Contrasting elevational diversity patterns 海拔多样性

Contrasting elevational diversity patterns 海拔多样性
Contrasting elevational diversity patterns 海拔多样性

Ecology,95(11),2014,pp.3190–3202

ó2014by the Ecological Society of America

Contrasting elevational diversity patterns

between eukaryotic soil microbes and plants

C ONGCONG S HEN,1,3W ENJU L IANG,2Y U S HI,1,3X IANGUI L IN,1H UAYONG Z HANG,1X IAN W U,4G ARY X IE,5

P ATRICK C HAIN,5P AUL G ROGAN,6AND H AIYAN C HU1,7

1State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,

East Beijing Road71,Nanjing210008China

2State Key Laboratory of Forest and Soil Ecology,Institute of Applied Ecology,Chinese Academy of Sciences,

Shenyang110164China

3University of Chinese Academy of Sciences,Beijing100049China

4College of Forestry,Beijing Forestry University,Beijing100083China

5Los Alamos National Laboratory,Los Alamos,New Mexico87544USA

6Department of Biology,Queen’s University,Kingston,Ontario K7L3N6Canada

Abstract.The diversity of eukaryotic macroorganisms such as animals and plants usually declines with increasing elevation and latitude.By contrast,the community structure of

prokaryotes such as soil bacteria does not generally correlate with elevation or latitude,

suggesting that differences in fundamental cell biology and/or body size strongly in?uence

diversity patterns.To distinguish the in?uences of these two factors,soil eukaryotic

microorganism community structure was investigated in six representative vegetation sites

along an elevational gradient from forest to alpine tundra on Changbai Mountain in

Northeast China,and compared with our previous determination of soil bacterial community

structure along the same https://www.360docs.net/doc/f84477306.html,ing bar-coded pyrosequencing,we found strong site

differences in eukaryotic microbial community composition.However,diversity of the total

eukaryotic microorganism community(or just the fungi or protists alone)did not correlate

with elevation.Instead,the patterns of diversity and composition in the total eukaryotic

microbial community(and in the protist community alone)were closely correlated with soil

pH,suggesting that just as for bacteria,acidity is a particularly important determinant of

eukaryotic microbial distributions.By contrast,as expected,plant diversity at the same sites

declined along our elevational gradient.These results together suggest that elevational

diversity patterns exhibited by eukaryotic microorganisms are fundamentally different from

those of plants.

Key words:Changbai Mountain,China;elevational diversity gradient;eukaryotic soil microbes;fungi;

metazoans;protists;pyrosequencing;soil pH.

I NTRODUCTION

The structure of a biological community(i.e.,its species composition,evenness,richness,and species interactions)is closely linked with its ecological func-tioning(Loreau et al.2001).Eukaryotic microorgan-isms,including fungi,protists,and metazoans play an essential role in trophic food webs and nutrient cycles in both terrestrial and aquatic habitats(Coleman et al. 2004,Dighton et al.2010).However,we know much less about the structure and ecology of eukaryotic microbial communities than we do about macroorganism or bacterial communities.Soil is a complex environment and is likely to harbor abundant and diverse eukaryotic microorganisms,but until recently,studies have been methodologically constrained to focusing on speci?c groups within fungal or protist communities(Anderson and Cairney2004,Bonkowski2004).In the past few years,however,researchers have characterized the diversity and composition of total eukaryotic soil microbial communities using molecular methods includ-ing PCR-denaturing gradient gel electrophoresis (Moon-van der Staay et al.2006),clone library(Fell et al.2006),metatranscriptome(Bailly et al.2007),and 18S rRNA gene pyrosequencing(Meadow and Zabinski 2012,Baldwin et al.2013)techniques.These studies have yielded very useful insights,but as yet there has been no large-scale spatially explicit research speci?cally aimed at understanding the ecological patterns and controls on eukaryotic microorganism distributions.

The in?uence of elevation on biological diversity patterns is not only indispensable to a comprehensive understanding of basic ecology,but is also critical to predicting the potential in?uences of climate change on terrestrial ecosystems(Lomolino2001,Rahbek2005, Grytnes and McCain2007,Malhi et al.2010).Previous research focused exclusively on plant and animal taxa, showing that macroorganisms such as trees and

Manuscript received14February2014;revised6May2014; accepted12May2014.Corresponding Editor:S.D.Allison.

7Corresponding author.E-mail:hychu@https://www.360docs.net/doc/f84477306.html,

3190

mammals generally exhibit either monotonically de-creasing or hump-shaped diversity patterns with in-creased elevation(Lomolino2001,Rahbek2005, Forister et al.2010,Salas-Morales and Meave2012). These elevational diversity patterns have been attributed to climatic factors(Hawkins et al.2003,Currie et al. 2004,McCain2007),spatial factors(e.g.,decreasing area at higher elevations),reduced potential for biotic interactions(e.g.,mutualism and competition),and historical impacts(evolutionary constraints)(Gaston 2000,Lomolino2001).By contrast,microorganisms (soil bacterial communities at least)do not seem to vary with elevation in a corresponding manner(Zhang et al. 2009,Fierer et al.2011,Shen et al.2013,Yuan et al. 2014;although see Bryant et al.2008and Singh et al. 2012).Likewise,soil bacterial communities do not follow the typical diversity pattern of plants and animals across latitude(Chu et al.2010).For bacteria,there is now a widespread consensus that soil pH is the primary determinant of large-scale patterns in diversity(Fierer and Jackson2006,Lauber et al.2009,Chu et al.2010, Shen et al.2013,Yuan et al.2014).Do eukaryotic microbial community distribution patterns resemble those of bacteria or of macroorganisms?Certain studies report that the diversity and composition of nematode, testate amoeba,and fungal communities are in?uenced to some extent by soil features(Lauber et al.2008,Wu et al.2011,Tsyganov et al.2013).Thus,we might expect to ?nd some signi?cant relationships between eukaryotic microbial communities and soil characteristics.In addition,plant communities may play a role in structuring eukaryotic microbial community composi-tion,particularly for fungi that are often closely functionally linked to plants(Peay et al.2013). However,body size differences between eukaryotic microorganisms and macroorganisms may have critical impacts on their community structures.Speci?cally,the shorter generation times,larger population sizes,and long-distance dispersal of microbial eukaryotes(Fenchel and Finlay2004)may result in very different distribu-tion patterns compared to macroorganisms.These considerations beg the question of whether communities of eukaryotic microorganisms are structured analogous-ly to bacteria or to their closer taxonomic relatives.In other words,what is the relative in?uence of body size as compared to fundamental cell biology(i.e.,bacteria vs. eukaryotes)in determining organism distribution pat-terns?To tease apart the relative importance of these two potential drivers,our study focused on eukaryotic microbes and compared their community structure along an elevational gradient with that of plants and soil bacteria.

The Changbai Mountain is the highest mountain in Northeast China and is one of very few well-protected and conserved natural ecosystems along a montane gradient on Earth(He et al.2005).The vertical distribution of vegetation along the mountainside mirrors the latitudinal vegetation gradient from temper-ate to frigid zones on the Eurasian continent(Xu et al. 2004,Zhang et al.2011).It thus provides an excellent opportunity for studying natural microbial distribution patterns on a regional scale.In this study,we investigated the composition and diversity of the total eukaryotic soil microbial communities,as well as particular functionally important component groups (fungi and protists)along an elevational gradient on Changbai Mountain.Plant species richness and diversity were measured simultaneously at the same sampling sites along the elevational gradient to enable a direct comparison between eukaryotic microorganism and macroorganism community patterns.We hypothesized that plant and eukaryotic microbial communities are similarly structured in that their richness and phyloge-netic diversity decrease up an elevational gradient.

M ETHODS

Site selection and soil sampling

Changbai Mountain(1268550–1298000E,418230–428360N)is located in Jilin Province,Northeast China, close to the border with North Korea(see Plate1).It is the highest mountain in Northeast China and lies at the head of three large rivers(the Songhua,Yalu,and Tumen).Topographic features differ on the mountain, with the northern slope being relatively moderate (average slope,3%)compared to the others(average slope10%).It has a typical continental temperate monsoon climate.Along the elevational gradient from 530m to2200m,mean annual temperature decreases from2.98C toà4.88C,and mean annual precipitation increases from632mm to1154mm(Tong et al.2003). These topographic and climatic features result in a vertical zonation of major forest types that is especially distinct along the northern slope.Below1100m lies a typical temperate forest,composed of Korean pine and hardwood https://www.360docs.net/doc/f84477306.html,mon hardwood species include aspen(Populus davidiana Dode),birch(Betula platy-phylla Suk),basswood(Tilia amurensis Rupr),oak (Quercus mongolica Fisch),maple(Acer mono Maxim), and elm(Ulmus pumila L.).From1100to1700m is an evergreen coniferous forest,dominated by spruce(Abies nephrolepis(Trautv.)Maxim),and?r(Picea jezoensis (Siebold and Zucc.)Carrie re),with the typical charac-teristics of boreal forests.From1700to2000m is a subalpine forest,dominated by mountain birch(Betula ermanii Cham.)and larch(Larix olgensis Henry).Above 2000m is a unique alpine tundra that marks the southernmost occurrence of this ecosystem type on the eastern Eurasian continent.Many of the plant species there are relicts from the Quaternary glacial period,and the community is dominated by Dryas octopetala(L.), Vaccinium uliginosum(L.),and Rhododendron chrysan-thum(Pall.)(Xu et al.2004,He et al.2005).The main climatic and ecological characteristics along the eleva-tional gradient are summarized in Appendix A.

Soil samples were collected from the northern slope of Changbai Mountain on18June2009.We chose six

November20143191

MICROBIAL DISTRIBUTION ALONG ELEVATION

elevations that represented the six typical vegetation types along the mountainside gradient.At each eleva-tion,soil samples were collected from four independent replicate plots(10310m;about100m apart)that were representative of the typical local vegetation.In each plot,samples of the soil organic layer(;10310cm in area,and0–5cm depth directly below the litter layer) were collected at six random points using a sterile blade and composited together as a single sample.Visible roots and residues were removed prior to homogenizing the soil fraction of each sample.The fresh soil samples were sieved through a2-mm sieve and divided into two subsamples.One was stored at48C to determine the physical and chemical properties,and the other was stored atà208C prior to DNA extraction.

Soil nutrients and microbial biomass analyses Soil pH was measured after shaking a soil water(1:5 mass/volume)suspension for30min.Soil moisture was measured gravimetrically.Total organic carbon(TOC) and total nitrogen(TN)were determined by dichromate oxidation and titration with ferrous ammonium sulphate (Walkley and Black1934).Microbial biomass C(MBC) and biomass N(MBN)were analyzed by the chloroform fumigation and extraction method(Brookes et al.1985), and calculated using the correction factors0.35(k C)and 0.4(k N)(Jonasson et al.1996).Soil characteristics are summarized in Appendix B.

Soil DNA extraction

Soil DNA was extracted from the0.5g wet soil using a FastDNA SPIN Kit for soil(MP Biomedicals,Santa Ana,California,USA)according to the manufacturer’s instructions.This protocol has been successfully used for DNA extraction of eukaryotic soil microbes such as soil metazoans(Wu et al.2011)and protists(Bates et al. 2013).The extracted soil DNA was dissolved in50l L TE buffer,quanti?ed by spectrophotometer and stored atà208C until use.

PCR and preparation of the amplicon libraries for

454pyrosequencing

Primer set Euk1F(CTGGTTGATCCTGCCAG) and Euk516R(ACCAGACTTGCCCTCC)was used to amplify an18S rRNA gene fragment for the 454GS-FLX pyrosequencing platform(Diez et al. 2001).To perform454pyrosequencing with the GS-FLX System,the sequences of these oligonucleotides included the454Life Science A or B sequencing adapters(19bp)fused to the7-bp barcoded primer:Primer B(GCCTTGCCAGCCCGCTCAG)tbarcodetforward primer;and Primer A (GCCTCCCTCGCGCCATCAG)treverse primer. PCR was carried out in50-l L reaction mixtures containing each deoxynucleoside triphosphate at a concentration of 1.25mM,2l L(15l M[each])of forward and reverse primers,2l L of Taq DNA polymerase(TaKaRa,Otsu,Japan),and50ng of DNA.Each reaction mix contained1l L of genomic community DNA as a template,and the following cycling parameters were used:35cycles(958C for45s, 568C for45s,and728C for1min)were performed with a?nal extension at728C for7min.Triplicate reaction mixtures per sample were pooled,puri?ed using the QIAquick PCR Puri?cation kit(QIAGEN, Shenzhen,China),and quanti?ed using NanoDrop ND-1000(Thermo Scienti?c,Wilmington,North Carolina,USA).The bar-coded PCR products from all samples were normalized in equimolar amounts before pyrosequencing an aliquot(50ng)of puri?ed DNA by means of a Genome Sequencer FLX System platform(Life Sciences,Branford,Connecticut,USA).

Processing of pyrosequencing data

18S raw sequence data were processed using the QIIME1.4.0pipeline(Caporaso et al.2010;available online).8Sequences were quality?ltered on the basis of quality score,sequence length,and primer mismatch thresholds,and then assigned to soil samples based on unique7-bp barcodes.Chimera checking and opera-tional taxonomic unit(OTU)grouping were carried in QIIME using USEARCH(Edgar et al.2011).Taxon-omy was assigned to eukaryotic OTUs(clustered at97% similarity)against the SILVA104database(more information available online)9classi?ed with BLAST at a sequence similarity threshold of0.90.All Viridiplantae (i.e.,plant-derived nonmicrobial eukaryotic sequences) were removed from the18S rRNA gene sequence data set prior to the subsequent analyses.After taxonomies had been assigned,OTUs that were not assigned to microbial eukaryotes were removed from the data set prior to subsequent analysis.Finally,data sets compris-ing of protistan taxa only(excluding fungi and metazoans)and fungi only(excluding protists and metazoans)were culled from all quality sequences for the individual analyses of the protist and fungal communities.

Statistical analyses of the soil eukaryotic community data To determine if the different elevation samples formed unique phylogenetically related clusters,principal co-ordinates analysis(PCoA)of the Unifrac distance matrices were performed.The Unifrac algorithm com-putes the overall phylogenetic distances(across all taxonomically resolved levels)between all pairs of sample communities in the data set from neighbor-joining trees using either unweighted(i.e.,presence/ absence)and weighted(i.e.,accounting for taxon relative abundance)data(Lozupone and Knight2005). In addition,we tested for signi?cant differences in community composition among elevations using analy-sis of similarities(ANOSIM)with R statistical software (R Development Core Team2010).

8https://www.360docs.net/doc/f84477306.html,/tutorials/processing_18S_data.html

9http://www.arb-silva.de/

CONGCONG SHEN ET AL.

3192Ecology,Vol.95,No.11

To identify the environmental and biogeochemical factors that signi?cantly correlated with community composition,we used Mantel tests of Bray-Curtis similarity distance values that were calculated on the presence/absence of the OTUs within each sample using the vegan package of R v.2.15.1project (R Development Core Team 2010).To determine which signi?cant environmental variables explained the observed OTU similarities between communities,the environmental data were further used in a distance-based linear model multivariate analysis (DistLM;McArdle and Anderson 2001).The contribution of each environmental variable was assessed using ‘‘marginal tests’’to assess the statistical signi?cance and percentage contribution of each variable taken alone,and then ‘‘sequential tests’’to evaluate the cumulative effect of the environmental variables explaining microbial eukaryotic community similarity.Tests were performed using the computer program DISTLM_forward3(Anderson 2003).

We compared community-level composition,number of phylotypes (the number of OTUs),nonparametric Chao1index values (an estimate of the true OTU richness based on the frequencies of singletons and doubletons;Chao et al.2009)and Faith’s phylogenetic diversity index values (an indicator of the overall phylogenetic diversity across all taxonomic levels;Faith

1992)after rarifying all the data sets to the same level of sampling effort.The total eukaryotic community data set was rare?ed using random selections of 1000sequences per sample for downstream analyses,while the fungal and protistan-only data sets were rare?ed to 500sequences and 260sequences per sample,respec-tively.These numbers of sequences for rarefaction in the different categories were determined according to the sample that yielded the lowest number of sequences in that category (Appendix C).

Sampling for plant community and diversity analyses To characterize the elevational gradient in plant community structure,we sampled a total of 12plots (four at the lowest elevation [530m],and two at each of the other elevations where the soils were sampled)during the summer growing season of 2009.The plots (1268550–1298000E,418230–428360N)were selected to include ecologically homogeneous and physiognomically representative zonal vegetation,without indications of signi?cant recent disturbance.The plot size for each vegetation type was 600m 2(20330m),consisting of six 10310m subplots.In each plot,one of the six subplots was randomly selected for the study of the shrub layer,and a total of ?ve 131m quadrats (located at the four corners and the center of each plot)were used for

herb

P LATE 1.A view of the elevation transect in Changbai Mountain,Northeast China,from which all samples were collected.The photo was taken from an elevation of 2200meters,and the view is straight down the ridge.The foreground is alpine tundra,which is followed by different forest types down the elevation.Photo credit:W.Cao.

November 20143193

MICROBIAL DISTRIBUTION ALONG ELEVATION

layer https://www.360docs.net/doc/f84477306.html,titude,longitude,altitude,aspect (degree to real north),inclination,and position on slope were recorded for each plot.All species of a plot were recorded using nomenclature following Fu(1995).In forested plots,we recorded tree species and individual diameters at breast height(dbh,breast height?1.3m)of all stems with dbh!3cm.In the shrub layer and herb quadrats,abundance,cover,and mean height were recorded for each species(Fang et al.2009,Wang et al. 2009).There were no tree and shrub layer quadrats in tundra.Species richness was based on number of species per plot,species diversity was quanti?ed using the Shannon index using relative breast height basal area for trees or relative density for shrub and herb layers as the abundance measure.

R ESULTS

Total eukaryotic,fungal,and protistan community

compositions across elevations

Across all soil samples,we obtained a total of81134 quality sequences with1005–6787sequences per sample (mean3380),from which a total of6595OTUs were identi?ed.Fungal(54.2%)and protistan(40.7%)se-quences dominated the total eukaryotic community, while metazoans accounted for a small proportion (5.1%)(Appendix C).Within the fungi,Basidiomycota were extremely abundant,while the protists had high proportions of Cercozoa,Alveolata(mainly Apicom-plexa,Ciliophora and Dinophyceae),and Stramenopiles (mainly Synurophyceae).Zygnemophyceae,Amoebozoa (mainly Mycetozoa),Chlorophyta,and so on were identi?ed,but at relatively low abundances,and we also detected Apusozoa,Euglenozoa,Glaucocystophyceae, Heterolobosea,and Choano?agellida,all of which have rarely been reported from soils(Appendix D).The Metazoa consisted mainly of Arthropoda and Nemato-da(Appendix E).

The relative abundances of each eukaryotic taxonom-ic group varied considerably among different elevations (Fig.1;Appendices D and I).Principal coordinates analysis(PCA)of the pairwise UniFrac distances for the total eukaryotic communities in each sample indicated that overall phylogenetic structure tended to be rela-tively similar among samples within the same elevation and distinctly different among the different elevations (Fig.2;Appendix H).Furthermore,community com-position differed signi?cantly among elevations accord-ing to the ANOSIM test(Table1).Of all of the environmental variables examined,mean annual precip-itation(MAP),mean annual temperature(MAT), elevation,and soil pH were most closely correlated with the total eukaryotic community composition as deter-mined by Mantel tests(Table2).Very similar patterns were observed in our individual analyses of the fungal and protist communities,except that the correlation between fungi and soil pH was relatively weak(Table2; Appendix J).The distance-based multivariate linear model analysis(DistLM)indicated that only C/N ratio and total nitrogen(TN)were not signi?cantly related to the variation in community composition when consid-ered individually(Table3).The sequential model indicated?ve signi?cant variables(pH,MAP,elevation, MAT,TOC,P,0.001in all cases)that explained43.2% of the total variation of the microbial eukaryotic community composition,with pH providing the greatest explanatory power(13.9%of the total variation;Table 3).

Diversity of total soil eukaryotes,fungi,and protists

across elevations

Our measures of the total eukaryotic community diversity(i.e.,OTU richness,and Chao1diversity and Faith’s phylogenetic diversity indices)were not signi?-cantly correlated with elevation(linear and second-order polynomial were used here;Fig.3;Appendix G). Likewise,neither fungal nor protistan communities exhibited signi?cant elevational gradients in diversity (Appendix G).Of all the soil and site environmental characteristics examined,only pH was signi?cantly correlated with the Chao1diversity and phylogenetic diversity of the total eukaryotic microbial community (Fig.4;Appendix G).As in the Mantel test results described in the previous section,the relatively strong relationship with pH in the total eukaryotic community was driven mainly by the impact of acidity on the protist component(Fig.4).The strong in?uence of pH was also observed with respect to the major phyla or classes of protists since the relative abundances of Cercozoa, Apicomplexa,Ciliophora,Zygnemophyceae,and Syn-urophyceae across all sites changed signi?cantly along the soil pH gradient(Fig.5;Appendix F).By contrast, fungal community OTU richness was most closely correlated(positively)with soil TOC and moisture content,and phylogenetic diversity was positively correlated with soil TOC,TN,and moisture content (Appendix G).

Plant species richness and diversity across elevations Both total species richness and individual species richness for each of the different forest layer growth forms(trees,shrubs and herbs)signi?cantly decreased with increasing elevation(P,0.001;Fig.3).Likewise, total species diversity(Shannon index),as well as tree and shrub layer diversity,signi?cantly decreased with elevation(P,0.001),but the herb layer diversity was not signi?cantly related to elevation(P?0.182; Appendix K).

D ISCUSSION

Elevational diversity patterns for total soil eukaryotes,

fungi,and protists

Eukaryotic microorganism communities(either total, or fungi or protists alone)did not exhibit obvious elevational gradients in diversity along Changbai Mountain.By contrast,and as expected,plant diversity declined along the same gradient.Together,these results

CONGCONG SHEN ET AL.

3194Ecology,Vol.95,No.11

F I

G .1.Relative abundances of the dominant eukaryotic soil microbial groups at each of the six individual sampling locations along the elevational gradient on Changbai Mountain in Northeast China.Relative abundance is based on the proportional frequencies of those DNA sequences from all samples that could be classi?ed at the phylum level.This ?gure is based on information provided in Appendices C and D.Sampling took place in summer

2009.

F I

G .2.A three-dimensional plot of principal coordinates analysis (PCA)of unweighted UniFrac distances of total eukaryotic soil microbial community comparing all 24samples from the six different elevations on Changbai Mountain.Sites have been color-coded according to soil p

H gradient.Sampling took place in summer 2009.

November 20143195

MICROBIAL DISTRIBUTION ALONG ELEVATION

refute our study hypothesis,and suggest that the primary controls on eukaryotic microbial communities are fundamentally different than those on macroorgan-isms.In a previous study,we found no trends in bacterial diversity in the same soil samples(that provided the microbial eukaryote data)from along the same elevational gradient(Shen et al.2013).Further-more,Yuan et al.(2014)recently found that soil bacterial diversity exhibited no elevational patterns along the south-facing slope of Nyainqentanglha Moun-tain on the Tibetan Plateau.To the best of our knowledge,there are only two studies of elevational gradients that simultaneously investigated the diversity

of microorganisms and macroorganisms.Bryant et al. (2008)found that plant richness exhibited a unimodal pattern with a peak in species richness at mid-elevations, whereas bacterial(Acidobacteria only)richness de-creased monotonically at higher elevations in the Colorado Rocky Mountains.This latter pattern was likely caused by the decreases in soil pH along elevation, given that Acidobacteria are known to be sensitive to pH change(Jones et al.2009).In a much more comprehensive high taxonomic resolution study(using pyrosequencing as in our study here),Fierer et al.(2011) observed no consistent trend in soil bacterial diversity with elevation in the eastern Andes of Peru,whereas plants and animals showed marked decreases in diversity across the same montane gradient.Our eukaryotic microbial results here,along with our previous data on soil bacterial communities along the same elevational gradient on Changbai mountain,and the Fierer et al. (2011)study cited above,together suggest that the elevational diversity pattern observed for small-sized organisms(bacteria and eukaryotic microbes)is funda-mentally different from those observed for macroorgan-isms.Ours is the?rst comprehensive study using high taxonomic resolution techniques to determine overall eukaryotic microbial diversity in soils along an elevation gradient.Clearly,further research using such high taxonomic resolution techniques and multiple replicate gradients is required to determine how widespread our pattern of results is.

We offer a series of related hypotheses to explain why elevational patterns of richness and diversity differ between eukaryotic microorganisms and macroorgan-isms.First,body size is probably a primary factor since small size strongly promotes high dispersal ability (Finlay et al.1996,Hillebrand and Azovsky2001). Furthermore,large population sizes and short genera-tion times(Finlay and Clarke1999b,Fenchel and Finlay 2004)result in relatively high abundances of individuals within microbial soil eukaryote populations that most

T ABLE 1.Dissimilarities in total eukaryotic operational taxonomic unit(OTU)community composition between elevations on Changbai Mountain,Northeast China,as determined by analysis of similarities(ANOSIM)R values.

Elevation760m1250m1680m1950m2200m 530m0.9910.700.991 760m n/a0.990.6811 1250m n/a0.490.771 1680m n/a0.430.77 1950m n/a0.99 Notes:An R value neart1means that there is dissimilarity between the groups,while an R value near0indicates no signi?cant dissimilarity between the groups.Values in boldface type indicate signi?cant dissimilarity(P,0.05).Sampling took place in summer2009.

T ABLE 2.Mantel test results for the correlation between community composition and environmental variables for total eukaryotes,fungi,and protists along the elevational gradient on Changbai Mountain.

Effect of controlling for

Total

eukaryotes Fungi Protists r P r P r P

Elevation0.530.0010.500.0010.500.001 MAT0.540.0010.500.0010.500.001 MAP0.540.0010.530.0010.490.001 pH0.420.0010.170.0480.630.001 TOC0.190.0180.230.0140.170.017 C/N0.130.0720.040.3540.190.011 TN0.140.1190.020.3450.240.007 Moisture0.120.0510.130.0560.160.027

Notes:Abbreviations are:MAT,mean annual temperature; MAP,mean annual precipitation;TOC,total organic carbon; C/N,carbon/nitrogen ratio;and TN,total nitrogen.Values in boldface type indicate signi?cant correlation(P,0.05). Sampling took place in summer2009.T ABLE3.Results of distance-based multivariate linear model (DistLM)for microbial eukaryotic community composition showing the percentage of variation explained by environ-mental variables:each variable analyzed individually(ignor-ing other variables);and forward-selection of variables, where amount explained by each variable added to model is conditional on variables already in the model.

Variable%Var Pseudo-F P Cum(%) Variables individually

pH13.93 3.560.001 Elevation12.96 3.280.001

MAT12.69 3.20.001

MAP12.6 3.170.001

TOC7.12 1.690.013 Moisture7 1.650.027

C/N 5.51 1.280.115

TN 5.17 1.20.156 Variables?tted sequentially

pH13.93 3.560.00113.93 MAP9.94 2.740.00123.87 Elevation7.64 2.230.00131.51 MAT 6.27 1.910.00137.78 TOC 5.41 1.710.00143.19 TN 3.59 1.150.25846.78 C/N 3.27 1.040.41750.05 Moisture 2.990.960.57453.04 Notes:The percentage of variance in species data explained by that variable is abbreviated as‘‘%Var,’’and the cumulative percentage of variance explained is abbreviated as‘‘Cum(%).’’Variable abbreviations as in Table2.Values in boldface type indicate signi?cant correlation(P,0.05).Sampling took place in summer2009.

CONGCONG SHEN ET AL.

3196Ecology,Vol.95,No.11

likely increase their chance of long-distance dispersal (Finlay2002).Our?nding here parallels a study of protozoa and diatoms that showed no correlations between species richness and latitude(Hillebrand and Azovsky2001).Importantly,these authors concluded that the strength of the relationship between richness and latitude was positively correlated to the size of the organisms.Data compiled across a wide range of eukaryotic taxonomic groups(e.g.,amoebae,diatoms, and mollusks,among others)from freshwater pond and shallow marine bay showed that the local:global species ratio decreased consistently with mean body size, indicating that small organisms(,1mm in length)tend to have a cosmopolitan distribution(Finlay and Fenchel 2004).Thus,we hypothesize that body size does not constrain a eukaryotic microorganism’s dispersal rate, population density,and range size,whereas it does somewhat constrain those of larger organisms. Second,environmental factors in?uencing community diversity with elevation might fundamentally differ between eukaryotic microorganisms and macroorgan-isms.On the one hand,climate(especially temperature and precipitation)are strong predictors of plant and animal diversity along elevational gradients(Currie et al. 2004,McCain2007).Although there is some evidence that temperature effects on metabolic rate may strongly in?uence bacterial speciation rates in marine latitudinal gradients(Pommier et al.2007,Fuhrman et al.2008),it seems unlikely that these processes would be as important in soils because they have more complex chemical and physical features than seawater(Fuhrman 2009).On the other hand,a strong and positive relationship between soil pH and bacterial diversity has been consistently reported in many studies of latitudinal and elevational distributions(Fierer and Jackson2006,Chu et al.2010,Shen et al.2013,Yuan et al.2014).Recently,close correlations between eukaryotic microbial community and soil pH,as well as other characters like soil C:N ratio and moisture, were found in studies across local(Tsyganov et al.2013), regional(Mulder et al.2005),and global scales(Wu et al.2011,Bates et al.2013).Here,we also found signi?cant correlation between the diversity of the eukaryotic microbial community and soil pH.These results suggest that local soil environmental conditions are much more important than broad-scale factors in determining species richness of eukaryotic microorgan-isms.

Third,the lack of a discernable elevational trend for eukaryotic microorganisms may be due to insuf?cient taxonomic resolution(Green and Bohannan2006).Our

study relied on pyrosequencing,which is one of the best techniques available,but we cannot preclude the possibility that future even higher resolution techniques as well as a more comprehensive BLAST eukaryotic microbial sequence identi?cation database may yield alternative patterns.

Factors in?uencing eukaryotic soil community structure

Although the overriding importance of soil pH in controlling soil bacterial diversity and community composition has been well demonstrated(Fierer and Jackson2006,Lauber et al.2009,Chu et al.

2010,

F IG. 3.(A)Bacterial phylotype richness(data from a previous study Shen et al.2013),(B)eukaryotic microbial phylotype richness,and(C)plant species richness across the elevational gradient on Changbai Mountain.Sampling took place in summer2009.

November20143197

MICROBIAL DISTRIBUTION ALONG ELEVATION

Grif?ths et al.2011,Shen et al.2013),we know very little about the in?uence of pH on eukaryotic soil microbes.Recent studies have documented the in?uence of pH on the diversity and community composition of metazoans and protists.For example,nematode and microarthropod abundances were positively and nega-tively (respectively)correlated with soil pH across 284sandy soil samples along a pH gradient in The Nether-lands (Mulder et al.2005).Wu et al.(2011)found that the percentage of nematodes in 42plots from around the globe was positively correlated with soil pH and negatively correlated with soil C:N ratio,whereas the percentage of arthropods was inversely correlated with the same two variables.In addition to pH,soil moisture also seems to be a strong determinant of protist community structure (Tsyganov et al.2013).Bates et al.(2013)found that soil protist diversity was only marginally in?uenced by pH,and shifts in community composition for protists were most strongly correlated with annual soil moisture availability rather than pH.In our study,we found that pH was signi?cantly and fairly strongly correlated with total eukaryotic and protist-only community composition,and only weakly corre-lated with fungal community composition.Likewise,the various diversity indices of total eukaryotic microbes and protists signi?cantly correlated with pH,whereas the diversity of fungi did not.Soil fungi seem to have a

relatively wide pH optimum compared to bacteria.For example,a previous study across a pH gradient in an arable soil reported that the fungal community compo-sition was signi?cantly related to soil pH,but the in?uence was far weaker than for the bacterial community (Rousk et al.2010).Mulder et al.(2005)also found that fungi tended to be much more acid tolerant than bacteria.Actually,fungal community composition is often most closely associated with changes in soil nutrient status (Lauber et al.2008).Together,these results suggest that pH is an important factor determining the protist component of eukaryotic soil microbial community distributions,but that the fungal component seems to be more strongly in?uenced by organic matter substrate-related characteristics such as carbon and nutrient quality.

Eukaryotic soil microbial communities

Our study is one of the ?rst surveys of soil eukaryotic microorganisms across different vegetation types.Along our elevational gradient from forest and tundra,we found most soil eukaryotic taxa that had previously been identi?ed at other sites by other molecular techniques (Fell et al.2006,Moon-van der Staay et al.2006).Our results indicating fungal dominance by species from the Basidiomycota phylum in the ?ve lower elevation tree-dominated sites except for

the

F I

G .4.The diversity of total (A)eukaryotes (1000randomly selected sequences per sample,Chao1richness,and phylogenetic diversity indices)and (B)protists (260randomly selected sequences per sample,Chao1richness,and number of phylotypes)in relation to soil p

H on Changbai Mountain.Sampling took place in summer 2009.

CONGCONG SHEN ET AL.3198Ecology,Vol.95,No.11

mixed coniferous forest at 760m is in agreement with previous studies in forests (O’Brien et al.2005,Bailly et al.2007).The Basidiomycota were also the most abundant phylum at our uppermost tundra vegetation site,whereas Schadt et al.(2003)reported a predomi-nance of Ascomycota in a North American alpine tundra site.Climatic differences between these two regions may explain these data but in addition,our method with its higher resolution may also be an important factor,given that Schadt et al.(2003)found a large number of unknown groups using the clone library technique.Furthermore,differences in sampling timing may be an explanatory factor since our results are based on mid-summer data,and Zinger et al.(2009)found that the ratio of Basidiomycota to Ascomycota in alpine tundra differed between the snow-covered and summer seasons.

Arthropoda (mainly acarid)and Nematoda dominat-ed the Metazoa at our sites,just as they do at many other locations (Wu et al.2011,Meadow and Zabinski 2012).For protists,we identi?ed Cercozoa and Api-complexa,both of which are common members of soil communities as determined by direct observation (Adl and Gupta 2006)and pyrosequencing studies (Bates et al.2013).Likewise,our observations of Eucoccidiorida,which accounted for 84%of Apicomplexa sequences,and Heterocapsaceae,which represented 99%of Dino-phyceae sequences,were basically consistent with the reports from other soils (Bates et al.2013).It is noteworthy that Synurophyceae occupies a major proportion of Stramenopiles in both forest and tundra soils.The Synurophyceae,also known as scaled chrysophytes (Siver et al.2013),are important indicators of the past ecology in lacustrine environments (Wujek 2013)and have long been recognized as ubiquitous in aquatic environments (Finlay and Clarke 1999a ).Our results here indicate that Synurophyceae are also abundant in soils.Furthermore,other rare eukaryotic microorganisms such as members of the Apusozoa,Euglenozoa,Glaucocystophyceae,Heterolobosea,and Choano?agellida were also detected in our study.These rare groups,as well as Stramenopiles,were not uncovered in another study using metatranscriptome method (Bailly et al.2007),suggesting the

particular

F I

G .5.The relative abundances of the dominant protistan phyla at each elevation on Changbai Mountain in relation to soil pH.The strength of each relationship given is based on the linear regression equation.Sampling took place in summer 2009.

November 20143199

MICROBIAL DISTRIBUTION ALONG ELEVATION

potential of the pyrosequencing technique for the examination of eukaryotic soil microbial diversity.

C ONCLUSION

Ours is the?rst study to document the overall pattern of eukaryotic soil microbial diversity along an elevation gradient,and our results indicate that microbes do not follow the elevational diversity pattern of macroorgan-isms.Meanwhile,signi?cant correlations between the diversity of the microbial eukaryotic community and pH were found in this study,suggesting that pH strongly in?uences not only bacterial communities but also eukaryotic(primarily the protist)component of soil microbial communities.Characterizing these similarities and differences among microorganisms and macro-organism communities that live alongside each other in the same terrestrial environments is fundamental to advancing our understanding of ecology.We anticipate that our results here will lead to new simultaneous investigations of prokaryotic and eukaryotic soil com-munities along multiple replicate elevational(and latitudinal)gradients to more fully elucidate the patterns and underlying mechanisms determining soil biological diversity.Furthermore,our data provide the starting point for establishing diversity resource databases for eukaryotic soil microbes(and bacteria),as well as for plants along the Changbai Mountain,against which the impacts of future climate changes and ecosystem management practices can be assessed.Given the remoteness of this region and the fact that it has been relatively undisturbed by anthropogenic activities in the last150years,these databases will have particular ecological science and conservation value.

A CKNOWLEDGMENTS

We thank Shijie Han,Guanhua Dai,and Xinyu Li for assistance with soil sampling,and Huaibo Sun and Yingying Ni for lab assistance.We also thank Jinbo Xiong and Jun Zeng for useful discussion.This study was conducted at the Research Station of Changbai Mountain Forest Ecosystems,Chinese Academy of Sciences.This work was supported by the National Natural Science Foundation of China to H.Chu(41071167, 41371254),W.Liang(31170484),and X.Xia(31270656),the Strategic Priority Research Program(XDB15010101),and the Hundred Talents Program of the Chinese Academy of Sciences to H.Chu.The authors declare no con?icts of interest.

L ITERATURE C ITED

Adl,S.M.,and V.S.R.Gupta.2006.Protists in soil ecology and forest nutrient cycling.Canadian Journal of Forest Research36:1805–1817.

Anderson,I.C.,and J.W.G.Cairney.2004.Diversity and ecology of soil fungal communities:increased understanding through the application of molecular techniques.Environ-mental Microbiology6:769–779.

Anderson,M.J.2003.DISTLM forward:a FORTRAN computer program to calculate a distance-based multivariate analysis for a linear model using forward selection.Univer-sity of Auckland,Auckland,New Zealand.

Bailly,J.,L.M. C.Fraissinet-Tachet,G. C.Verner,M. Debaud,M.Lemaire,M.We solowski-Louvel,and R. Marmeisse.2007.Soil eukaryotic functional diversity,a metatranscriptomic approach.ISME Journal1:632–642.Baldwin,D.S.,et al.2013.Impacts of inundation and drought on eukaryote biodiversity in semi-arid?oodplain soils. Molecular Ecology22:1746–1758.

Bates,S.T.,J.C.Clemente,G.E.Flores,W.A.Walters,L.W. Parfrey,B.Knight,and N.Fierer.2013.Global biogeogra-phy of highly diverse protistan communities in soil.ISME Journal7:652–659.

Bonkowski,M.2004.Protozoa and plant growth:the microbial loop in soil revisited.New Phytologist162:617–631. Brookes,P.C.,https://www.360docs.net/doc/f84477306.html,ndman,G.Pruden,and D.S.Jenkinson. 1985.Chloroform fumigation and the release of soil-nitrogen-arapid direct extraction method to measure micro-bial biomass nitrogen in soil.Soil Biology and Biochemistry 17:837–842.

Bryant,J.A.,https://www.360docs.net/doc/f84477306.html,manna,H.Morlon,A.J.Kerkhoff,B.J. Enquist,and J.L.Green.2008.Microbes on mountainsides, contrasting elevational patterns of bacterial and plant diversity.Proceedings of the National Academy of Sciences USA105:11505–11511.

Caporaso,J.G.,et al.2010.QIIME allows integration and analysis of high-throughput community sequencing data. Nature Methods7:335–336.

Chao,A.,R.K.Colwell,C.W.Lin,and N.J.Gotelli.2009. Suf?cient sampling for asymptotic minimum species richness estimators.Ecology90:1125–1133.

Chu,H.Y.,N.Fierer. https://www.360docs.net/doc/f84477306.html,uber.J.G.Caporaso,R. Knight,and P.Grogan.2010.Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes.Environmental Microbiology12:2998–3006. Coleman,D.C.,D.A.Crossley,and P.F.Hendrix.2004. Fundamentals of soil ecology.Academic Press,Waltham, Massachusetts.

Currie,D.J.,et al.2004.Predictions and tests of climate-based hypotheses of broad scale variation in taxonomic richness. Ecology Letters7:1121–1134.

Diez,B.,C.Pedro s-Alio,T.L.Marsh,and R.Massana.2001. Application of denaturing gradient gel electrophoresis(DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Applied and Environmental Microbiology67:2942–2951. Dighton,J.,J.F.White,Jr.,and P.Oudemans,editors.2010. The fungal community:its organization and role in the ecosystem.CRC Press,Boca Raton,Florida,USA. Edgar,R.C.,B.J.Haas,J.C.Clemente,C.Quince,and R. Knight.2011.UCHIME improves sensitivity and speed of chimera detection.Bioinformatics27:2194–2200.

Faith,D.P.1992.Conservation evaluation and phylogenetic diversity.Biological Conservation61:1–10.

Fang,J.Y.,X.P.Wang,Z.Y.Tang,Z.H.Shen,and C.Y. Zheng.2009.Exploring patterns of plant diversity in China’s mountains.Pages39–47in E.M.Spehn and C.Korner, editors.Data mining for global trends in mountain biodi-versity.CRC Press,Boca Raton,Florida,USA.

Fell,J.W.,G.Scorzetti,L.Connell,and S.Craig.2006. Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with,5%soil moisture.Soil Biology and Biochemistry 38:3107–3119.

Fenchel,T.,and B.J.Finlay.2004.The ubiquity of small species:patterns of local and global diversity.Bioscience54: 777–784.

Fierer,N.,and R. B.Jackson.2006.The diversity and biogeography of soil bacterial communities.Proceedings of the National Academy of Sciences USA103:626–631. Fierer,N.,C.M.McCain,P.Meir,M.Zimmermann,J.M. Rapp,M.R.Silman,and R.Knight.2011.Microbes do not follow the elevational diversity patterns of plants and animals.Ecology92:797–804.

Finlay,B.J.2002.Global dispersal of free-living microbial eukaryote species.Science296:1061–1063.

Finlay,B.J.,and K.J.Clarke.1999a.Apparent global ubiquity of species in the protist genus Paraphysomonas.Protist150: 419–430.

CONGCONG SHEN ET AL.

3200Ecology,Vol.95,No.11

Finlay,B.J.,and K.J.Clarke.1999b.Ubiquitous dispersal of microbial species.Nature400:828.

Finlay,B.J.,G.F.Esteban,and T.Fenchel.1996.Global diversity and body size.Nature383:132–133.

Finlay,B.J.,and T.Fenchel.2004.Cosmopolitan metapopu-lations of free-living microbial eukaryotes.Protist155:237–244.

Forister,M.L.,A.C.McCall,N.J.Sanders,J.A.Fordyce, J.H.Thorne,J.O’Brien,D.P.Waetjen,and A.M.Shapiro. https://www.360docs.net/doc/f84477306.html,pounded effects of climate change and habitat alteration shift patterns of butter?y diversity.Proceedings of the National Academy of Sciences USA107:2088–2092. Fu,P.Y.,editor.1995.Clavis plantarum Chinae boreali-orientalis.Science Press,Beijing,China.

Fuhrman,J.A.2009.Microbial community structure and its functional implications.Nature459:193–199.

Fuhrman,J.A.,J.A.Steele,L.Hewson,M.S.Schwalbach, M.V.Brown,J.L.Green,and J.H.Brown.2008.A latitudinal diversity gradient in planktonic marine bacteria. Proceedings of the National Academy of Sciences USA105: 7774–7778.

Gaston,K.J.2000.Global patterns in biodiversity.Nature405: 220–227.

Green,J.,and B.J.M.Bohannan.2006.Spatial scaling of microbial biodiversity.Trends in Ecology and Evolution21: 501–507.

Grif?ths,R.I.,B.C.Thomson,P.James,T.Bell,M.Bailey, and A.S.Whiteley.2011.The bacterial biogeography of British soils.Environmental Microbiology13:1642–1654. Grytnes,J.A.,and C.M.McCain.2007.Elevational trends in biodiversity.Pages1–8in S.A.Levin,editor.Encyclopedia of biodiversity.Elsevier,New York,New York,USA. Hawkins, B.,et al.2003.Energy,water,and broad-scale geographic patterns of species richness.Ecology84:3105–3117.

He,H.S.,Z.Q.Hao,D.J.Mladenoff,G.F.Shao,Y.M.Hu, and Y.Chang.2005.Simulating forest ecosystem response to climate warming incorporating spatial effects in north-eastern China.Journal of Biogeography32:2043–2056. Hillebrand,H.,and A.I.Azovsky.2001.Body size determines the strength of the latitudinal diversity gradient.Ecography 24:251–256.

Jonasson,S.,A.Michelsen,I.K.Schmidt,E.B.Nielsen,and T.V.Callaghan.1996.Microbial biomass C,N and P in two arctic soils and responses to addition of NPK fertilizer and sugar,implications for plant nutrient uptake.Oecologia106: 507–515.

Jones,R.T.,M.S.Robeson,https://www.360docs.net/doc/f84477306.html,uber,M.Hamady,R. Knight,and N.Fierer.2009.A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses.ISME Journal3:442–453.

Lauber,C.L.,M.Hamady,R.Knight,and N.Fierer.2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology75:5111–5120. Lauber,C.L.,M.S.Strickland,M.A.Bradford,and N.Fierer. 2008.The in?uence of soil properties on the structure of bacterial and fungal communities across land-use types.Soil Biology and Biochemistry40:2407–2415.

Lomolino,M.V.2001.Elevation gradients of species-density, historical and prospective views.Global Ecology and Biogeography10:3–13.

Loreau,M.,et al.2001.Biodiversity and ecosystem functioning: current knowledge and future challenges.Science294:804–808.

Lozapone,C.,and R.Knight.2005.Unifrac:a new phyloge-netic method for comparing communities.Applied and Environmental Microbiology71:8228–8235.

Malhi,Y.,M.Silman,N.Salinas,M.Bush,P.Meir,and S. Saatchi.2010.Introduction,elevation gradients in the tropics,laboratories for ecosystem ecology and global change research.Global Change Biology16:3171–3175.McArdle,B.H.,and M.J.Anderson.2001.Fitting multivariate models to community data:a comment on distance-based redundancy analysis.Ecology82:290–297.

McCain, C.M.2007.Could temperature and water avail-ability drive elevational species richness patterns?A global case study for bats.Global Ecology and Biogeography16: 1–13.

Meadow,J.F.,and C.A.Zabinski.2012.Spatial heterogeneity of eukaryotic microbial communities in an unstudied geothermal diatomaceous biological soil crust:Yellowstone National Park,WY,USA.FEMS Microbiology Ecology82: 182–191.

Moon-van der Staay,S.Y.,V.A.Tzeneva,G.W.M.van der Staay,W.M.de Vos,H.Smidt,and J.H.P.Hackstein.2006. Eukaryotic diversity in historical soil samples.FEMS Microbiology Ecology57:420–428.

Mulder,C.,H.J.Van Wijnen,and A.P.Van Wezel.2005. Numerical abundance and biodiversity of below-ground taxocenes along a pH gradient across the Netherlands. Journal of Biogeography32:1775–1790.

O’Brien,H.E.,J.L.Parrent,J.A.Jackson,J.M.Moncalvo, and R.Vilgalys.2005.Fungal community analysis by large-scale sequencing of environmental samples.Applied and Environmental Microbiology71:5544–5550.

Peay,K.G.,C.Baraloto,and P.V.A.Fine.2013.Strong coupling of plant and fungal community structure across western Amazonian rainforests.ISME Journal7:1852–1861.

Pommier,T.,B.Canback,L.Riemann,K.H.Bostrom,K. Simu,P.Lundberg, A.Tunlid,and A?.Hagstrom.2007. Global patterns of diversity and community structure in marine bacterioplankton.Molecular Ecology16:867–880.

R Development Core Team.2010.R:a language and environment for statistical computing.R Foundation for Statistical Computing,Vienna,Austria.

Rahbek,C.2005.The role of spatial scale and the perception of large-scale species-richness patterns.Ecology Letters8:224–239.

Rousk,J.,E.Ba a th,P.Brookes,https://www.360docs.net/doc/f84477306.html,uber,C.Lozupone,J. Caporaso,R.Knight,and N.Fierer.2010.Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal4:1340–1351.

Salas-Morales,S.H.,and J. A.Meave.2012.Elevational patterns in the vascular?ora of a highly diverse region in southern Mexico.Plant Ecology213:1209–1220.

Schadt,C.W.,A.P.Martin,D.A.Lipson,and S.K.Schmidt. 2003.Seasonal dynamics of previously unknown fungal lineages in tundra soils.Science301:1359–1361.

Shen,C.C.,J.B.Xiong,H.Y.Zhang,Y.Z.Feng,X.G.Lin, X.Y.Li,W.J.Liang,and H.Y.Chu.2013.Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain.Soil Biology and Bio-chemistry57:204–211.

Singh,D.,K.Takahashi,M.Kim,J.Chun,and J.M.Adams. 2012.A hump-backed trend in bacterial diversity with elevation on Mount Fuji,Japan.Microbial Ecology63: 429–437.

Siver,P.A.,A.P.Wolfe,F.J.Rohlf,W.Shin,and B.Y.Jo. https://www.360docs.net/doc/f84477306.html,bining geometric morphometrics,molecular phy-logeny and micropaleontology to assess evolutionary pat-terns in Mallomonas(Synurophyceae:Heterokontophyta). Geobiology11:127–138.

Tong,F.C.,Y.H.Xiao,and Q.L.Wang.2010.Soil nematode community structure on the northern slope of Changbai Mountain,Northeast China.Journal of Forestry Research 21:93–98.

Tsyganov,A.N.,https://www.360docs.net/doc/f84477306.html,bau,and L.Beyens.2013.Environ-mental factors in?uencing soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient in subarctic tundra(Abisko,Sweden).European Journal of Protistology49:238–248.

November20143201

MICROBIAL DISTRIBUTION ALONG ELEVATION

Walkley,A.,and I.A.Black.1934.An examination of the Degtjareff method for determining soil organic matter,and a proposed modi?cation of the chromic acid titration method.Soil Science 37:29–38.

Wang,X.P.,J.Y.Fang,N.J.Sanders,P.S.White,and Z.Y.Tang.2009.Relative importance of climate vs.local factors in shaping the regional patterns of forest plant richness across Northeast China.Ecography 32:133–142.

Wu,T.,E.Ayres,R.D.Bardgett,D.H.Wall,and J.R.Garey.2011.Molecular study of worldwide distribution and diversity of soil animals.Proceedings of the National Academy of Sciences USA 108:17720–17725.

Wujek,D.E.2013.Silica-scaled Chrysophytes (Chrysophyceae and Synurophyceae)from New Zealand freshwaters.II.Additions to the ?ora.Paci?c Science 1:113–118.

Xu,W. D.,X.Y.He,W.Chen,and C. F.Liu.2004.Characteristics and succession rules of vegetation types in Changbai Mountain.Chinese Journal of Ecology 23:162–174.[In Chinese with English abstract.]

Yuan,Y.L.,G.C.Si,J.Wang,T.X.Luo,and G.X.Zhang.2014.Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau.FEMS Microbi-ology Ecology 87:121–132.

Zhang,L.M.,M.Wang,J.I.Prosser,Y.M.Zheng,and J.Z.He.2009.Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest.FEMS Microbiology Ecology 70:52–61.

Zhang,M.,X.K.Zhang,W.J.Liang,Y.Jiang,G.H.Dai,X.G.Wang,and S.J.Han.2011.Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain,China.Pedosphere 21:615–620.

Zinger,L.,B.Shahnavaz,F.Baptist,R.A.Geremia,and P.Choler.2009.Microbial diversity in alpine tundra soils correlates with snow cover dynamics.ISME Journal 3:850–859.

S UPPLEMENTAL M ATERIAL

Ecological Archives

Appendices A–K are available online:https://www.360docs.net/doc/f84477306.html,/10.1890/14-0310.1.sm

CONGCONG SHEN ET AL.3202Ecology,Vol.95,No.11

产品质量策划责任矩阵图(PDF 84页)

产品质量策划责任矩阵图(PDF 84页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

产品质量策划责任矩阵图 以下所示的矩阵图对三种类型的供方描述了产品的质量策划功能,以帮助供方确定他们的策划责任的范围,它与下一页的产品质量策划的基本原则有关,它不描述可能存在于供方、分承包方和顾客之间的产品质量策划关系的所有不同类型。 设计责任仅限制造服务供方如热处 理、贮存、运输等 确定范围√√ √ 计划和定义(第一章)√ 产品设计和开发(第二章)√ 可行性(2.13)√√ √ 过程设计和开发(第三章)√√√ 产品和过程确认(第四章)√√ √ 反馈、评定和纠 正措施(第五章)√√ √ 控制计划方法论(第六章)√√ √ *根据克莱斯勒、福特、通用汽车公司质量体系要求有关“适用范围”的引言部分决定本手册采用的合适章节。 产品质量策划的基本原则

产品质量策划是一种结构化的方法,用来确定和制定确保某产品使顾客满意所需的步骤。产品质量策划的目标是促进与所涉及的每一个人的联系,以确保所要求的步骤按时完成。有效的产品质量策划依赖于公司高层管理者对努力达到使顾客满意这一宗旨的承诺。产品质量策划有如下的益处: ·引导资源,使顾客满意; ·促进对所需更改的早期识别; ·避免晚期更改; ·以最低的成本及时提供优质产品。 本手册中所述的实际工作、工装和分析技术都按逻辑顺序排列,使其容易理解。每一个产品质量计划是独立的。实际的进度和执行次序依赖于顾客的需要和期望和/或其它的实际情况而定。实际工作、工装和/或分析技术能在产品质量策划循环中越早实施越好。 组织小组 产品质量策划中供方的第一步是确定横向职能小组职责,有效的产品质量策划不仅仅需要质量部门的参与。适当时,初始小组可包括技术、制造、材料控制、采购、质量、销售、现场服务、分承包方和顾客方面的代表。 确定范围 在产品项目的最早阶段,对产品质量策划小组而言,重要的是识别顾客需要、期望和要求。小组至少应聚到一起以: ·选出项目小组负责人负责监督策划过程(有时,在策划循环中小组负责人轮流担任可能更为有利); ·确定每一代表方的作用和职责; ·确定顾客的要求(如适用,使用附录B中所述的QFD); ·确定小组职能及小组成员,哪些个人或分包方应被列入,哪些可排除; ·理解顾客的期望,如:设计、试验次数; ·对所提出来的设计、性能要求和制造过程评定其可行性; ·确定成本、进度和应考虑的限制条件; ·确定所需的来自于顾客的帮助; ·确定所采用的报告过程或形式。 小组间的联系

塑料薄膜

塑料薄膜 百科名片 用聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯以及其他树脂制成的薄膜,用于包装,以及用作覆膜层。塑料包装及塑料包装产品在市场上所占的份额越来越大,特别是复合塑料软包装,已经广泛地应用于食品、医药、化工等领域,其中又以食品包装所占比例最大,比如饮料包装、速冻食品包装、蒸煮食品包装、快餐食品包装等,这些产品都给人们生活带来了极大的便利。 词语信息 薄膜种类 发展现状 表面性能 特性比较 编辑本段词语信息 【词语】:塑料薄膜 【注音】:sù liào bómó 编辑本段薄膜种类 PVA涂布高阻隔薄膜 PVA涂布高阻隔薄膜是将添加了纳米无机物的PVA涂布于聚乙烯薄膜后经 塑料薄膜性价比 印刷、复合而成,在不大幅度提高成本的前提下,沧州金龙塑料有限公司科研人员经过3年的艰苦奋斗、自主创新,终于率先在国内将拥有国家专利的产品,PVA涂布高阻隔牛奶膜全面推向了市场。两年来,国内一些乳制品加工企业在无菌包装上用的奶膜由于采用了该公司生产的高阻隔薄膜,阻氧率小于2cm3/(m2·24h·0.1MPa)。其阻隔性能不仅明显优于EVOH五层共挤薄膜,而且包装成本也大幅度下降,这不仅能确保被包装物对无菌包装所有的质量要求,而且大幅度降低了食品加工企业无菌包装的成本,可用于包装饮料、果汁、牛奶、酱油醋等。 双向拉伸聚丙烯薄膜(BOPP)

双向拉伸聚丙烯薄膜是由聚丙烯颗粒经共挤形成片材后,再经纵横两个方向的拉伸而制得的。由于拉伸分子定向,所以这种薄膜的物理稳定性、机械强度、气密性较好,透明度和光泽度较高,坚韧耐磨,是目前应用最广泛的印刷薄膜,一般使用厚度为20~40 μ m ,应用最广泛的为20 μ m 。双向拉伸聚丙烯薄膜主要缺点是热封性差,所以一般用做复合薄膜的外层薄膜,如与聚乙烯薄膜复合后防潮性、透明性、强度、挺度和印刷性均较理想,适用于盛装干燥食品。由于双向拉伸聚丙烯薄膜的表面为非极性,结晶度高,表面自由能低,因此,其印刷性能较差,对油墨和胶黏剂的附着力差,在印刷和复合前需要进行表面处理。 低密度聚乙烯薄膜(LDPE) 低密度聚乙烯薄膜一般采用吹塑和流延两种工艺制成。流延聚乙烯薄膜的厚度均匀,但由于价格较高,成本较低,所以应用最为广泛。低密度聚乙烯薄膜是一种半透明、有光泽、质地较柔软的薄膜,具有优良的化学稳定性、热封性、耐水性和防潮性,耐冷冻,可水煮。其主要缺点是对氧气的阻隔性较差,常用于复合软包装材料的内层薄膜,而且也是目前应用最广泛、用量最大的一种塑料包装薄膜,约占塑料包装薄膜耗用量的40%以上。 由于聚乙烯分子中不含极性基团,且结晶度高,表面自由能低,因此,该薄膜的印刷性能较差,对油墨和胶黏剂的附着力差,所以在印刷和复合前需要进行表面处理。 聚酯薄膜(PET) 聚酯薄膜是以聚对苯二甲酸乙二醇酯为原料,采用挤出法制成厚片,再经双向拉伸制成的薄膜材料。它是一种无色透明、有光泽的薄膜,机械性能优良,刚性、硬度及韧性高,耐穿刺,耐摩擦,耐高温和低温,耐化学药品性、耐油性、气密性和保香性良好,是常用的阻透性复合薄膜基材之一。但聚酯薄膜的价格较高,一般厚度为12 μ m,常用做蒸煮包装的外层材料,印刷性较好。 尼龙薄膜(PA) 尼龙薄膜是一种非常坚韧的薄膜,透明性好,并具有良好的光泽,抗张强度、拉伸强度较高,还具有较好的耐热性、耐寒性、耐油性和耐有机溶剂性,耐磨性、耐穿刺性优良,且比较柔软,阻氧性优良,但对水蒸气的阻隔性较差,吸潮、透湿性较大,热封性较差,适于包装硬性物品,例如油腻性食品、肉制品、油炸食品、真空包装食品、蒸煮食品等。 流延聚丙烯薄膜(CPP) 流延聚丙烯薄膜是采用流延工艺生产的聚丙烯薄膜,又可分为普通CPP和蒸煮级CPP 两种,透明度极好,厚度均匀,且纵横向的性能均匀,一般用做复合薄膜的内层材料。普通CPP 薄膜的厚度一般在25~50μm 之间,与OPP复合后透明度较好,表面光亮,手感坚挺,一般的礼品包装袋都采用此种材料。这种薄膜还具有良好的热封性。蒸煮级CPP 薄膜的厚度一般在60~80 μ m 之间,能耐121℃、30 min的高温蒸煮,耐油性、气密性较好,且热封强度较高,一般的肉类包装内层均采用蒸煮级的CPP薄膜。

企业管理科学矩阵图

企业管理科学矩阵图单选题 1.管理五功能是指回答:正确 1. A 计划、组织 2. B 用人、指导 3. C 控制 4. D 以上都包括 2.关于“研发”的理解不正确的是回答:正确 1. A 研究新东西 2. B 发展新东西 3. C 改良旧东西 4. D 创造新东西 3.企业将帅术可以简单地概括为回答:正确 1. A 销、产、发、人、财 2. B 计、组、用、指、控 3. C 以上都包括 4. D 以上都不正确 4.保证两套五指山真正发挥作用,就要回答:正确 1. A 计、组、用、指、控,由目标管理总揽 2. B 销、产、发、人、财,由总经理总揽 3. C 以上都包括 4. D 以上都不正确 5.在企业企业管理矩阵图,直接由总经理总揽的功能回答:正确

1. A 行销、生产 2. B 研发、人事 3. C 以上都包括 4. D 以上都不正确 6.下列属于协调范围的是回答:正确 1. A 时间配合 2. B 步骤配合 3. C 使用的场所配合 4. D 以上都包括 7.阳显五字诀是回答:正确 1. A 销、产、发、人、财 2. B 计、发、用、指、控 3. C 计、组、用、指、控 4. D 销、产、组、人、财 8.阴密五字诀是回答:正确 1. A 销、产、发、人、财 2. B 销、产、用、人、财 3. C 计、组、发、指、控 4. D 计、组、用、指、控 9.“双重五指山”指的就是企业管理矩阵图。它是管理实践应用的一个工具,是一个属于方法论的内容。回答:正确 1. A 是 2. B 否

10.提高产品价值的活动叫做行销。回答:正确 1. A 是 2. B 否 11.总事长是总经理的班长,经理的经理,叫做总裁。回答:正确 1. A 是 2. B 否 12.管理科学矩阵图,就是企业将帅可以用之达成顾客满意与合理利润的目标,通用于任何行业的有效经营手段。回答:正确 1. A 是 2. B 否 13.CEO仅仅是指一个人,即公司的总裁。回答:正确 1. A 是 2. B 否 14.知己知彼首先要做的工作就是市场情报信息的调查、分析、预测等研究。回答:正确 1. A 是 2. B 否 15.因人设事,才能得到贤才,才能事在人为,功在最终之效。回答:正确 1. A 是 2. B 否

聚乙烯薄膜

聚乙烯薄膜 1 范围 本标准规定了聚乙烯薄膜(以下简称PE膜)的技术要求、试验方法、检验规则及标志、包装、运输、贮存等。 本标准适用于以聚乙烯树脂为主要原料,用挤出吹塑、流延成型的通用薄膜。 2 规范性引用文件 下列标准中的所包含的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准;凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 191 包装储运图示标志 GB/T 1040.3—2006 塑料拉伸性能的测定第3部分:塑料和薄片的试验条件 GB/T 2828.1 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 GB/T 2918 塑料试样状态调节和试验的标准环境 GB/T 5009.60 食品包装用聚乙烯、聚苯乙烯、聚丙烯成型品卫生标准的分析方法 GB/T 6672 塑料薄膜和薄片厚度测定机械测量法 GB/T 6673 塑料薄膜和薄片长度和宽度的测定 GB/T 8807 塑料镜面光泽试样方法 GB 9687 食品包装用聚乙烯成型品卫生标准 GB/T 10006—2008 塑料薄膜和薄片摩擦系数测定方法 GB/T 14216 塑料膜和片润湿张力试验方法 QB/T 2358 塑料薄膜包装袋热合强度试验方法 3 分类 包装用聚乙烯薄膜按使用要求不同分PE(酱包专用)膜、PE膜、和乳白PE膜表示。 4 要求 4.1 外观 4.1.1不应存在有碍使用的气泡、穿孔、水纹、条纹、暴筋、熟化不良、鱼眼、僵块等瑕疵。 4.1.2膜卷断面不平整度不大于3 mm。 4.1.3卷膜纸芯不允许凹陷和缺口。 4.2 尺寸偏差 4.2.1 宽度偏差 宽度偏差应符合表1要求。

国内汽车产品矩阵图

上汽通用 SLS赛威(三厢轿车)GL8 (MPV)乐驰(两厢轿车) 凯越(三厢轿车)乐骋(两厢轿车) 君威(三厢轿车)乐风(三厢轿车) 君越(三厢轿车)赛欧(两/三厢轿车) 林荫大道(三厢轿车)景程(三厢轿车) 英朗XT(两厢轿车)科鲁兹(三厢轿车) 英朗GT(三厢轿车) 上汽大众 POLO(两/三厢轿车)晶锐(两厢轿车) 桑塔纳(三厢轿车)明锐(三厢轿车) 桑塔纳志俊(三厢轿车)昊锐(三厢轿车) 朗逸(三厢轿车) 新领驭(三厢轿车) 途安(MPV) 途观(SUV) 上汽集团 350(三厢轿车)MG 3SW(两厢轿车)爱腾(SUV) 550(三厢轿车)MG 7(三厢轿车)雷斯特(SUV) 750(三厢轿车)MG TF(软顶跑车) 路帝(SUV) MG6 (三厢轿车)享御(SUV)

一汽大众 捷达(三厢轿车)A4L(三厢轿车) 高尔夫(两厢轿车)A6L(三厢轿车) 宝来(三厢轿车)Q5(SUV) 速腾(三厢轿车) 迈腾(三厢轿车) CC (三厢轿跑车) 一汽马自达 马自达6(三厢轿车/三厢轿跑/旅行轿车) 睿翼(三厢轿车/三厢轿跑) 一汽丰田 花冠(三厢轿车)卡罗拉(三厢轿车)威驰(三厢轿车) 锐志(三厢轿车)皇冠(三厢轿车)普锐斯(两厢轿车) RAV4(SUV)普拉多(SUV)兰德酷路泽(SUV) 一汽 威乐(三厢轿车)森雅(MPV)B50 (三厢轿车)盛世(三厢轿车) 威志(两/三厢轿车)B70(三厢轿车) 威姿(两厢轿车) 夏利N5(三厢轿车) 东风(1) CR-V (SUV)207(两/三厢)爱丽舍(三厢)S30(三厢)锐欧(三厢)俊逸(MPV)思域(三厢)307(两/三厢)C2(两厢)H30(两厢)嘉华(MPV)骊威(两厢)思铂睿(三厢)408(三厢)C5(三厢)赛拉图(两/三厢)骐达(两厢) 凯旋(三厢)福瑞迪(三厢)颐达(三厢) 世嘉(两/三厢)狮跑(SUV)轩逸(三厢) 毕加索(MPV)秀尔(两厢)天籁(三厢) 远舰(三厢)奇骏(SUV) 逍客(SUV)

管理学笔记第4章:多样性的管理

第4章:对多样性的管理: 4.1 对多样化的基本了解 什么是员工多样性? 员工多样性的演化:这个概念具有很强的时代特征,从开始提出时候强调避免歧视女性和其他族群,到之后强调其他人的需求和差异性,到现在强调多样性和兼收并蓄。 管理学给到的员工多样性(workplacediversity)定义:使得组织中的成员彼此不同或相似的所有方法。该观点不仅强调能把员工分开,也强调其共同的品质和特性(总感觉这个概念有点二逼,强调的就是多样性吗。。。)。 需要指出的是,多样性包含两种特性:一个是表层多样性(surface-leveldiversity):年龄、种族、血统等等比较显性的特征;另一个是深层多样性(deep—leveldiversity):价值观、个性和工作偏好方面的差异变得也越来越重要。 为什么员工多样性管理那么重要? 人力资源管理: 更好地利用员工的才能 提高团队解决问题的能力和质量 提高吸引和保留多元化员工的能力 组织绩效: 丰富的视角,提高解决问题的能力 提高系统的灵活性 战略层面: 提高对市场的理解,且提高组织向多样化的消费者更好地开展营销的能力 有利于创新能力的提高,进而获得潜在的竞争优势

使组织获得“正义感” 4.2 不断变化的劳动力队伍: 世界劳动力队伍的变化: 1.世界总人口加速成长,一些国家可能享受人口红利 2.人口老龄化很严重。 4.3 员工多样性的类型 4.3.1 年龄:多年龄大员工持有很复杂的态度:一面其积累了大量优秀品质,另一面其适应性,创新性不足。 4.3.2 性别:性别多样性问题仍然在企业中非常流行,关于女性职场能力有很多错误观点。 4.3.3 人种和种族: 4.3.4:对残疾的担忧:1)雇佣残疾人会导致更高的成本 2)技能和工作经验不足 3)纪律措施的不确定性 4.3.5 宗教:宗教信仰的差别 4.3.6 GLBT:性取向和性身份:男同性恋(gay)、女同性恋(lesbian)、双性恋(bisexual)、变性人(transgender people)。 4.4 对多样性进行管理时的挑战: 4.4.1 个人偏见:偏见(bias)是一个用来描述对某种特点观点或意识形态所持倾向或偏好的术语。基于个人偏见会产生各自的成见,即对一个人或一群人所持先入为主的观点、看法

市场营销GE矩阵图

补充材料 11、BCG矩阵(波士顿矩阵) (1)问题类产品(Question Marks,指高增长、低市场份额)处在这个领域中的是一些投机性产品,带有较大的风险。这些产品可能利润率很高,但占有的市场份额很小。 (2)明星型业务(stars,指高增长、高市场份额) 这个领域中的产品处于快速增长的市场中并且占有支配地位的市场份额,但也许会或也许不会产生正现金流量,市场还在高速成长,企业必须继续投资,以保持与市场同步增长,并击退竞争对手。 (3)现金牛业务(Cash cows,指低增长、高市场份额) 处在这个领域中的产品产生大量的现金,但未来的增长前景是有限的。这是成熟市场中的领导者,它是企业现金的来源。 (4)瘦狗型业务(Dogs,指低增长、低市场份额) 一般情况下,这类业务常常是微利甚至是亏损的,目的在于出售或清算业务,以便把资源转移到更有利的领域。 12、GE矩阵战略图 GE矩阵可以用来根据事业单位在市场上的实力和所在市场的吸引力对这些事业单位进行评估,也可以表述一个公司的事业单位组合判断其强项和弱点。在需要对产业吸引力和业务实力作广义而灵活的定义时,可以以GE矩阵为基础进行战略规划。按市场吸引力和业务自身实力两个维度

评估现有业务(或事业单位),每个维度分三级,分成九个格以表示两个维度上不同级别的组合。两个维度上可以根据不同情况确定评价指标。 比较:GE矩阵比BCG矩阵在以下三个方面表现得更为成熟: (1)市场/行业吸引力(Market/Industry Attractiveness)代替了市场成长(Market Growth)被吸纳进来作为一个评价维度。市场吸引力较之市场成长率显然包含了更多的考量因素。 (2)竞争实力(Competitive Strength)代替了市场份额(Market Share)作为另外一个维度,由此对每一个事业单元的竞争地位进行评估分析。同样,竞争实力较之市场份额亦包含了更多的考量因素。 (3)此外,GE矩阵有9个象限,而BCG矩阵只有4个象限,使得GE矩阵结构更复杂、分析更准确。 13、密集性市场机会:是指一个特定市场的全部潜力尚未到到极限时存在的市场机会。 一体化市场机会:是指一个企业把自己的营销活动伸展到供、产、销不同环节而使自身得到发展 的市场机会。 多样化市场机会:是在利用密集型的或一体化的市场机会争取进一步的增长受到了限制,或是遇 到了不寻常障碍时,企业才会打破行业界限,寻找别开生面的新机会。 21、中间商品牌有哪些优势和劣势 答:优势: (1)零售商业的营业面积有限,因此,新企业和小企业难以用其品牌打入零售市场。 (2)中间商特别注意保护其私人品牌的质量,能赢得消费者的信任。 (3)价格通常比企业品牌的商品低。 (4)中间商往往把自己品牌的商品陈列在商店醒目的地方,且妥善储备。 劣势: (1)中间商必须花很多钱做广告,大肆宣传其品牌。 (2)中间商必须大批量订货,占用大量资金,有一定的风险。 注:以下内容是问了3、4班的才知道,因为复习指南是他们的老师弄的 15、有效细分的条件(内在、外在、细分市场的原则、选择目标市场) 37、人员推销的优缺点(缺点也有) 39、公共关系所起到的作用 40、整合营销沟通策略

企业多元化战略问题研究

本科毕业论文(设计) 企业多元化战略问题研究 Enterprise diversification strategy research problems 作者 专业工商管理 指导教师聂贵洪副教授 分院商务学院 二〇一二年五月

致谢 感谢我的导师,为了更好地指导我的论文,他事先翻阅了大量关于我国企业多元化战略理论方面的书籍。他不仅在完善论文结构和构建论文体系框架方面提出了许多宝贵的意见,而且在描述企业多元化问题、研究企业多元化的发展方向提出了很多极有见地的真知灼见,他甚至细致到连论文许多地方的标点符号都亲自作了修改。借此机会我向导师表示衷心的感谢! 在论文的选题、资料查询、开题、研究和撰写的每一个环节,无不得到导师的悉心指导和精心帮助。导师倡导的理论与实践相结合、比较与实证相结合、定性与定量相结合的研究方法使我受益匪浅。 在写论文中,同学给我论文的资料查询和论文格式,感谢他们! 感谢贵州财经大学工商管理学院的领导和老师们! 路漫漫其修远兮,吾将上下而求索。我愿在未来的工作中,以更加丰厚的成果来答谢曾经关心、帮助和支持过我的所有老师、同学、朋友。

企业多元化战略问题研究 --以我国企业的多元化为例 摘要:多元化经营已成为当今企业的一种重要的战略思想。运营良好的多元化经营策略是企业发展壮大的良策,但盲目的多元化经营又使很多的企业沦入困境,成为制约企业发展的瓶颈。正确评估企业的经营环境与企业现有的规模是进行多元化的主要内容,多元化经营战略在实施中的最大难题就是“度”的把握,“适度”多元化战略的选择就是要求企业应考察企业核心竞争力与所选择的业务是否匹配,分析企业的主业优势能否对所选择的多元化业务提供资源上的支持。本文主要研究我国企业进行多元化经营时存在问题及原因,并提出我国实施企业多元化战略的建议。 关键词:多元化经营战略;主业优势;经营环境;企业核心竞争力;资源 Enterprise diversification strategy research problems -- To our country business enterprise of diversity as an example ABSTRACT:Diversified management has become the enterprise one of the most important strategic thinking. Operation of diversification strategy is the good enterprise development and expansion of the good, but the blindness of the diversified management and make a lot of enterprise fall into real trouble, become the bottleneck of restricting enterprise development。Therefore, diversified business strategy in the implementation of the biggest problems is "degrees" hold, "moderate" diversification strategy choice is requests the enterprise shall examine the core competitive force of the enterprise and the choice of a business is matching; Analysis of the advantage of its enterprise can choice of diversified business support to provide resources; Right evaluation of enterprise business environment; The scale of the enterprise existing have diversify conditions. This paper studies our country enterprise diversify operation of the error, and puts forward some Suggestions of implementing enterprise diversification strategy. KEY WORDS:Diversified management strategy;Main advantage;management environment;The core competitive capacity of enterprises;resources

塑料薄膜生产工艺

塑料薄膜生产工艺 塑料薄膜生产工艺:塑料薄膜的成型加工方法有多种,例如有压延法、流延法、吹塑法、拉伸法等,近年来双向拉伸膜成为人们关注的焦点。今后,双向拉伸技术将更多地向着特种功能膜,如厚膜拉伸、薄型膜拉伸、多层共挤拉伸等方向发展。近年来,适应包装行业对包装物要求的不断提高,各种功能膜市场发展迅速。经过双向拉伸生产的塑料薄膜可有效改善材料的拉伸性能(拉伸强度是未拉伸薄膜的3-5倍)、阻隔性能、光学性能、耐热耐寒性、尺寸稳定性、厚度均匀性等多种性能,并具有生产速度快、产能大、效率高等特点,市场迅速发展。 双向拉伸原理 塑料薄膜双向拉伸的原理:是将高聚物树脂通过挤出机加热熔融挤出厚片后,在玻璃化温度以上、熔点以下的适当温度范围内(高弹态下),通过纵拉机与横拉机时,在外力作用下,先后沿纵向和横向进行一定倍数的拉伸,从而使高聚物的分子链或结晶面在平行于薄膜平面的方向上进行取向而有序排列;然后在拉紧状态下进行热定型使取向的大分子结构固定下来;最后经冷却及后续处理便可制得理想的塑料薄膜。 双向拉伸薄膜生产设备与工艺双向拉伸薄膜的生产设备与工艺,以聚酯薄膜(PET)为例简述如下:配料与混合普通聚酯薄膜所使用的原料主要是有光PET切片和母料切片。母料切片是指含有添加剂的PET切片,添加剂有二氧化硅、碳酸钙、硫酸钡、高岭土等,应根据薄膜的不同用途选用相应的母料切片。聚酯薄膜一般采用一定含量的含硅母料切片与有光切片配用,其作用是通过二氧化硅微粒在薄膜中的分布,增加薄膜表面微观上的粗糙度,使收卷时薄膜之间可容纳少量的空气,以防止薄膜粘连。有光切片与一定比例的母料切片通过计量混合机混合后进入下一工序。 结晶和干燥:对有吸湿倾向的高聚物,例如PET、PA、PC等,在进行双向拉伸之前,须先进行予结晶和干燥处理。一是提高聚合物的软化点,避免其在干燥和熔融挤出过程中树脂粒子互相粘连、结块;二是去除树脂中水分,防止含有酯基的聚合物在熔融挤出过程中发生水解降解和产生气泡。PET的予结晶和干燥设备一般采用带有结晶床的填充塔,同时配有干空气制备装置,包括空压机、分子筛去湿器、加热器等。予结晶和干燥温度在150-170℃左右,干燥时间约3.5-4小时。干燥后的PET切片湿含量要求控制在50ppm以下。 熔融挤出熔融挤出包括挤出机、熔体计量泵、熔体过滤器和静态混合器。 一、熔融挤出机 经过结晶和干燥处理的PET切片进入单螺杆挤出机进行加热熔融塑化。为了保证PET切片塑化良好、挤出熔体压力稳定,螺杆的结构非常重要。除对长径比、压缩比、各功能段均有一定要求外,还特别要求是屏障型螺杆,因为这种结构的螺杆具有以下几个特点: 有利于挤出物料的良好塑化。 有利于挤出机出口物料温度均匀一致。 挤出机出料稳定。 排气性能好。 有利于提高挤出能力。 若挤出量不是太大,推荐选用排气式双螺杆挤出机。排气挤出机有两个排气口与两套抽真空系统相连接,具有很好的抽排气、除湿功能,可将物料中所含的水分及低聚物抽走,可以省去复杂的预结晶/干燥系统,既节省投资又可降低运行成本。挤出机温度设定,从加料口到

塑料薄膜的基本知识

第一部分软包装材料之---塑料薄膜基本知识 一、软包装之薄膜的定义 在国家包装通用术语(GB4122—83)中,软包装的定义为:软包装是指在充填或取出内装物后,容器形状可发生变化的包装。用纸、铝箔、纤维、塑料薄膜以及它们的复合物所制成的各种袋、盒、套、包封等均为软包装。 一般将厚度在0.25mm以下的片状塑料称为薄膜。塑料薄膜透明、柔韧,具有良好的耐水性、防潮性和阻气性、机械强度较好,化学性质稳定,耐油脂,易于印刷精美图文,可以热封制袋。它能满足各种物品的包装要求,是用于包装易存、易放的方便食品,生活用品,超级市场的小包装商品的理想材料。以塑料薄膜为主的软包装印刷在包装印刷中占有重要地位。据统计,从1980年以来,世界上一些先进国家的塑料包装占整个包装印刷的32.5%~44%。?一般来说,因为单一薄膜材料对内装物的保护性不够理想,所以多采用将两种以上的薄膜复合为一层的复合薄膜,以满足食品保鲜、无菌包装技术的要求。复合薄膜的外层材料多选用不易划伤、磨毛,光学性能优良,印刷性能良好的材科,如:纸、玻璃纸、拉伸聚丙烯、聚酯等;中间层是阻隔性聚合物,如:铝箔、蒸镀铝、聚俯二氮乙烯电里层材料多选用无毒、无味的聚乙烯等热塑性树脂。 二、塑料阻透性技术介绍 1、塑料的阻透性? 塑料制品(容器、薄膜)对小分子气体、液体、水蒸汽及气味的屏蔽能力。 2、透过系数? 塑料阻透能力大小的指标。 定义: 一定厚度(1mm)的塑料制品,在一定的压力(1Mpa),一定的温度(23度),一定的湿度(65%)下,单位时间(1day=24小时),单位面积(1m2),通过小分子物质(O2、CO2、H2O)的体积或重量。表示为(cm3)、(g) 对于气体: 单位为cm3,mm/m2,d,mpa; 对于液体: 单位为g,mm/m2,d,mpa; 3、常用中高阻透性塑料的透过系数

How Diversity Makes Us Smarter非英语专业研究生英语读写教程

How Diversity Makes Us Smarter The first thing to acknowledge about diversity is that it can be difficult. In the U.S., where the dialogue of inclusion is relatively advanced, even the mention of the word “diversity” can lead to anxiety and conflict. Supreme Court justices disagree on the virtues of diversity and the means for achieving it. Corporations spend billions of dollars to attract and manage diversity both internally and externally, yet they still face discrimination lawsuits, and the leadership ranks of the business world remain predominantly white and male. 首先,我们要承认,多元化这个问题很深奥。在美国,这个对各种观点包容性相对较高的国家,提到“多元化”,人们也会感到焦虑不安,矛盾重重。最高法院的法官们在多样性的优点和实现多样性的方法上存在分歧。他们努力去实现审判的多元化;企业为能在内外部形成并实现多元化散尽千金,尽管如此,它们仍就面临着歧视诉讼;商界的领导阶层,仍由白人和男性主导。 It is reasonable to ask what good diversity does us. Diversity of expertise confers benefits that are obvious—you would not think of building a new car without engineers, designers and quality-control experts—but what about social diversity? What good comes from diversity of race, ethnicity, gender and sexual orientation? Research has shown that social diversity in a group can cause discomfort, rougher interactions, a lack of trust, greater perceived interpersonal conflict, lower communication, less cohesion, more concern about disrespect, and other problems. So what is the upside? 我们有理由提出这样的疑问,多元化对我们有什么益处。专业技术多元化的益处显而易见——想要研发一款新型汽车,工程师,设计师和质量控制专家缺一不可——那么社会多元化的益处是什么呢?种族,名族,性别和性取向方面的多元化,又会为我么带来怎样的益处呢?研究表明,团体中的社会差异会引起一系列问题,如:内心不安,交往困难,信任缺失,感知性人际冲突增强,交流减少,凝聚力降低,对不敬的敏感度增强等。那么,其优点又体现在何处呢? The face is that if you want to build teams or organizations capable of innovating, you need diversity.Diversity enhances creativity. It encourages the search for novel information and perspectives, leading to better decision making and problem solving.Diversity can improve the bottom line of companies and lead to unfettered discoveries and breakthrough innovations.Even simply being exposed to diversity can change the way you think. This is not just wishful thinking: it is the conclusion I draw from decades of research from organizational scientists, psychologists, sociologists, economists and demographers 事实是,如果你想建立一个有创新能力的团队或组织,你需要多样化多样性提高创造力。它鼓励人们寻找新的信息和视角,从而促使人们做出更好的决策和解决问题。多样化可以改善公司的下线,带来不受约束的发现和突破性创新。即使只是简单地接触多样性也会改变你的思维方式。这不仅仅是一厢情愿的想法:这是我从组织科学家、心理学家、社会学家、经济学家和人口学家数十年的研究中得出的结论 Information and innovation信息和创新 The key to understanding the positive influence of diversity is the concept of informational diversity.When people are brought together to solve problems in group, they bring different information, opinions and perspectives.This makes obvious sense when we talk about diversity of disciplinary backgrounds--think again of the interdisciplinary team building a car.The same logic applies to social diversity. People who are different from one another in race, gender and other

塑料薄膜成型方法

塑料薄膜的挤出吹塑 塑料薄膜可以用挤出吹塑、压延、流延、挤出拉幅以及使用夹缝机头直接挤出等方法制造,各种方法特点不同,适应性也不同。其中吹塑法成型塑料薄膜比较经济和简便,结晶型和非结晶型塑料都适用,吹塑成型不但能成型薄至几丝的包装薄膜,也能成型厚达0.3mm 的重包装薄膜,既能生产窄幅,也能得到宽度达近20m的薄膜,这是其他成型方法无法比拟的。吹塑过程塑料受到纵横方向的拉伸取向作用,制品质量较高,因此,吹塑成型在薄膜生产上应用十分广泛。 挤出成型设备有螺杆挤出机和柱塞式挤出机两大类,前者为连续式挤出,后者为间歇式挤出。螺杆挤出机又可分为单螺杆挤出机和多螺杆挤出机。 压延成型 压延成型是生产高分子材料薄膜和片材的主要方法,它是将接近黏流温度的物料通过一系列相向旋转着的平行滚筒的间隙,使其受到挤压和延展作用,成为具有一定厚度和宽度的薄片状制品。 塑料压延成型一般适用于生产厚度为0.05—0.5mm的软质PVC薄膜和厚度为0.3—1.00mm的硬质PVC片材。当制品厚度小于或大于这个范围时,一般不用压延成型,而采用吹塑或挤出等其他方法。 压延薄膜制品主要用于、农业、工业包装、室内装饰以及各种生活用品等。压延成型具有生产能力大、可自动化连续生产、产品质量好的特点。 压延制品的生产是多工序作业,其生产流程包括供料阶段和压延阶段,是一个从原料混合、塑化、供料,到压延的完整连续生产线。供料阶段所需要的设备包括混合机、开炼机、密炼机或塑化挤出机等。压延阶段由压延机和牵引、轧花、冷却、卷曲、切割等辅助装置完成。 拉幅薄膜成型 拉幅薄膜成型是在挤出成型的基础上发展起来的一种塑料薄膜的成型方法,它是将挤出成型所得的厚度为1—3mm的厚片或管坯重新加热到材料的高弹态下进行大幅度拉伸而成薄

塑料薄膜拉伸性能试验方法标准要求

塑料薄膜拉伸性能试验方法标准要求 中华人民共和国国家标准 塑料薄膜拉伸性能试验方法 Plastics-Determinationoftensileproperiesoffilms 本标准参照采用国际标准ISO1184—1983《塑料薄膜拉伸性能的测定》。 1主题内容与适用范围 本标准规定了塑料薄膜和片材的拉伸性能试验方法。 本标准适用于塑料薄膜和厚度小于1mm的片材。不适用于增强薄膜、微孔片材和膜。 2引用标准 GB2918塑料试样状态调节和试验的标准环境 GB6672塑料薄膜和薄片厚度的测量机械测量法 中华人民共和国国家标准 塑料薄膜拉伸性能试验方法 Plastics-Determinationoftensileproperiesoffilms 本标准参照采用国际标准ISO1184—1983《塑料薄膜拉伸性能的测定》。 1主题内容与适用范围 本标准规定了塑料薄膜和片材的拉伸性能试验方法。 本标准适用于塑料薄膜和厚度小于1mm的片材。不适用于增强薄膜、微孔片材和膜。 2引用标准 GB2918塑料试样状态调节和试验的标准环境 GB6672塑料薄膜和薄片厚度的测量机械测量法 4.1试样形状及尺寸

本方法规定使用四种类型的试样,Ⅰ、Ⅱ、Ⅲ型为哑铃形试样。见图1~图3。Ⅳ型为长条型试样,宽度10~25mm,总长度不小于150mm,标距至少为50mm。 国家技术监督局1991-07-03批准1992-04-01实施 GB13022-91 4.2试样选择

可根据不同的产品或按已有的产品标准的规定进行选择。一般情况下,伸长率较大的试样不宜采用 太宽的试样。 4.3试样制备 4.3.1试样应沿样品宽度方向大约等间隔裁取。 4.3.2哑铃形及长条形试样均可用冲刀冲制,长条形试样也可用其他裁刀裁取。各种方法制得的试样 应符合4.1要求。试样边缘平滑无缺口。可用低倍放大镜检查缺口,舍去边缘有缺陷的试样。 4.3.3按试样尺寸要求准确打印或画出标线。此标线应对试样不产生任何影响。 4.4试样数量 试样按每个试验方向为一组,每组试样不少于5个。 5试验条件 5.1试样状态调节和试验的标准环境 按GB2918中规定的标准环境正常偏差范围进行状态调节,时间不少于4h,并在此环境下进行试验。 5.2试验速度(空载) GB13022-91 5.2.1试验速度如下: a.1±0.5mm/min; b.2±0.5mm/min或2.5±0.5mm/min; c.5±1mm/min; d.10±2mm/min; e.30±3mm/min或25±2.5mm/min;

矩阵图研究

矩阵图研究 矩阵图法就是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。 在复杂的质量问题中,往往存在许多成对的质量因素,将这些成对因素找出来,分别排列成行和列,其交点就是其相互关联的程度,在此基础上再找出存在的问题及问题的形态,从而找到解决问题的思路。 矩阵图的形式如下图所示,A为某一个因素群,a1、a2、a3、a4、…是属于A这个因素群的具体因素,将它们排列成行;B为另一个因素群,b1、b2、b3、b4、…为属于B这个因素群的具体因素,将它们排列成列;行和列的交点表示A和B各因素之间的关系,按照交点上行和列因素是否相关联及其关联程度的大小,可以探索问题的所在和问题的形态,也可以从中得到解决问题的启示等。 质量管理中所使用的矩阵图,其成对因素往往是要着重分析的质量问题的两个侧面,如生产过程中出现了不合格品时,着重需要分析不合格的现象和不合格的原因之间的关系,为此,需要把所有缺陷形式和造成这些缺陷的原因都罗列出来,逐一分析具体现象与具体原因之间的关系,这些具体现象和具体原因分别构成矩阵图中的行元素和列元素。 矩阵图的最大优点在于,寻找对应元素的交点很方便,而且不会遗漏,显示对应元素的关系也很清楚。矩阵图法还具有以下几个特点: ①可用于分析成对的影响因素;

②因素之间的关系清晰朋了,便于确定重点; ③便于与系统图结合使用。 二,矩阵图法的用途 矩阵图法的用途十分广泛,在质量管理中,常用矩阵图法解决以下问题: ①把系列产品的硬件功能和软件功能相对应,并要从中找出研制新产品 或改进老产品的切入点; ②明确应保证的产品质量特性及其与管理机构或保证部门的关系,使质 量保证体制更可靠; ③明确产品的质量特性与试验测定项目、试验测定仪器之间的关系,力 求强化质量评价体制或使之提高效率; ④当生产工序中存在多种不良现象,且它们具有若干个共同的原因时, 希望搞清这些不良现象及其产生原因的相互关系,进而把这些不良现 象一举消除; ⑤在进行多变量分析、研究从何处入手以及以什么方式收集数据。 三、矩阵图的类型 矩阵图法在应用上的一个重要特征,就是把应该分析的对象表示在适当的矩阵图上。因此,可以把若干种矩阵图进行分类,表示出他们的形状,按对象选择并灵活运用适当的矩阵图形。常见的矩阵图有以下几种: (1) L型矩阵图。是把一对现象用以矩阵的行和列排列的二元表的形式来 表达的一种矩阵图,它适用于若干目的与手段的对应关系,或若干结 果和原因之间的关系。

塑料薄膜的基本知识

第一部分软包装材料之---塑料薄膜基本知识 一、软包装之薄膜的定义 在国家包装通用术语(GB4122—83)中,软包装的定义为:软包装是指在充填或取出内装物后,容器形状可发生变化的包装。用纸、铝箔、纤维、塑料薄膜以及它们的复合物所制成的各种袋、盒、套、包封等均为软包装。一般将厚度在0.25mm以下的片状塑料称为薄膜。塑料薄膜透明、柔韧,具有良好的耐水性、防潮性和阻气性、机械强度较好,化学性质稳定,耐油脂,易于印刷精美图文,可以热封制袋。它能满足各种物品的包装要求,是用于包装易存、易放的方便食品,生活用品,超级市场的小包装商品的理想材料。以塑料薄膜为主的软包装印刷在包装印刷中占有重要地位。据统计,从1980年以来,世界上一些先进国家的塑料包装占整个包装印刷的32.5%~44%。 一般来说,因为单一薄膜材料对内装物的保护性不够理想,所以多采用将两种以上的薄膜复合为一层的复合薄膜,以满足食品保鲜、无菌包装技术的要求。复合薄膜的外层材料多选用不易划伤、磨毛,光学性能优良,印刷性能良好的材科,如:纸、玻璃纸、拉伸聚丙烯、聚酯等;中间层是阻隔性聚合物,如:铝箔、蒸镀铝、聚俯二氮乙烯电里层材料多选用无毒、无味的聚乙烯等热塑性树脂。 二、塑料阻透性技术介绍 1、塑料的阻透性? 塑料制品(容器、薄膜)对小分子气体、液体、水蒸汽及气味的屏蔽能力。 2、透过系数? 塑料阻透能力大小的指标。 定义: 一定厚度(1mm)的塑料制品,在一定的压力(1Mpa),一定的温度(23度),一定的湿度(65%)下,单位时间(1day=24小时),单位面积(1m2),通过小分子物质(O2、CO2、H2O)的体积或重量。表示为(cm3)、(g) 对于气体: 单位为cm3,mm/m2,d,mpa; 对于液体: 单位为 g,mm/m2,d,mpa; 3、常用中高阻透性塑料的透过系数

相关文档
最新文档