3、(1)样本自相关系数:

(2)序列平稳。 (3)因Q 统计量对应的概率均大于0.05,故接受该序列为白噪声的假设,即序列为村随机序列。 5、(1)时序图和样本自相关图: 50 100 15020025030035000:0100:0701:0101:0702:0102:0703:0103:07

(2)序列具有明显的周期性,非平稳。 (3)序列的Q统计量对应的概率均小于0.05,该序列是非白噪声的。 6、(1)

根据样本相关图可知:该序列是非平稳,非白噪声的。 (2)对该序列进行差分运算:1--=t t t x x y {t y }的样本相关图: 该序列平稳,非白噪声。 第三章:17、(1)

结论:序列平稳,非白噪声。 (2)拟合MA(2) model: Variable Coefficient Std. Error t-Statistic Prob. C 80.40568 4.630308 17.36508 0.0000 MA(1) 0.336783 0.114610 2.938519 0.0047 MA(2) 0.343877 0.116874 2.942297 0.0046 R-squared 0.171979 Mean dependent var 80.29524 Adjusted R-squared 0.144379 S.D. dependent var 23.71981 S.E. of regression 21.94078 Akaike info criterion 9.061019 Sum squared resid 28883.87 Schwarz criterion 9.163073 Log likelihood -282.4221 F-statistic 6.230976 Durbin-Watson stat 2.072640 Prob(F-statistic) 0.003477 Inverted MA Roots -.17+.56i -.17 -.56i Residual tests (3)拟合AR(2)model: Variable Coefficient Std. Error t-Statistic Prob. C 79.71956 5.442613 14.64729 0.0000 AR(1) 0.258624 0.128810 2.007794 0.0493

时间序列分析与Eviews应用

时间序列分析与Eviews 应用非稳定序列转化为稳定序列数据变量的平稳性是传统的计量经济分析的基本要求之一。只有模型中的变量满足平稳性要求时,传统的计量经济分析方法才是有效的. 而在模型中含有非平稳时间序列时,基于传统的计量经济分析方法的估计和检验统计量将失去通常的性质,从而推断得出的结论可能是错误的。因此,在建立模型之前有必要检验数据的平稳性。在很长时间里,学者们在分析经济变量时都假定所分析的数据已满足平稳性的要求。然而,近年来,尤其是纳尔逊和普洛瑟(Nelson Plosser ,1982) 的开创性论文发表后,随着计量经济学的发展,学者们对经济时间序列数据,尤其是宏观经济时间序列数据的看法发生了根本的变化。许多经验分析表明,多数宏观经济变量都是非平稳的,由此引发了宏观经济分析方法尤其是周期分析方法的一场革命,即“单位根革命”。解决的问题1、如何判别虚假回归(伪回归)问题?2 、怎样检验一组变量存在协整关系?3 、一组变量若存在协整关系,怎样建立误差修正模型?如何更好的通过已有数据反映变量之间的长、短期关系。一、序列相关二、非平稳时间序列时间序列的特征在做多元回归之前,有必要先了解每个时间序列的特性。在很多应用研究中,人们常常对具有增长趋势的时间序列取对数后进行分析。取对数后,这样的序列常常更接近于一条直线。大多数宏观经济数据表现出这一特征。取对数后的变量差分(LnYt-LnYt-1) 近似反映了两个时期之间该序列的增长率。自相关( Autocorrelation ) 对于通常的经济数据序列,原始序列Y的当前值与滞后值之间的相关程度较高,但其差分序列Y的当

前值与滞后值相关程度较低。根据这一性质,我们可以利用过去已知的Y 来推断今后的Y ,但知道过去的Y 则无助于推测今后的Y 。人们把这种情况说成是:“Y 能够记忆过去,但Y则不能”。这是利用时间序列模型做预测的基础。一般而言,此时的Y是一个非平稳序列,而Y则是一个平稳序列。自相关函数( Autocorrelation Function ) 通过估计自相关函数,可以了解时间序列的特征:时间趋势平稳性自相关函数是时间序列的当前值与过去值之间的相关系数。令p=Cor(Yt ,Yt-p) 可以注意到,p的值是滞后期数p的函数。AC 和PAC 函数AC 和PAC 函数描述时间序列的特性AC 函数可以用来根据该值等于0发生的时间j来选择MA(q) 模型,j > q ;PAC 函数可以用来根据该值等于0发生的时间j来选择AR(p) 模型,j > p 。整合过程( Integrated Process ) 许多非平稳时间序列可以通过一阶或高阶差分,转变为平稳时间序列。这种时间序列被称作d阶整合时间序列用I(d ) 表示。ARMA 模型预测的基本程序(一)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF 单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。一般来讲,经济运行的时间序列都不是平稳序列。(二)对非平稳序列进行平稳化处理。如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。(三)根据时间序列模型的识别规则,建立相应的模型。若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序

应用时间序列分析习题答案

第二章习题答案 (1)非平稳 (2) (3)典型的具有单调趋势的时间序列样本自相关图 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

(1)自相关系数为: (2)平稳序列 (3)白噪声序列 ,序列不能视为纯随机序列。LB=,LB统计量对应的分位点为,P值为。显着性水平=0.05 (1)时序图与样本自相关图如下 (2)非平稳 (3)非纯随机

(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .021102112 12112011φρφρφρφρρφφρφρφρ 解得:???==15 /115/721φφ 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0 2212122 ) 1)(1)(1(1)(σφφφφφφ-+--+-= t x Var 2) 15.08.01)(15.08.01)(15.01() 15.01(σ+++--+= =2σ ?????=+==+==-=2209.04066.06957.0)1/(122130 2112211ρφρφρρφρφρφφρ ?? ???=-====015.06957.033222111φφφρφ 解:原模型可变形为: t t x cB B ε=--)1(2 由其平稳域判别条件知:当1||2<φ,112<+φφ且112<-φφ时,模型平稳。

相关文档
最新文档