Synthesis characterization of near-infrared fluorescent andmagnetic iron zero-valent nanoparticles

Synthesis  characterization of near-infrared fluorescent andmagnetic iron zero-valent nanoparticles
Synthesis  characterization of near-infrared fluorescent andmagnetic iron zero-valent nanoparticles

Synthesis and characterization of near-infrared ?uorescent and magnetic iron zero-valent nanoparticles

Nagore Pérez a ,Leire Ruiz-Rubio a ,*,JoséLuis Vilas a ,b ,Matilde Rodríguez a ,Virginia Martinez-Martinez a ,Luis M.León a ,b

a

Departamento de Química Física,Facultad de Ciencia y Tecnología,Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU),Apdo 644,Bilbao 48080,Spain b

Basque Center for Materials,Applications and Nanoestructures (BCMATERIALS)Parque Tecnológico de Bizkaia,Ed 500,Derio 48160,Spain

A R T I C L E I N F O

Article history:

Received 4May 2015

Received in revised form 4September 2015Accepted 6September 2015

Available online 9September 2015

Keywords:

Iron zero valent nanoparticles Fluorescent Magnetic

Polyethylenglycol

A B S T R A C T

Polyethylene glycol coated iron nanoparticles were synthesized by a microemulsion method,modi ?ed and functionalized.The polymer coating has a crucial role,preventing the iron oxidation and allowing the functionalization of the particles.The nanoparticles were characterized and their magnetic properties studied.A photochemical study of the iron nanoparticles conjugated with a near-infrared ?uorescent dye,Alexa Fluor 660,con ?rmed that the ?uorescent dye is attached to the nanoparticles and retains its ?uorescent properties.The bioimages in red and near-infrared (NIR)region are favourable due to its minimum photodamage and deep tissue penetration.The nanoparticles obtained in this study present a good magnetic and ?uorescent properties being of particular importance for potential applications in bioscience.

?2015Elsevier B.V.All rights reserved.

1.Introduction

A broad range of nanosized inorganic particles,including magnetic nanoparticles and quantum dots,have been extensively investigated because of their unique optical,electrical and magnetic properties [1–5].Moreover,magnetic iron oxide colloids have been successfully used as magnetic resonance imaging (MRI)contrast agents and for cancer hyperthermia therapy [6–9].

The shape,size and size distribution of the magnetic materials are the key factors in determining their chemical and physical properties.Thus,the development of size and shape-controlled magnetic materials is crucial for their application [3,9].So far,the most widely used and studied magnetic material is iron oxide,in the form of magnetite (Fe 3O 4)and maghemite (g -Fe 2O 3).Elemental iron has a signi ?cantly higher magnetic moment than its oxides.Moreover,elemental iron is the most useful among the ferromagnetic elements;it has the highest magnetic moment at room temperature (218emu g à1in bulk),and a Curie temperature which is high enough for the majority of practical applications.However,obtaining Fe nanoparticles,relatively free of oxide (usually Fe 3O 4),is still a challenge,to a large extent,not overcome [10–13].

Besides the properties of the metallic core,the coating of the nanoparticles could determinate or improve the uses of this kind of materials.For example,functionalized magnetic nanoparticles have been employed for site-speci ?c drug delivery [14]or treatment waterwaste [15,16].The variety of potential coating materials is continuously increasing with the development of new polymeric materials.However,polyethylene glycol (PEG)could be considered one of the most suitable polymer coatings for nanoparticles designed to be used in biomedicine.PEG is a water-soluble polymer with a low toxicity and antibiofouling properties that make it an appropriate candidate for several bioscience related applications [17,18].PEG chains attached to a nanoparticle surface exhibit a rapid chain motion,this could contribute to the good physiological properties of the PEGylated nanoparticles [19]for imagining and therapy application.Also,successful studies haven been devoted to PEG-PLA coated nano-particles for drug delivery [20,21].PEG grafted onto the surface of nanoparticles provides steric stabilization that competes with the destabilizing effects of Van der Waals and magnetic attraction energies.Thus,there is a growing demand for improved methods for the synthesis and characterization of polyethylene glycol (PEG)derivatives [22–25].Especially,polyethylene glycols (PEGs)of long polymeric chains have found signi ?cant applications in the structure stabilization [26–28].

Finally,the polymeric coatings of the nanoparticles could be conjugated with antibodies or ?uorescent dyes adding different

*Corresponding author.

E-mail address:leire.ruiz@ehu.eus (L.Ruiz-Rubio).

https://www.360docs.net/doc/fa5459080.html,/10.1016/j.jphotochem.2015.09.0041010-6030/?2015Elsevier B.V.All rights reserved.

Journal of Photochemistry and Photobiology A:Chemistry 315(2016)1–7

Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A:

Chemistry

j o u rn a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j p h o t o c h e

m

properties to the system[29–31].That is,?uorescent-magnetic nanoparticles could be designed as an all-in-one diagnostic and therapeutic tool,able to visualize and simultaneously treat various diseases.

Fluorescence imaging is one of the most powerful techniques for monitoring biomolecules in living https://www.360docs.net/doc/fa5459080.html,pared with ?uorescent imaging in the visible region,biological imaging in red and near-infrared(NIR)region is favourable due to its minimum photodamage,deep tissue penetration,and minimum background auto?uorescence caused by biomolecules in living systems. Therefore,chromophores with emission in red or near-infrared region have been paid increasing attention in recent years[32,33].

However,there is a speci?c dif?culty in the preparation of ?uorescent magnetic nanoparticles due to the risk of quenching of the?uorophore on the particle surface by the magnetic core.This problem could be solved by coating the magnetic core with a stable isolating shell prior to the introduction of the?uorescent molecule or by attaching an appropriate spacer to the?uorophore.Most ?uorescent magnetic nanoparticles thus have a core-shell struc-ture.

Several studies have been devoted to develop iron oxide nanoparticles conjugated with?uorescent dyes,in order to obtain dual-responsive nanoparticles,with magnetic and?uorescent response[31].Often,the methods are time consuming due to the many synthetic steps or the fact that gold or silica precoating is required to protect the iron oxide nanoparticles previous to their functionalization[34–36].Also,there is a signi?cant lack on studies about iron nanoparticles functionalized with?uorophores [37].The aim of this work is to synthesize iron nanoparticles coated with a PEG-derivative and functionalized with a?uorescent dye.The iron core of the nanoparticles will provide higher magnetization saturation than iron oxides,the PEG not only protects the metallic core but also adds interesting properties to biologically related applications.The selected?uorescent dye, imaging in red and near-infrared,is highly adequate for an application in medicine owing to its low photodamage.So,the obtained nanoparticles could be highly promising materials for combined MR/Optical imaging applications.

2.Materials and methods

2.1.Chemicals

All chemicals were reagent grade and used without puri?cation. Ferrous chloride tetrahydrate(FeCl2á4H2O),sodium borohydride (NaBH4)and cyclohexan solvent were purchased from Sigma–Aldrich.Methanol and chloroform were purchased from Panreac and Lab-Scan,respectively.Polyethylene glycol(PEG)of1000g molà1molecular weight and methoxy polyethylene glycol(mPEG) of2000g molà1molecular weight were obtained from Sigma–Aldrich.Deionized Millipore Milli-Q water was used in all experiments.Alexa Fluor1660Protein Labeling Kit was purchased from Invitrogen.

2.2.Synthesis of iron nanoparticles

The preparation of PEG-stabilized nanoscale zero-valent iron nanoparticles was carried out via a controlled microemulsion method.The microemulsion synthetic methodology makes use of a biphasic heterogeneous solution of water-in-oil in which iron precursors are stirred.Water droplets are used as nucleation sites for the formation of nanoparticles,often in the presence of surfactant molecules dispersed in the oil,essentially forming micelles.

The reactions were carried out at room temperature using a single micellar system(sample FePEG-04)and two micellar systems(sample FePEG-02).The procedure followed in the?rst

case is described here.

A surfactant solution prepared by dissolving31.5g of polyeth-

ylene glycol in105mL of cyclohexane was maintained under

stirring and degassed for10min under N2atmosphere.Next,6mL

of0.33M FeCl2á4H2O were added to the surfactant solution,stirred and degassed for10min.Metal particles were formed inside the

reverse micelles via reduction of the metal salt using an excess of

NaBH4(6mL, 1.76M).After a few minutes,the reaction was

quenched by adding50mL of chloroform and50mL of methanol.

The black precipitate was recovered with a permanent magnet,

washed several times with methanol and dried under vacuum.

The same procedure was carried out in the synthesis performed

by two micellar systems with the only difference that the reducing

agent(NaBH4),was added in aqueous solution instead of in solid

form.This solution,when added to?ask reaction,will result the

second micellar system.De?nitely,the method involves mixing

two microemulsions:one containing the metal salt and the other

the reducing agent;due to collision and coalescence of the droplets

the reactants are brought into contact and react to form the

nanoparticles.

Polyethylene glycol methyl ether(mPEG)shows greater

versatility in functionalization,which increases the potential

applications of nanoparticles.Speci?cally,this will be the

derivative chosen to functionalize nanoparticles.The syntheses

with this surfactant were carried out at room temperature using a

single-micellar system,0.40g of iron salt,0.20g of the reducing

agent,105cm3of cyclohexane and6.0g of water.The concentration

of surfactant in this system was0.095M.

2.3.Functionalization of nanoparticles and labelling with?uorescent

dye

The incorporation of the?uorescent molecule to the nano-

particles consists of several steps.Firstly,functionalized nano-

particles are synthesized and then the?uorophore is anchored.

After that the labelled nanoparticles must be puri?ed to take out

the excess dye by size-exclusion chromatography.

2.3.1.Modi?cation of mPEG

Polyethylene glycol methyl ether(mPEG)of molecular weight

2000g molà1was?rstly treated to obtain the aldehyde-derivative

by oxidation of the hydroxyl end groups by dimethylsulfoxide

(DMSO)and acetic anhydride at room temperature.Then the

m-PEG-amine was obtained by the method described by Harris

et al.[38],via reduction of the aldehyde groups using sodium

cyanoborohydride in methanol at room temperature.

2.3.2.Synthesis of nanoparticles with mPEG-NH2and PEG

The synthesis of nanoparticles was performed by the method

previously described for one micellar system.Owing to the small

amount of material?uorescent necessary,the appropriate amount

of mPEG-NH2was used,and the rest was PEG surfactant,as already

shown,to provide adequate protection to the nanoparticles.

The surfactant consisted of a mixture of7.5g of PEG and217mg

of mPEG-NH2,amounts required to have a total surfactant

concentration of0.30M.

https://www.360docs.net/doc/fa5459080.html,belling of nanoparticles

The interaction of metal nanoparticles with?uorophores near

its surface affects the intensity of their emission being critical the

distance between the?uorophore and the surface of the

nanoparticle so that the?uorescence is quenched when the

distance is too short.For this study Alexa Fluor660was used.This

is a succinimidyl ester of Alexa Fluor which exhibits bright ?uorescence and high photostability characteristics allowing us to

2N.Pérez et al./Journal of Photochemistry and Photobiology A:Chemistry315(2016)1–7

capture images that were previously unattainable with conven-tional ?uorophores.Moreover it provides an ef ?cient and convenient way to selectively link to primary amines.On the other hand,its absorption and ?uorescence bands are far from those of the nanoparticles,so that the spectral overlapping is negligible.

The PEGylated nanoparticles were ?uorescently labelled by reaction with Alexa Fluor 660carboxylic acid succinimidyl ester which formed a chemical bond with the NH 2group of mPEG-NH 2.For that,the procedure established by Invitrogen [39]was followed.Brie ?y,a solution of sodium bicarbonate was added to the nanoparticles suspension in order to reach a pH between 7,5and 8,5since succinimidyl esters react ef ?ciently at this pH range.The reactive dye was added to the solution and the reaction mixture was stirred for 1h at room temperature.

Separation of the labelled nanoparticles from dye which has remained unreacted was carried out using a puri ?cation column containing the Bio-Rad BioGel P30resin.

2.4.Characterization of nanoparticles

The crystallite phase of the coated nanoparticles was identi ?ed by recording X-ray diffraction patterns (XRD)using a Bragg –Brentano u /2u Philips diffractometer.

Size and shape of nanoparticles were studied by transmission electron microscopy (TEM).Measurements were carried out using a Philips CM 200equipment operating at an accelerating voltage of 200KV.For this,a drop of dilute methanol solution of the nanoparticles was placed onto a copper grid coated with carbon ?lm with a Formvar membrane and allowed to air dry before being inserted into the microscope.

Magnetic properties were studied with a vibrating sample magnetometer (VSM).

57

Fe M?ssbauer spectroscopy measurements were carried out at room temperature (RT)in transmission geometry using a conventional spectrometer with a 57Co-Rh source.Reported isomer shift (d )and internal magnetic hyper ?ne ?eld (BHF)values are relative to metallic Fe at room temperature.

The UV –vis absorption spectra were recorded on a Varian double beam spectrophotometer (Cary 4E)in transmittance mode,in the region of 200–900nm.

The ?uorescence spectra were performed on a SPEX ?uorimeter (Fluorolog 3-22).The emission spectra were recorded in the 250–800nm range,by exciting at different wavelengths,depend-ing on the sample.

Fluorescence single-particle measurements were performed in a time-resolved ?uorescence confocal microscope (model Micro

Time 200,PicoQuant).Fluorescence lifetime images (FLIM)are processed with ShymPhotime software (Picoquant)by sorting all photons of one pixel into a histogram and ?tted to an exponential decay function to extract lifetime information;the procedure was repeated for every pixel in the image.A 640nm pulsed laser diode,with 70ps pulses was used as excitation source.Spectra were recorded by directing the emission beam to an exit port,where a spectrograph (model Shamrock 300mm)coupled to a CCD camera (Newton EMCCD 1600?200,Andor)were mounted.

3.Results and discussion

3.1.Spectroscopic and crystallographic characterization

Polyethylene glycol and polyethylene glycol methyl ether coated iron nanoparticles were characterized by XRD measure-ments as shown in Fig.1.The spectrum of PEG coated samples obtained by one or two micellar systems (Fig.1a)shows three characteristic broad peaks at 2u =44.81 ,65.07 and 82.49 ,which correspond to the (110),(200),and (211)families of planes of the bcc lattice reported for the a -Fe phase.The dimension of the crystallites,D hkl ,was estimated by Scherrer equation in 27.8nm.The nanoparticles obtained with mPEG as surfactant present a diffractogram with a peak of high intensity at 2u =45 ,corre-sponding to the bcc lattice (Fig.1b).This kind of diffractogram is characteristic of samples with low crystallinity and very polydis-perse sizes.

From TEM images and histograms (Fig.2),it can be concluded that each Fe/PEG unit consists in a spherical Fe core with an average size of 3.8nm and its own polymeric coating of about 6nm.According to XRD results,the FemPEG-01sample was very polydisperse and it was very dif ?cult to obtain a mean diameter.In general,the size of the nanoparticles was between 10and 20nm.

The values obtained are similar to those obtained when using nonylphenypentaethoxylated (NP5)[40]as surfactant whose value was around 10nm (Fe core 7.5nm and polymeric shell 2.8nm).PEG provides a thicker coating shell than NP5,probably due to the different molecular weight of both surfactants.

3.2.Magnetic properties

Magnetization vs applied ?eld hysteresis loops were measured using VSM to assess the magnetic properties of the synthesized nanoparticles.The saturation magnetization values were normal-ized to the mass of nanoparticles to yield the speci ?c magnetiza-tion,M s (emu g à1

).

Fig.1.X-ray diffractograms of the synthesized iron nanoparticles:(a)Polyethylenglycol coated samples and (b)polyethylene glycol methyl ether coated sample.

N.Pérez et al./Journal of Photochemistry and Photobiology A:Chemistry 315(2016)1–7

3

Fig.3shows the magnetic hysteresis loops of the samples at room temperature.The saturation magnetization of FePEG nano-particles is shown in Table 1.The saturation magnetization arises from both the iron core (218emu g à1),and the iron oxide shell (for Fe 3O 480–92emu g à1),based on the relative weight percentage of iron,iron oxide and non-magnetic coatings on the particle surface.For particles having a similar shell thickness,the weight ratio of the iron core to the iron oxide shell is greater for large particles than for small particles.All the samples have coercitivity less than 15mT and a remanence less than 25A m 2kg à1.This suggested that the particles could aggregate after the removal of the external ?eld due to the remaining magnetization.

57

Fe M?ssbauer spectroscopy measurements were carried out for the FePEG-04sample due to it has the best magnetic

properties

Fig.2.Micrographs of (a)FePEG-02,(b)FePEG-04and (c)FemPEG-01

samples.

Fig.3.Magnetization curves.

Table 1

Saturation magnetization (Ms),coercitive ?eld (Hc)and remanent magnetization.

Muestra

Ms (A m 2kg à1)

Hc (mT)

Mr (A m 2kg à1)

FePEG-0211615.319.9FePEG-0413513.221.3FemPEG-01

108

16.8

19.2

Fig.4.RT M?ssbauer spectrum for FePEG-04sample.

4

N.Pérez et al./Journal of Photochemistry and Photobiology A:Chemistry 315(2016)1–7

of the studied samples(Fig.4).The RT M?ssbauer spectrum qualitatively consist in a sextet(62%of the total area),attributed to bcc Fe(BHF=32.89T and d=à0.106mm sà1)coupled to a doublet corresponding to Fe2+or Fe3+.The appearance of both signals would indicate the occurrence of an oxidation process leading to the formation of magnetite(Fe3O4).Any other ordered phase is not observed since more sextets were not found.The iron oxides present in these samples are not magnetically ordered due to the absence of further sextets.This was con?rmed by the XPS(Apendix A,Fig.S5)where the peaks at710.30,718.98(small peak)and 723.32eV represent the binding energies of Fe(2p3/2)shake-up satellite2p3/2and2p1/2,respectively.In addition,a small shoulder at705,87eV suggest the peak of2p3/2of zero-valent iron[41].

All the studied systems present a high reproducibility as could be con?rm in the supporting information(Supporting information (Appendix A))in which the obtained X-ray difratograms and magnetization curves are shown.

3.3.Fluorescent measurements

In this section the photophysical study of the nanoparticles

conjugated with the?uorescent dye is described.Fig.5shows the height-normalized absorption spectrum of the Alexa Fluor1 660and the labelled sample.As can be seen,the absorption spectra are almost identical and show the principal absorption band centred at668nm,indicating the presence of the dye in the nanoparticles.Furthermore,a weak band in the UV region of the spectrum,around250nm,could include iron oxides such as hematite,magnetite or maghemite[42].

Fig.6shows the height-normalized?uorescence spectra of the fraction with the highest content of nanoparticles with dye in suspension at two excitation wavelengths,250and620nm.On the one hand,when the excitation of the sample takes place directly to the absorption band of the dye(620nm,see Fig.5)the emission band is obtained at696nm,emission band typical of Alexa Fluor 6601dye,indicating its presence in the particles.In order to compare the?uorescence ef?ciency of Alexa660dye in solution and anchored at the nanoparticles,the ratio between the ?uorescence intensity and the absorbance of the sample at the excitation wavelength is analysed(Fig.S6).In this way and assuming a quantum yield of around0.37for Alexa660in aqueous solution[36],an estimated quantum yield of around0.13is obtained for the dye at the nanoparticles in suspension On the other hand,when the excitation wavelength was?xed at250nm (absorption attributed mainly to the iron oxides present in the nanoparticles)the obtained band at390nm can be attributed to the typical emission of nanoparticles of iron oxide present in the sample.In addition,the dye emission band is also present.

Although the absorption and?uorescence spectroscopic

techniques indicate the presence of?uorescence dye in the

suspension of nanoparticles,to con?rm the anchorage to the

nanoparticles surface confocal?uorescence time resolved micros-

copy measurements were carried out.This technique allows the

study of the?uorescent properties of the dye anchored onto single

nanoparticles[43].In this way it can be obtained information

about lifetimes of a single particle(Fig.7),and also,through a CCD

camera,a spectrum of the?uorescence in single particle can be

obtained(Fig.8).

So,by positioning the excitation laser(640nm)in the centre of

each nanoparticle,the?uorescence spectrum of the anchored dye

nanoparticle is obtained(Fig.8).In addition,the?gure includes the

spectrum of dye in solution measured at the same conditions.The

maximum of?uorescence are696nm for dye and687nm for the

dye anchored to nanoparticles.The displacement of the maximum

towards lower wavelength,is a typical effect of dyes adsorbed in

surfaces,as the case of the iron nanoparticles.

Fig.9shows the?uorescence decay curves obtained by confocal

microscopy for the dye in solution and labelled dye in each

nanoparticle and respective histograms.

The half lifetime of free dye presents monoexponencial

behaviour,with a value of?uorescence life time t=1.8ns,while the conjugated nanoparticles presents a biexponencial behaviour

with:life time t1%0.1–0.5ns y t2=1.5–1.7ns(Fig.9).These values have been obtained after the analysis of,at least,10individual

particles.

The short half lifetime,around0.1–0.6ns can be attributed to

the light scattered by the nanoparticle itself and the obtained long

half life time(t2=1.5–1.7)is attributed to anchored dye to nanoparticle surface.

A

b

s

o

r

b

a

n

c

e

Wavelength (nm)

Fig.5.Height-notmalized absorption spectra of Alexa Fluor660dye and iron

labeled nanoparticles in aqueous buffer suspension.

F

l

u

o

r

e

s

c

e

n

c

e

I

n

t

e

n

s

i

t

y

(

a

.

u

.

)

Wavelength (nm)

Fig.6.Height-normalized?uorescence spectra of iron nanoparticles in aqueous

buffer suspension at excitation wavelengths of250and620nm.

Fig.7.Fluorescence microscopy image of single particles.

N.Pérez et al./Journal of Photochemistry and Photobiology A:Chemistry315(2016)1–75

The slight decrease of the long lifetime of anchored dye regarding the diluted suspension of the nanoparticle can be attributed to the dye quenching due to the presence of iron oxide.

Confocal ?uorescence microscopy con ?rmed that the dye is labelled onto nanoparticles and maintains its ?uorescent proper-ties.Therefore,the trajectory of these nanoparticles may be monitored by ?uorescence microscopy under red excitation in vitro or in vivo experiments.

4.Conclusions

In this study,iron nanoparticles coated with PEG and mPEG were prepared and characterized.The nanoparticles present high magnetic susceptibility and sizes between 10and 15nm.It is noteworthy that the synthesized nanoparticles are mainly zero-valent iron.

The FemPEG nanoparticles were successfully functionalized and conjugated with a ?uorescent dye.Thus,amine-reactive N -hydroxysuccinimidyl ester of Alexa Fluor 660dye was conju-gated to the nanoparticle surface.This dye produces bright far red ?uorescence emission with a peak at 690nm under red excitation light (in the clinic window).

Studies of confocal ?uorescence microscopy con ?rmed that the ?uorescent dye is attached to the nanoparticles and retains its

?uorescent properties which could make possible to monitor the course of in vitro or in vivo samples using ?uorescent microscopy red under excitation.

The magnetic properties of synthesized nanoparticles added to its ?uorescent response result in a suitable material for be detected by both magnetic and ?uorescent techniques for combined MR/Optical imaging applications.

Acknowledgements

Authors thank the Basque Country Government for ?nancial support (ACTIMAT project,ETORTEK programme IE10-272)(Ayu-das para apoyar las actividades de los grupos de investigación del sistema universitario vasco,IT718-13and IT339-10).Technical and human support provided by SGIKER (UPV/EHU,MICINN,GV/EJ,ERDF and ESF)is gratefully acknowledged.V.M.M.acknowledges the Ramon y Cajal contract with the Ministerio de Economía y Competitividad,(RYC-2011-09505).

Appendix A.Supplementary data

Supplementary data associated with this article can be found,in the online version,at https://www.360docs.net/doc/fa5459080.html,/10.1016/j.jphotochem.2015.09.004.

References

[1]I.L.Medintz,H.T.Uyeda,E.R.Goldman,H.Mattoussi,Quantum dot

bioconjugates for imaging,labelling and sensing,Nat.Mater.4(2005)435–446.https://www.360docs.net/doc/fa5459080.html,/10.1038/nmat1390.

[2]X.Michalet,F.F.Pinaud,L.A.Bentolila,J.M.Tsay,S.Doose,J.J.Li,et al.,Quantum

dots for live cells,in vivo imaging,and diagnostics,Science 307(80)(2005)538–544,doi:https://www.360docs.net/doc/fa5459080.html,/10.1126/science.1104274.

[3]K.L.Kelly,E.Coronado,L.L.Zhao,G.C.Schatz,The optical propierties of metal

nanoparticles:the in ?uence of size,shape,and dielectric environment,J.Phys.Chem.B 107(2003)668–677,doi:https://www.360docs.net/doc/fa5459080.html,/10.1021/jp026731y .

[4]K.Woo,J.Hong,S.Choi,H.-W.Lee,J.Ahn,C.S.Kim,et al.,Easy synthesis and

magnetic properties of iron oxide nanoparticles,Chem.Mater.16(2004)2814–2818,doi:https://www.360docs.net/doc/fa5459080.html,/10.1021/cm049552x .

[5]W.S.Seo,H.H.Jo,K.Lee,B.Kim,S.J.Oh,J.T.Park,Size-dependent magnetic

properties of colloidal Mn3O4and MnO nanoparticles,Angew.Chem.Int.Ed.43(2004)1115–1117,doi:https://www.360docs.net/doc/fa5459080.html,/10.1002/anie.200352400.

[6]M.Colombo,S.Carregal-Romero,M.F.Casula,L.Gutierrez,M.P.Morales,I.B.

Bohm,et al.,Biological applications of magnetic nanoparticles,Chem.Soc.Rev.41(2012)4306–4334,doi:https://www.360docs.net/doc/fa5459080.html,/10.1039/c2cs15337h .

[7]S.Cheong,P.Ferguson,K.W.Feindel,I.F.Hermans,P.T.Callaghan,C.Meyer,

et al.,Simple Synthesis and functionalization of iron nanoparticles for

magnetic resonance imaging,Angew.Chem.Int.Ed.50(2011)4206–4209,doi:https://www.360docs.net/doc/fa5459080.html,/10.1002/anie.201100562.

[8]Q.Pankhurst,N.Thanh,S.Jones,J.Dobson,Progress in applications of magnetic

nanoparticles in biomedicine,J.Phys.D.Appl.Phys.42(2009),doi:https://www.360docs.net/doc/fa5459080.html,/10.1088/0022-3727/42/22/224001.

[9]A.B.Salunkhe,V.M.Khot,S.H.Pawar,Magnetic hyperthermia with magnetic

nanoparticles:a status review,Curr.Top.Med.Chem.14(2014)572–594,doi:https://www.360docs.net/doc/fa5459080.html,/10.2174/1568026614666140118203550.

[10]S.Peng,C.Wang,J.Xie,S.Sun,Synthesis and stabilization of monodisperse Fe

nanoparticles,J.Am.Chem.Soc.128(2006)10676–10677,doi:https://www.360docs.net/doc/fa5459080.html,/10.1021/ja063969h .

[11]Z.Wang,X.Li,M.Gao,X.Zeng,One-step preparation of amorphous iron

nanoparticles by laser ablation,Powder Technol.215–216(2012)147–150,doi:https://www.360docs.net/doc/fa5459080.html,/10.1016/j.powtec.2011.09.039.

[12]D.Farrell,S.Majetich,J.Wilcoxon,Preparation and characterization of

monodisperse Fe nanoparticles,J.Phys.Chem.B.107(2003)11022–11030,doi:https://www.360docs.net/doc/fa5459080.html,/10.1021/jp0351831.

[13]C.S.Tiwary,S.Kashyap,K.Biswas,K.Chattopadhyay,Synthesis of pure iron

magnetic nanoparticles in large quantity,J.Phys.D.Appl.Phys.46(2013)385001,doi:https://www.360docs.net/doc/fa5459080.html,/10.1088/0022-3727/46/38/385001.

[14]O.Veiseh,J.Gunn,M.Zhang,Design and fabrication of magnetic nanoparticles

for targeted drug delivery and imaging,Adv.Drug Deliv.Rev.62(2011)284–304,doi:https://www.360docs.net/doc/fa5459080.html,/10.1016/j.addr.2009.11.002Design .

[15]J.E.Macdonald,J.a Kelly,J.G.C.Veinot,Iron/iron oxide nanoparticle

sequestration of catalytic metal impurities from aqueous media and organic reaction products,Langmuir 23(2007)9543–9545,doi:https://www.360docs.net/doc/fa5459080.html,/10.1021/la7011827.

[16]I.San Román,M.L.Alonso,L.Bartolomé,E.G.Galdames,M.O.oiti,et al.,

Relevance study of bare and coated zero valent iron nanoparticles for lindane degradation from its by-product monitorization,Chemosphere 93(2013)1324–1332,doi:https://www.360docs.net/doc/fa5459080.html,/10.1016/j.chemosphere.2013.07.050

.

Fig.8.Fluorescence spectrum of a single particle (red curve)and a diluted dye solution (black curve)registered in time-resolved ?uorescence confocal microscope at excitation wavelength of 640nm.(For interpretation of the references to colour in this ?gure legend,the reader is referred to the web version of this

article.)

Fig.9.Fluorescence decay curves of Alexa Fluor 660and two different regions.

6

N.Pérez et al./Journal of Photochemistry and Photobiology A:Chemistry 315(2016)1–7

[17]I.Banerjee,R.C.Pangule,R.S.Kane,Antifouling coatings:recent developments

in the design of surfaces that prevent fouling by proteins,bacteria,and marine organisms,Adv.Mater.23(2011)690–718,doi:https://www.360docs.net/doc/fa5459080.html,/10.1002/

adma.201001215.

[18]S.Chen,L.Li,C.Zhao,J.Zheng,Surface hydration:principles and applications

toward low-fouling/nonfouling biomaterials,Polymer(Guildf.)51(2010)

5283–5293,doi:https://www.360docs.net/doc/fa5459080.html,/10.1016/j.polymer.2010.08.022.

[19]J.Jokerst V,T.Lobovkina,R.N.Zare,S.S.Gambhir,Nanoparticle PEGylation for

imaging and therapy,Nanomedicine(Lond.)6(2011)715–728,doi:http://dx.

https://www.360docs.net/doc/fa5459080.html,/10.2217/nnm.11.19.

[20]Q.Wang,Y.Bao,J.Ahire,Y.Chao,Co-encapsulation of biodegradable

nanoparticles with silicon quantum dots and quercetin for monitored delivery, Adv.Healthcare Mater.2(2013)459–466,doi:https://www.360docs.net/doc/fa5459080.html,/10.1002/

adhm.201200178.

[21]M.Tob?’o,A.Sánchez,A.Vila,I.Soriano,C.Evora,J.Vila-Jato,et al.,The role of

PEG on the stability in digestive?uids and in vivo fate of PEG-PLA

nanoparticles following oral administration,Colloids Surf.B Biointerfaces18 (2000)315–323,doi:https://www.360docs.net/doc/fa5459080.html,/10.1016/s0927-7765(99)00157-5. [22]A.Ruiz,G.Salas,M.Calero,Y.Hernández,A.Villanueva,F.Herranz,et al.,Short-

chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents,Acta Biomater.9(2013)6421–6430,doi:https://www.360docs.net/doc/fa5459080.html,/

10.1016/j.actbio.2012.12.032.

[23]A.Mukhopadhyay,N.Joshi,K.Chattopadhyay,G.De,A facile synthesis of PEG-

coated magnetite(Fe3O4)nanoparticles and their prevention of the reduction of cytochrome C,ACS Appl.Mater.Interfaces4(2011)142–149,doi:http://dx.

https://www.360docs.net/doc/fa5459080.html,/10.1021/am201166m.

[24]A.S.Karakoti,S.Das,S.Thevuthasan,S.Seal,PEGylated inorganic

nanoparticles,Angew.Chem.Int.Ed.50(2011)1980–1994,doi:http://dx.doi.

org/10.1002/anie.201002969.

[25]H.Otsuka,Y.Nagasaki,K.Kataoka,PEGylated nanoparticles for biological and

pharmaceutical applications,Adv.Drug Deliv.Rev.64(2012)246–255,doi: https://www.360docs.net/doc/fa5459080.html,/10.1016/j.addr.2012.09.022.

[26]K.G.Neoh,E.T.Kang,Functionalization of inorganic nanoparticles with

polymers for stealth biomedical applications,Polym.Chem.2(2011)747,doi: https://www.360docs.net/doc/fa5459080.html,/10.1039/c0py00266f.

[27]S.Mao,M.Neu,O.Germershaus,O.Merkel,J.Sitterberg,U.Bakowsky,et al.,

In?uence of Polyethylene Glycol Chain Length on the Physicochemical and Biological Properties of Poly(ethylene imine)-graft-Poly(ethylene glycol) Block Copolymer/SiRNA Polyplexes,(2006).

[28]L.Zhou,J.Yuan,Y.Wei,Core-shell structural iron oxide hybrid nanoparticles:

from controlled synthesis to biomedical applications,J.Mater.Chem.21(2011) 2823,doi:https://www.360docs.net/doc/fa5459080.html,/10.1039/c0jm02172e.

[29]H.Xu,Z.P.Aguilar,L.Yang,M.Kuang,H.Duan,Y.Xiong,et al.,Antibody

conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood,Biomaterials32(2011)9758–9765,doi:https://www.360docs.net/doc/fa5459080.html,/

10.1016/j.biomaterials.2011.08.076.

[30]K.Cheng,D.Shen,M.T.Hensley,R.Middleton,B.Sun,W.Liu,et al.,Magnetic

antibody-linked nanomatchmakers for therapeutic cell targeting,Nat.

Commun.5(2014)4880,doi:https://www.360docs.net/doc/fa5459080.html,/10.1038/ncomms5880.[31]N.Chekina,D.Horák,P.Jendelová,M.Trchová,M.J.Bene?,M.Hruby,et al.,

Fluorescent magnetic nanoparticles for biomedical applications,J.Mater.

Chem.21(2011)7630,doi:https://www.360docs.net/doc/fa5459080.html,/10.1039/c1jm10621j.

[32]X.Xiong,F.Song,G.Chen,W.Sun,J.Wang,P.Gao,et al.,Construction of long-

wavelength?uorescein analogues and their application as?uorescent probes, Chem.A Eur.J.19(2013)6538–6545,doi:https://www.360docs.net/doc/fa5459080.html,/10.1002/

chem.201300418.

[33]L.Yuan,W.Lin,S.Zhao,W.Gao,B.Chen,L.He,et al.,A unique approach to

development of near-infrared?uorescent sensors for in vivo imaging,J.Am.

Chem.Soc.134(2012)13510–13523,doi:https://www.360docs.net/doc/fa5459080.html,/10.1021/ja305802v.

[34]S.K.Yen,D.Ja n czewski,https://www.360docs.net/doc/fa5459080.html,kshmi,S.Bin Dolmanan,S.Tripathy,V.H.B.Ho,

et al.,Design and synthesis of polymer-functionalized NIR?uorescent dyes-magnetic nanoparticles for bioimaging,ACS Nano7(2013)6796–6805,doi: https://www.360docs.net/doc/fa5459080.html,/10.1021/nn401734t.

[35]L.Josephson,M.F.Kircher,U.Mahmood,Y.Tang,R.Weissleder,Near-infrared

?uorescent nanoparticles as combined MR/optical imaging probes,

Bioconjugate Chem.13(2002)554–560,doi:https://www.360docs.net/doc/fa5459080.html,/10.1021/

bc015555d.

[36]J.Li,L.Zheng,H.Cai,W.Sun,M.Shen,G.Zhang,et al.,Facile one-pot synthesis

of Fe3O4@Au composite nanoparticles for dual-mode MR/CT imaging

applications,ACS Appl.Mater.Interfaces5(2013)10357–10366,doi:http://dx.

https://www.360docs.net/doc/fa5459080.html,/10.1021/am4034526.

[37]W.He,L.Cheng,L.Zhang,X.Jiang,Z.Liu,Z.Cheng,et al.,Bifunctional

nanoparticles with magnetism and NIR?uorescence:controlled synthesis from combination of AGET ATRP and click reaction,Nanotechnology25(2014) 045602,doi:https://www.360docs.net/doc/fa5459080.html,/10.1088/0957-4484/25/4/045602.

[38]J.M.Harris,E.C.Struck,M.G.Case,M.S.Paley,M.Yalpani,J.M.Van Alstine,et al.,

Synthesis and characterization of poly(ethylene glycol)derivatives,J.Polym.

Sci.Polym.Chem.Ed.22(1984)341–352,doi:https://www.360docs.net/doc/fa5459080.html,/10.1002/

pol.1984.170220207.

[39]1–4.Molecular Probes Invitrogen detection technologies,Alexa

Fluor1660Protein Labeling Kit,No Title,(n.d.).

[40]D.Ortega,N.Pérez,J.L.Vilas,J.S.Garitaonandia,K.Suzuki,J.R.Marín,et al.,

Nonylphenol polyethoxylate coated body-center-cubic iron nanocrystals for ferro?uids with technical applications,J.Appl.Phys.113(2013)2013–2016, doi:https://www.360docs.net/doc/fa5459080.html,/10.1063/1.4794880.

[41]Y.-P.Sun,X.Li,J.Cao,W.Zhang,H.P.Wang,Characterization of zero-valent iron

nanoparticles,Adv.Colloid Interface Sci.120(2006)47–56,doi:http://dx.doi.

org/10.1016/j.cis.2006.03.001.

[42]R.B.Cao,X.Q.Chen,W.H.Shen,Z.Long,A facile route to synthesize nano-

hematite colloid,Mater.Lett.65(2011)3298–3300,doi:https://www.360docs.net/doc/fa5459080.html,/

10.1016/j.matlet.2011.03.006.

[43]M.B.J.Roeffaers,G.De Cremer,H.Uji-i,B.Muls,B.F.Sels,P.a Jacobs,et al.,

Single-molecule?uorescence spectroscopy in(bio)catalysis,Proc.Natl.Acad.

Sci.U.S.A.104(2007)12603–12609,doi:https://www.360docs.net/doc/fa5459080.html,/10.1073/

pnas.0610755104.

N.Pérez et al./Journal of Photochemistry and Photobiology A:Chemistry315(2016)1–77

广东省机场管理集团有限公司揭阳潮汕机场公司-招投标数据分析报告

招标投标企业报告 广东省机场管理集团有限公司揭阳潮汕机场公 司

本报告于 2019年11月30日 生成 您所看到的报告内容为截至该时间点该公司的数据快照 目录 1. 基本信息:工商信息 2. 招投标情况:招标数量、招标情况、招标行业分布、投标企业排名、中标企业 排名 3. 股东及出资信息 4. 风险信息:经营异常、股权出资、动产抵押、税务信息、行政处罚 5. 企业信息:工程人员、企业资质 * 敬启者:本报告内容是中国比地招标网接收您的委托,查询公开信息所得结果。中国比地招标网不对该查询结果的全面、准确、真实性负责。本报告应仅为您的决策提供参考。

一、基本信息 1. 工商信息 企业名称:广东省机场管理集团有限公司揭阳潮汕机场公司统一社会信用代码:91445200582918988R 工商注册号:445200000037474组织机构代码:582918988 法定代表人:郭大杰成立日期:2011-08-16 企业类型:/经营状态:在业 注册资本:/ 注册地址:广东省揭阳空港经济区登岗镇 营业期限:2011-08-16 至 / 营业范围:航空器起降服务;旅客过港服务;安全检查服务;应急求援服务;航空地面服务;客货销售代理;停车场、仓储、物流配送;货邮处理、园林绿化、保洁服务;制作、发布代理务类广告;房地产开发、航空运输技术协作中介、航空信息咨询及航空运输业务有关的其他服务。 联系电话:*********** 二、招投标分析 2.1 招标数量 企业招标数: 个 (数据统计时间:2017年至报告生成时间)180

2.2 企业招标情况(近一年) 2019年05月14 企业近十二个月中,招标最多的月份为,该月份共有个招标项目。 仅展示最近10条招标项目 序号地区日期标题 1广东2019-11-26揭阳X射线 2广东2019-11-26揭阳X射线 3广东2019-11-25揭阳潮汕机场航站区临时应急停车场和晴雨连廊建设工程项目4广东2019-11-25揭阳潮汕机场航站区临时应急停车场和晴雨连廊建设工程5广东2019-11-20揭阳潮汕国际机场助航灯光保障、场务及鸟害防治项目 6广东2019-11-19揭阳潮汕国际机场助航灯光保障、场务及鸟害防治项目 7广东2019-11-19揭阳潮汕国际机场助航灯光保障、场务及鸟害防治项目 8广东2019-11-19广东省揭阳潮汕国际机场停车场管理服务项目 9广东2019-11-18揭阳潮汕国际机场停车场管理服务项目 10广东2019-11-14揭阳潮汕机场飞行区道面嵌缝料更新项目

压缩比与汽油标号

压缩比~~~~~~汽油标号~~~~~~垂直涡流稀薄燃烧(MVV) 高压缩比发动机用低号油的原因在我们日常为爱车选择加多少标号的燃油时总会有一种误解,认为高压缩比的发动机一定要加高标号的燃油,低压缩比就没必要加高标号燃油了,更有人会认为进口车或档次比较高的车就要加标号高的油,用车的价格来衡量加多少标号的燃油等等。 压缩比确实能作为判断发动机采用燃油标号的依据之一,按照过去的说法,压缩比在8以下的发动机可以加90号汽油,压缩比在9以下可以采用93号汽油,压缩比在9以上则应该采用97号汽油。而实际上,凭我们现在的经验会发现,这个数据与厂家给出的数据并不贴服,例如现在绝大部分的发动机压缩比都在9以上,但大多数厂家都是标称可以加93号汽油的,甚至许多压缩比达到10的发动机,也可以采用93号汽油。更为极端的例子,像东风标致的2.0发动机,压缩比高达11,仍然说可以采用93号汽油。而三菱的EVO,它的压缩比只有8.8,但厂家仍然要求必须使用97号以上的燃油。 到底是以压缩比的判断为准,还是以厂家推荐的数据为准呢?厂家推荐数据为何会与常规的压缩比判断相悖呢?实际上燃油标号的选择,除了压缩比以外,还有很多的影响因素,我们必须综合考虑才能确定最佳的燃油选择,而厂家显然对自己的发动机是最有发言权的,所有我们在这一点上应该严格按照厂家的要求来做。除了压缩比,还有那些因素会对燃油标号的选择产生影响呢? 我们现在市场上销售的汽油主要有90、93、97和98等标号,这些数字代表汽油的辛烷值,也就是汽油的抗爆性,即实际汽油抗爆性与标准汽油的抗爆性的比值。燃油标号越高的燃油,它的抗爆性就越好,反之,燃油标号低的燃油它的抗爆性就相对来说要差一些。那么汽车压缩比和燃油标号之间究竟有什么关系呢,通常情况下高标号的燃油它的抗爆性好,适合使用高压缩比的发动机,低标号的燃油适合低压缩比的发动机。

93号汽油与97号汽油的区别

93#和97#油的区别 目前市场上汽油有90、93、95、97等标号,这些数字代表汽油的辛烷值,也就是代表汽油的抗爆性,与汽油的清洁无关。所谓“高标号汽油更清洁”的纯属误导。按照发动机的压缩比或汽车使用说明书的要求加油,更科学、更经济,并能充分发挥发动机的效率。 汽车发动机在设计阶段,会根据压缩比设定所用燃油的标号。压缩比是发动机的一个非常重要的结构参数,它表示活塞在下止点压缩开始时的气体体积与活塞在上止点压缩终了时的气体体积之比。从动力性和经济性方面来说,压缩比应该越大越好。压缩比高,动力性好、热效率高,车辆加速性、最高车速等会相应提高。但是受汽缸材料性能以及汽油燃烧爆震的制约,汽油机的压缩比又不能太大。简单地说,高压缩比车使用高标号的燃油。燃油标号越高,油的燃烧速度就越慢,燃烧爆震就越低,发动机需要较高的压缩比;反之,低标号燃油的燃烧速度较快,燃烧爆震大,发动机压缩比较低 燃油的标号还涉及到发动机点火正时的问题。低标号汽油燃烧速度快,点火角度要滞后;高标号燃油燃烧速度慢,点火角度要提前。例如一台发动机按照说明书要求应加93号汽油,现在加了90号汽油,可能会造成发动机启动困难;加速时,发动机内有清脆的金属碰撞声音;长途行车后,关闭点火开关时发动机抖动。 选择汽油标号的主要依据是发动机的压缩比。盲目使用高标号汽油,不仅会在行驶中产生加速无力的现象,而且其高抗爆性的优势无法发挥出来,还会造成金钱的浪费。 油号的基本概念 93汽油与97汽油 一、基本概念: 1、压缩比: 汽车选择汽油标号的首要标准就是发动机的压缩比,也是当代汽车的核心节能指标。引擎的运行是由汽缸的“吸气——压缩——燃烧——排气——吸气”这样周而复始的运动所组成,活塞在行程的最远点和最近点时的汽缸体积之比就是压缩比。降低油耗的成本最低效果最好的方法就是提高发动机的压缩比。提高压缩比只是改变活塞行程,混合油气压缩得越厉害,它燃烧的反作用也越大,燃烧越充分。但压缩比不是轻易能动的,因为得有另一个指标配合,即汽油的抗爆性指标,亦称辛烷值,即汽油标号。

机场工程项目飞机维修区设计方案

机场工程项目飞机维修区设计方案

揭阳潮汕机场南航基地工程 飞机维修区 设计任务书

编制单位:汕头航空有限公司 编制时间:二〇〇八年六月二十三日 第一章项目概况及周边条件 一、项目名称:南航汕头公司揭阳潮汕机场基地工程 二、地理位置: (一)机场区位: 潮汕机场(登岗北)场址位于汕头、潮州和揭阳三市之间,揭阳市揭东县炮台镇以东登岗镇以北,枫江以南,虎岗山以北山脚。机场近期跑道中心点位于东经116度30分09.41秒北纬23度33分07.60秒。以机场位置点为坐标中心,到三市(汕头、揭阳、潮州)中心距离及方位分别为:汕头市26公里,方位角为131.2 °即东偏南41.2度;揭阳市18公里,方位角为271°即西偏北1 度;潮州市17.5公里,方位角为40.5 °即北偏东40.5度。 从当前的城市总体规划来看,机场的东侧是汕揭梅高速路,南侧则是登岗镇,在机场西侧、国道以西将建设一条城市东环路,机场附近建设登洪高速路选线未定,会依据机场选址调整,在这个区域内将包含机场近期、中期、远期及远景用地,不能转为其它用途。

图表 1机场区位 图表 2机场工作区区位 (二)南航汕头公司基地区位: 整个机场总体分为3大部分:飞行区、航站核心区和工作区。而南航汕头公司基地主要由三个区组成: 1、机坪区:位于机场飞行区以南,该区建设用地面积约160亩(不清晰),最远端距航站楼中轴线距离约1.5公里。 2、生产生活区:位于机场工作区以南,该区建设用地面积约11.7公顷(约176亩),最近端距航站楼中轴线距离约1.2公里。 3、一线生产办公区:机场工作区以北,地块建设用地面积约0.4公顷(约6.3亩),地块中心距航站楼中轴线距离约600米。 图表 3南航汕头公司区位 三、建设规模 9月26日国家发展和改革委员会以<关于新建广东潮汕民用机场项目可行性研究报告的批复>(发改交运[ ]101号)对潮汕民用机场项目进行批复,其中对南航基地工程主要建设内容批复如下:建设5机位停机坪4.6万平方米,维修基地1.68万平方米及其它配套生产生活设施等。(注:当前南航总部批复近期建5机位停机坪及总建筑规模为37400平方米基地)。 四、机场总规及工作区控制性详规 (一)机场总体规划

汽油辛烷值

汽油辛烷值......争论97,93,90汽油好坏 汽车用油主要成分是C5H12~C12H26之烃类混合物,当汽油蒸气在汽缸内燃烧时(活塞将汽油与空气混合压缩后,火星塞再点火燃烧),常因燃烧急速而发生引擎不正常燃爆现象,称为爆震(震爆) 。在燃烧过程中如果火焰传播速度或火焰波之波形发生突变,如引起燃烧室其它地方自动着火(非火星塞点火漫延),燃烧室内之压力突然增高此压力碰击四周机件而产生类如金属的敲击声,有如爆炸,故称为爆震(震爆)。汽油一旦辛烷值过低,将使引擎内产生连续震爆现象,造成机件伤害连续的震爆容易烧坏气门,活塞等机件。 爆震之原因: (1) 汽油辛烷值太低。(2)压缩比过高。(3)点火时间太早。(4)燃烧室局部过热。(5)混合汽温度或压力太高。(6)混合汽太稀。(7)预热。(8)汽缸内部积碳。(9)其他如冷却系或故障等。 减少爆震方法: (1) 提高汽油辛烷值。(2)减低压缩比。(3)校正点火正时。(4)降低进汽温度.(5) 减少燃烧室尾部混合汽量。(6)增加进汽涡流。(7)缩短火焰路程。 (8)保持冷却系作用良好. 辛烷值 爆震时大大减低引擎动力,实验显示,烃类的化学结构在震爆上有极大的影响。燃烧的抗震程度以辛烷值表示,辛烷值越高表示抗震能力愈高。其中燃烧正庚烷CH3(CH2)5CH3的震爆情形最严重,定义其辛烷值为0。异辛烷(2,2,4-三甲基戊烷) 的辛烷值定义为100。辛烷值可为负,也可以超过100。 当某种汽油之震爆性与90%异辛烷和10%正庚烷之混合物之震爆性相当时,其辛烷值定为90。如环戊烷之辛烷值为85,表示燃烧环戊烷时与燃烧85%异辛烷和15%正庚烷之混合物之震爆性相当。 此为无铅汽油标示来源,目前有辛烷值为92,95,98等级之无铅汽油,此类汽油含有高支链成分及更多芳香族成分之烃类,如苯,芳香烃,硫合物等。 例如95无铅汽油的抗震爆强度相当于标准油中含有百分之九十五的异辛烷及百分之五的正庚烷的抗震爆强度。

揭阳市人民政府办公室印发揭阳潮汕机场区域及周边营运秩序综合整

揭阳市人民政府办公室印发揭阳潮汕机场区域及周边营运秩 序综合整治工作方案的通知 【法规类别】航空运输 【发文字号】揭府办[2011]110号 【发布部门】揭阳市政府 【发布日期】2011.12.15 【实施日期】2011.12.15 【时效性】现行有效 【效力级别】XP10 揭阳市人民政府办公室印发揭阳潮汕机场区域及周边营运秩序综合整治工作方案的通知 (揭府办〔2011〕110号) 各县(市、区)人民政府(管委会),市府直属有关单位: 《揭阳潮汕机场区域及周边营运秩序综合整治工作方案》已经市人民政府同意,现印发给你们,请认真贯彻执行。执行中遇到问题,请径与市交通运输局联系。 二〇一一年十二月十五日揭阳潮汕机场区域及周边营运秩序综合整治工作方案

为确保揭阳潮汕机场区域及周边良好运营秩序,保障机场安全运营,营造整洁、优美、文明、有序的城市客运环境,提升揭阳城市形象,根据有关规定,结合我市实际,特制定本工作方案。 一、指导思想 以科学发展观为指导,按城市客运管理“高起点、高水平、高效益”工作要求,以改善城市客运环境,提高服务水平为重点,集中力量、明确时限,高标准、高质量地提升揭阳潮汕机场城市客运行业形象,为国内外来宾和广大市民创造整洁、优美、舒适的出行环境,迎接国内外嘉宾。 二、总体目标 开展揭阳潮汕机场区域及周边营运秩序综合整治,实现良好的运营秩序和服务质量,基本消除拉客、揽客、“黑的”非法营运及摆摊设点、沿路叫卖、强索强卖、流浪乞讨等行为以及各种非法中介活动,确保揭阳潮汕机场容貌清新、环境卫生干净、运营秩序井然。 三、整治内容 (一)擅自在机场候机楼、停车场及周边区域散发广告、宣传品,开展募捐,拍摄影视片,举办产品展销、促销,开展文娱、体育等影响机场运营秩序的活动。

由辛烷值来说说用什么标号燃油

由辛烷值来说说用什么标号燃油 汽油最初是煤油提炼的废弃品,后来被利用作为内燃机燃料并促进了汽车工业的发展。汽油是碳氢化合物,主要成分为五碳至十二碳烃类有机物。以前用蒸馏法提炼汽油时,汽油中一部分是链式分子结构,还有一部分是环式分子结构,链式分子结构的成分会早于环式分子结构的成分提前燃烧,而且是无规则。如果汽油在发动机活塞还没有达到上顶点、火花塞未及点火就压燃了,就形成爆震。爆震轻者影响发动机工作效率、增加油耗、发动机抖动增加,重者冲击气缸、损坏发动机。当出现明显爆震的时候会产生敲击声,俗称敲缸。为了抗爆震燃烧,即防止汽油在发动机汽缸中加压时不规则的提前燃烧,就要提高汽油的抗爆性。早期的汽油靠添加适量的四乙基铅来阻滞汽油受压提前燃烧,四乙基铅对人体有毒,污染环境,因此需要用无铅汽油替代含铅汽油。不同烷烃的抗爆情况不同,异辛烷抗爆性最高,正庚烷抗爆性最差,将这两种烃按不同体积比例混合,可配制成辛烷值由0到100的标准燃料。汽油辛烷值是汽油抗爆性的表示单位,在数值上等于在规定条件下与试样抗爆性相同时的标准燃料中所含异辛烷的体积百分数。在石油提炼技术改进后,采用催化裂解法,可以把链式分子合成辛烷,也可以把重分子裂解成较小的汽油分子并催化变成辛烷。因此汽油不再用添加四乙基铅而是靠调节辛烷值的程度来控制抗爆性。 汽车发动机的工作离不开燃料,燃油的性能指标是发动机设计的一个重要依据,汽车应用消费也需要一个固定的燃油标准,辛烷值就是一项重要指标。汽油由原油分馏及重质馏分裂化制得,在原油加工过程中,蒸馏、催化裂化、热裂化、加氢裂化、催化重整、烷基化等单元都产出汽油组分,但辛烷值不同。如辛烷值太低,其易燃性在并不大的压缩下就会燃爆。将石油炼制得到的直馏汽油组分、催化裂化汽油组分、催化重整汽油组分等不同汽油组分经精制后与高辛烷值组分经调和,得到各种标号的汽油产品(90、93、97等),过辛烷值区分不同的抗爆震性能,标号越高、抗爆性也越高。原油中不同程度含杂质、含硫,为避免硫排放而导致酸雨,因此硫含量高的汽油组分还需加以脱硫精制。烃类充分燃烧后形成水和二氧化碳,去除汽油中的胶质、硫和其它杂质越彻底,汽油也越干净,排放也就更环保,发动机燃烧残留积碳也越少,所以现在推广应用清洁汽油对环保和发动机本身都有好处。清洁汽油与原对应标号93、97号油抗爆震效果相当的

揭阳空港经济区概况

揭阳空港经济区概况 一、空港经济区概况 揭阳空港经济区位于汕潮揭地理中心,总面积234平方公里,辖地都、砲台、登岗、渔湖4个镇和京冈、凤美、溪南3个街道,人口约43万。空港经济是推动揭阳加快发展的两大引擎之一,设立空港经济区是揭阳市贯彻落实广东省促进粤东西北地区振兴发展战略、创新驱动战略部署的重要举措,也是推动市区扩容提质、做大做强中心城区的关键抓手。2013年12月4日,广东省政府审议通过揭阳新区总体发展规划,将空港新城确定为揭阳新区核心区、起步区。在全省加快粤东西北地区建设的大潮中,空港新城成为揭阳新区建设的主战场,成为吸引资本、技术和人才加快集聚的价值洼地与投资热土。 空港经济区定位: 粤东国际化前沿平台 汕潮揭同城化先行区 揭阳转型升级集聚区 奋力争当全省新区建设排头兵

区位优势:地理位置得天独厚。空港经济区地处汕头、潮州、揭阳三市“金三角”,是汕潮揭同城化的核心地带,是连接珠三角和海西经济区的纽带。在这黄金地带建设全新的空港新城,发展高端的临空产业,将辐射带动汕潮揭城市群的建设,助推粤东产业转型升级。 交通优势:交通枢纽效应凸显。揭阳潮汕国际机场是粤东和粤闽赣边区最大的干线机场;厦深高铁潮汕总站距潮汕机场才9公里,近在咫尺;榕江就在空港的地都镇奔流入海,这条“黄金水道”可进出万吨级货轮,直通浩瀚南海;汕梅高速和206国道以及在建的梅汕高铁、潮惠高速、汕湛高速、揭惠高速穿境而过。这里已经成为名副其实的粤东交通枢纽。 产业优势:产业发展基础好、定位高、前景佳。区内已形成石材、模具、家电、塑料、服装、金属制品等六大传统产业,正在重点打造的临空型产业集群,将引进航空物流业、总部经济、金融服务、高端装备制造等高端临空产业,着力打造电子商务物流区、动漫玩具创意产业区、汕潮揭特色产业展示区、模具集聚区、石材转型升级产业区和航天育种产业区等六大产业集聚区。 政策优势:政策给力,服务高效。揭阳空港经济区享受到广东省扶持粤东西北新区建设的一系列特殊优惠政策,揭阳市委市政府专门出台了支持空港经济区起步区建设的优惠政策,倾全市之力支持空港的建设。空港经济区还是全市唯一一个借鉴顺德模式实行大部制改革的地区。以大部制的体制优势、三级政务平台的高效服务,打造国际化、法治化的营商环境,为广大投资者提供最好的创富热土。

汽油的标号涵义

汽油的标号 所谓90号、93号、97号无铅汽油,是指它们分别含有90%、93%、97%的抗爆震能力强的“异辛烷”,也就是说分别含有10%、7%、3%的抗爆震能力差的正庚烷。于是辛烷值的高低就成了汽油发动机对抗爆震能力高低的指标。应该用97号汽油的发动机,如果用90号汽油,当然容易产生爆震。 发动机压缩比与爆震 目前汽车使用最多的是所谓的四行程发动机,它是利用活塞在气缸里往复运动,以“进气、压缩、爆发、排气”四个行程,吸入汽油与空气的混合物,然后压缩它,再用火花塞点爆它而获得动力,得到动力后,再排出点爆后的废气。 首先我们要了解的是,四行程发动机用的燃料不一定是汽油,压缩天然气、液化石油气,甚至酒精,都可用来作为发动机的燃料。汽油之所以会成为主要燃料,是因为它相对容易取得,较容易储存,相对价廉。 正因为发动机可使用多种燃料,因此,在发动机发展之初,工程师们也做过许多尝试,除了尝试发动机不同的设计会有不一样的性能之外,也尝试使用不同的燃料会得到什么不同的效果。结果发现,当其它条件不变时,只要把发动机的压缩比提得愈高,就会得到更大的马力输出。然而,压缩比却不是可以无限制提高

的,当压缩比提得太高时,发动机就会出现爆震现象。所谓爆震,是经过压缩的油或气混合物,在火花塞还没点火之前,就因为被压缩行程所造成的气体分子运动产生的高热点燃,形成所谓的自燃现象,随后火花塞又再次点燃压缩油或气混合物,造成两团高爆火球在燃烧室里剧烈碰撞,因而产生如敲门一般的“喀、喀、喀”声。经过仔细研究,工程师们发现,原来爆震又和燃料的选择有关,如果选对了燃料,那么即使提高发动机压缩比,也不会发生爆震。 爆震与辛烷值 知道了爆震与燃料的关系后,工程师们开始把炼油厂里所产生的,可以作为发动机的各种油料逐一拿来测试和实验,结果发现,抗爆震效果最差的是“正庚烷”,因此工程师们就把最强的抗震指数100给了异辛烷,而最差的正庚烷则给了它一个0的抗震指数。于是,从此开始,辛烷值的高低就成了汽油发动机对抗爆震能力高低的指标。 那么什么是辛烷值呢?那是工程师们在实验室里,利用一部可调整压缩比的单缸发动机做试验所测得的数据。在实验中,随着压缩比的逐渐提高,测试燃料从没有爆震、燃烧顺畅的状况,逐渐调整到开始出现爆震。当爆震一开始出现的时候,就去比对异辛烷与正庚烷混合物的状况,如果出现爆震的状况时机,正好

辛烷值详解

辛烷值详解 爆震(震爆Knocking) 汽车用油主要成分是C5H12~C12H26之烃类混合物,当汽油蒸汽在气缸内燃烧时(活塞将汽油与空气混合压缩后,火花塞再点火燃烧),常因燃烧急速而发生引擎不正常燃爆现象,称为爆震(震爆) 。在燃烧过程中如果火焰传播速度或火焰波与波形发生突变,如引起燃烧室其它地方自动着火(非火星塞点火漫延),燃烧室内之压力突然增高此压力碰击四周机件而产生类如金属的敲击声,有如爆炸,故称为爆震(震爆)。汽油一旦辛烷值过低,将使引擎内产生连续震爆现象,造成机件伤害连续的震爆容易烧坏气门,活塞等机件。 爆震之原因: (1) 汽油辛烷值太低。(2)压缩比过高。(3)点火时间太早。(4)燃烧室局部过热。(5)混合汽温度或压力太高。(6)混合汽太稀。(7)预热。(8)汽缸内部积碳。(9)其他如冷却系或故障等。减少爆震方法: (1) 提高汽油辛烷值。(2)减低压缩比。(3)校正点火正时。(4)降低进汽温度。(5) 减少燃烧室尾部混合汽量。(6)增加进汽涡流。(7)缩短火焰路程。(8)保持冷却系作用良好。 辛烷值 爆震时大大减低引擎动力,实验显示,烃类的化学结构在震爆上有极大的影响。燃烧的抗震程度以辛烷值表示,辛烷值越高表示抗震能力愈高。其中燃烧正庚烷CH3(CH2)5CH3的震爆情形最严重,定义其辛烷值为0。异辛烷(2,2,4-三甲基戊烷) 的辛烷值定义为100。辛烷值可为负,也可以超过100。 当某种汽油之震爆性与90%异辛烷和10%正庚烷之混合物之震爆性相当时,其辛烷值定为90。如环戊烷之辛烷值为85,表示燃烧环戊烷时与燃烧85%异辛烷和15%正庚烷之混合物之震爆性相当。 此为无铅汽油标示来源,目前有辛烷值为92,95,98等级之无铅汽油,此类汽油含有高支链成分及更多芳香族成分之烃类,如苯,芳香烃,硫合物等。 例如95无铅汽油的抗震爆强度相当于标准油中含有百分之九十五的异辛烷及百分之五的正庚烷的抗震爆强度。 汽油亦可藉再加入其它添加物而提升辛烷值。如普通汽油辛烷值不高(约为50),若再加入四乙基铅(C2H5)4P b时,其辛烷值提高至75左右,此为含铅汽油之来源,为除去铅在引擎内之沉积,再加入二溴乙烷,使产生P b Br2之微粒排放出来,但造成环境之污染。一般无铅汽油不含四乙基铅,改用甲基第三丁基醚,甲醇,乙醇,第三丁醇等添加物。 某一汽油在引擎中所产生之爆震,正好与98%异辛烷及2%正庚烷之混合物的爆震程度相同,即称此汽油之辛烷值为98。此燃油若再渗合其它添加剂,辛烷值可大于98或小于98甚或超过100。 一般所谓的95、92无铅汽油即是指其辛烷值,所以95比92的抗爆性来的好。 辛烷值只是一个相对指标,而不是真的只以正庚烷或异辛烷来混合,所以有些燃油再渗合其它添加剂时的辛烷值可以超过100,可以为负。 若车辆『压缩比』在9.1以下者应以92无铅汽油为燃料;压缩比9.2至9.8使用95无

机场工程项目飞机维修区设计方案

揭阳潮汕机场南航基地工程 飞机维修区 设计任务书

编制单位:汕头航空有限公司 编制时间:二〇〇八年六月二十三日 第一章项目概况及周边条件 一、项目名称:南航汕头公司揭阳潮汕机场基地工程 二、地理位置: (一)机场区位: 潮汕机场(登岗北)场址位于汕头、潮州和揭阳三市之间,揭阳市揭东县炮台镇以东登岗镇以北,枫江以南,虎岗山以北山脚。机场近期跑道中心点位于东经116度30分09.41秒北纬23度33分07.60秒。以机场位置点为坐标中心,到三市(汕头、揭阳、潮州)中心距离及方位分别为:汕头市26公里,方位角为131.2 °即东偏南41.2度;揭阳市18公里,方位角为271°即西偏北1 度;潮州市17.5公里,方位角为40.5 °即北偏东40.5度。 从目前的城市总体规划来看,机场的东侧是汕揭梅高速路,南侧则是登岗镇,在机场西侧、国道以西将建设一条城市东环路,机场附近建设登洪高速路选线未定,会依据机场选址调整,在这个区域内将包含机场近期、中期、远期及远景用地,不能转为其他用途。 图表 1机场区位 图表 2机场工作区区位 (二)南航汕头公司基地区位: 整个机场总体分为3大部分:飞行区、航站核心区和工作区。而南航汕头公司基地主要由三个区组成: 1、机坪区:位于机场飞行区以南,该区建设用地面积约160亩(不清晰),最远端距航站楼中轴线距离约1.5公里。 2、生产生活区:位于机场工作区以南,该区建设用地面积约11.7公顷(约176亩),最近端距航站楼中轴线距离约1.2公里。 3、一线生产办公区:机场工作区以北,地块建设用地面积约0.4公顷(约6.3亩),地块中心距航站楼中轴线距离约600米。 图表 3南航汕头公司区位 三、建设规模 2007年9月26日国家发展和改革委员会以《关于新建广东潮汕民用机场项目可行性研究报告的批复》(发改交运[2007]101号)对潮汕民用机场项目进行批复,其中对南航基地工程主要建设内容批复如下:建设5机位停机坪4.6万平方米,维修基地1.68万平方米及其他配套生产生活设施等。(注:目前南航总部批复近期建5机位停机坪及总建筑规模为37400平方米基地)。

汽车燃油使用知识——辛烷值、压缩比和爆震

汽车燃油使用知识——辛烷值、压缩比和爆震 对于每一车主来说,自从拥有汽车的那一刻开始,有一样东西就已经和自己形影不离了,是什么?答案当然就是汽油,或者严谨一点说是“燃料”。说到这可能很多朋友要笑话我,汽车要动起来当然需要汽油,这个还有什么可质疑的吗?没错!汽油对于我们来说是再普通不过的东西了,但是您真正了解汽油吗?或者我们再深入一步,您真正了解您的爱车应该加什么样的油吗?如果您还不是非常了解,希望我们今天这篇文章可以对您些帮助。 ● 不同标号汽油之间有何异同? 我们都知道汽油分为各种不同的标号,我们常见的有90#、93#、97#、98#等等,有个别地区还提供100#汽油,那么这些不同的标号是什么意思?其实它们所代表的就是不同的辛烷值,标号越高辛烷值越高,表示汽油的抗爆性也就越好。那么这里我们就引伸出一个名词:辛烷值。 ◆什么是辛烷值? 辛烷值就是代表汽油抗爆震燃烧能力的一个数值,越高抗爆性越好,那么这个值是怎么来的? 简单来说就是将实际的汽油与一种人工混合而成的标准燃料相比较得出的数值,标准燃料有两种组成部分,一个是抗爆性非常好的异辛烷,一个是抗爆性很差的正庚烷,把异辛烷的数值设定为100,而正庚烷的数值设定为0,通过实验调节标准汽油两种混合物的比例,达到和实际汽油相同的抗爆性,而这个比例就是我们所说的辛烷值了。举个例子,比如我们常用的93#汽油的辛烷值为93,它就代表与含异辛烷93%、正庚烷7%的标准汽油具有相同的抗爆性,以此类推97#汽油就是和含异辛烷97#的标准汽油抗爆性相同。 那为什么,石油公司会老要我们用高标号的汽油呢?关键就在生产成本上。在中国,实际上根本没有多少(可以说没有)石油公司是使用多次裂解法来生产高标号汽油的,而是使用一些低成本的小伎俩来解决问题!以前,是在低标号的汽油中添加少量的四乙基铅来明显提高汽油的抗爆震性,后来由于污染过于严重,因此被国家明令禁止。那么,他们就改用了含锰的添加剂MMT(这种添加剂至少在欧洲早已被禁止使用),起着与四乙基铅完全同样的作用。 然而,在出厂油价上却是按照多次裂解法计算的,也就是说,所谓90,93,95,97 等标号的汽油,不过是加入不同数量的含锰添加剂的产品而已,他们之间真正的成本差别仅在几分钱到二三毛钱,而它们在零售价上的差别……你们自己清楚。也就是说,它们卖90号汽油越多,赚到的钱越少;而卖高标号的汽油越多,则利润就会番倍地上升,所以,就会有越来越多的加油站贴出告示说没有90号汽油卖了。

揭阳潮汕机场航站区扩建工程

揭阳潮汕机场航站区扩建工程 飞行区设计 评标报告 招标编号:cs03-007-12-2020z 招标人:广东省机场管理集团有限公司工程建设指挥部招标代理机构:国义招标股份有限公司 二O二O年三月

目录 一、评标报告正文 二、评标报告附件 1.交标记录 2.开标记录表 3.初步评审表 4.初步评审结论表 5.资信业绩及设计方案评审表 6.资信业绩及设计方案得分汇总表 7.算术复核表 8.评标价评分表 9.投标人得分表 10.评委签到表

一、项目简介 工程概况:将现状站坪往南扩建248m,新建C类停机位10个、E类停机位2个,延长第三平行滑行道,新建1条联络道,总面积约10.8万平方米(其中联络道及站坪道面9.4万平方米、道肩0.7万平方米、服务车道0.7万平方米)。配套助航灯光工程、站坪供配电及照明工程、消防工程、安防工程等设施。 二、招标过程简介 本次招标于2020年2月17日在广州公共资源交易中心、中国招标投标公共服务平台、民航专业工程建设项目招标投标管理系统、广东省招标投标监管网发布招标公告,于2020年2月18日至2月24日发售招标文件。有3家单位投标登记和购买了招标文件。至投标截止时间2020年3月12日9:00时,按规定在广州公共资源交易中心向招标人递交投标文件的有3家单位,招标代理对投标文件进行公开开标(详见附表1“开标记录表”)。 三、评标过程 按照招标文件规定,评标委员会由7名评委(5名专家和2名业主代表)组成,其中5名专家在民航专家库中随机抽取产生。评标当天,民航专家库抽取的5名专家分别为中南航空港建设公司的陈福年、中国人民解放军广州军区空军勘察设计院的余开元、广州飞机维修工程有限公司的吴霞、广州中南民航工程咨询监理有限公司的陈永新和任绪秋。在标前会上,广州中南民航工程咨询监理有限公司的陈永新和任绪秋提出,他们任职的单位与投标单位上海民航新时代机场设计研究院有限公司存在股权关系,申请回避。因此,经报告北京民航质监总站,本项目需要补抽2名专家,经2个多小时的多次抽取,仅抽取到1名符合要求的专家(中南航空港建设公司的杨夫礼),时至中午12点多,北京民航质监总站

揭阳潮汕机场航站区规划设计

揭阳潮汕机场航站区规划设计 摘要:揭阳潮汕机场总体规划主要分为飞行区、航站区和工作区三个功能分区。其中,航站区是机场的核心区域。本文通过介绍揭阳潮汕机场航站区的规划设计,分析和总结机场规划的主要内容和方法。 关键词:揭阳潮汕机场;航站区;机场规划 Abstract: Jieyang Chaoshan airport master plan is divided into three main functions of the flight area, terminal area and work area partition. Among them, the terminal area is the core area of the airport. This paper introduces the planning and design of Jieyang Chaoshan airport terminal area, analyzes and summarizes the main contents and methods of airport planning. Key words: Jieyang Chaoshan airport terminal area planning; airport; 一.项目概况 1.规划背景 潮汕地区位于广东省东部沿海,有着深厚的历史文化底蕴和商贸传统,是著名的侨乡。为了适应该地区当前经济发展的趋势和民用航空运输的需求,2007年10月揭阳潮汕机场可行性研究报告获得国家发改委的正式批复,机场建设正式提上了工作日程。 揭阳潮汕机场按照国内干线机场进行设计,目标年2020年旅客吞吐量450万人次。一期跑道2800米,机场总用地面积331万平方米,其中,航站区用地面积为74万平方米。 2.区位分析 揭阳潮汕机场选址于潮汕地区的揭阳市揭东县炮台镇以东,登岗镇以北,枫江以南,虎岗山以北,位于汕头、潮州和揭阳三市之间。以机场为中心,到汕头市26 公里,揭阳市18 公里,潮州市17.5 公里。 二、场地分析

趣味阅读:汽油的辛烷值

汽油的辛烷值 市场上出售的汽油都是无铅汽油,有90、93、95、97等标号。这些数字所标定的就是汽油的辛烷值,代表汽油的抗爆性,与汽油的清洁程度毫无关联。使用车辆前,应认真阅读使用说明书,注意压缩比。压缩比在8.0以下的选用90号汽油,压缩比在8.0-8.5之间的选用93号或95号汽油,压缩比在8.5-9.0的选用95号或97号汽油,压缩比在9.0-9.5的选用97号或98号汽油,而压缩比在9.5-10.0的就应选用标号98号以上的汽油了。 车主加油时不要受“高标号的汽油更清洁”的误导,根据发动机的压缩比或遵循汽车使用说明书上的建议添加汽油,更科学、更经济,能充分发挥发动机的功率。 汽油抗爆性的评价指标是辛烷值,即汽油的标号。它是实际汽油抗爆性与标准汽油的抗爆性的比值。标准汽油是由异辛烷和正庚烷组成。异辛烷的抗爆性好,其辛烷值定为100;正庚烷的抗爆性差,在汽油机上容易发生爆震,其辛烷值定为0。如果汽油的标号为90,则表示该标号的汽油与含异辛烷90%、正庚烷10%的标准汽油具有相同的抗爆性。 从经济性上来看,炼油时提取高纯度的异辛烷做汽油用是非常不划算的。一般是提取含有一定纯度的异辛烷的多组分烷烃再加入抗爆添加剂,这样可以明显提高汽油的抗爆性。我们可以形象地称之为“勾兑”。 因为现在的汽车大都采用电喷发动机,其中的三元催化器对汽油的添加剂非常敏感,含铅的抗爆添加剂会使其中毒失效,北京市场已经不再出售含铅汽油了。 汽车发动机在设计阶段,会根据压缩比设定所用燃油的标号。压缩比是发动机的一个非常重要的结构参数,它表示活塞在下止点压缩开始时的气体体积与活塞在上止点压缩终了时的气体体积之比。从动力性和经济性方面来说,压缩比应该越大越好。压缩比高,动力性好、热效率高,车辆加速性、最高车速等会相应提高。但是受汽缸材料性能以及汽油燃烧爆震的制约,汽油机的压缩比又不能太大。发动机的压缩比与汽车的高档、豪华与否没有必然联系。 简单地说,较高的压缩比可以使用交通标号的燃油。燃油标号越高,油的燃烧速度就越慢,燃烧爆震就越低,发动机需要较高的压缩比;反之,低标号燃油的燃烧速度较快,燃烧爆震大,发动机压缩比较低。

AD_ZGOW揭阳潮汕机场

ZGOW AD 2.1 机场地名代码和名称 Aerodrome location indicator and name ZGOW-揭阳/潮汕 JIEYANG/Chaoshan ZGOW AD 2.2 机场地理位置和管理资料 Aerodrome geographical and administrative data ZGOW AD 2.3 工作时间 Operational hours 1机场基准点坐标及其在机场的位置ARP coordinates and site at AD N23°33.2' E116°30.1'Center of RWY 2方向、距离 Direction and distance from city 087° GEO, 13.8km from city center 3标高/参考气温 Elevation/Reference temperature 16m/33.9℃(July)4机场标高位置/高程异常 AD ELEV PSN/ geoid undulation -/-5 磁差/年变率 MAG V AR/Annual change 3°W(2011)/-6 机场管理部门、地址、电话、传真、AFS 、电子邮箱、网址 AD administration, address, telephone,telefax, AFS, E-mail, website Jieyang Chaoshan International Airport Group CO. Jieyang Chaoshan International Airport, Jieyang, 515558, Guangdong province, China TEL: 86-663-3820106 FAX: 86-663-38201097允许飞行种类 Types of traffic permitted(IFR/VFR)IFR/VFR 8机场性质/飞行区指标 Military or civil airport & Reference code Civil/4D 9 备注Remarks Nil 1 机场当局(机场开放时间) AD Administration (AD operational hours) H24 2海关和移民 Customs and immigration H243卫生健康部门 Health and sanitation H244航行情报服务讲解室AIS Briefing Office H245空中交通服务报告室 ATS Reporting Office (ARO)H246气象讲解室 MET Briefing Office H247空中交通服务 ATS H248加油 Fuelling H249地勤服务 Handling H2410保安 Security H2411除冰 De-icing Nil 12 备注 Remarks Nil

汽油编号

汽油的标号的科学称呼应该是“辛烷值”,辛烷值越高,使其爆燃的温度越高,换句话说就是越不容易爆燃。例如90号汽油,可以保证在压缩比不大于9的发动机上使用不产生爆燃现象,97号汽油就可以保证在压缩比不大于9.7的发动机上使用不产生爆燃现象。 现在市面销售的汽油标号主要有90、93、97,有些沿海地区还有98号甚至100号(港澳地区市面上供应的汽油均为100号)。其中又有普通无铅汽油和高清洁无铅汽油之分,在中西部地区的某些地方还在供应70号汽油。作为车主我们应该怎样选择给自己的爱车用油呢?是不是标号越高的汽油越好呢?要解决这样的疑问,我们首先要了解一点汽车发动机的基本知识。 在汽车发动机的参数中,我们大多数人都只注意到功率和扭矩两个指标,但另一个重要指标却往往被人所忽视,这就是压缩比。这个压缩比是的含义是发动机在压缩时,将可燃混合汽压缩为原来的体积的比例。例如压缩比为10的发动机就是将可燃混合汽压缩为原来体积的十分之一。一般来说在发动机的其他设计不变的情况下,压缩比越高的车功率越大,效率越高(越省油)。所以要增加发动机的功率的最简单的方法就是增加汽车的压缩比,这种事有些路边店都能做,没什么值得夸耀的。但是压缩比过高会造成稳定性下降,发动机寿命缩短。而且压缩比也不可能无限制地提高,因为可燃混合汽在压缩过程中温度会急剧提高,如果在没有到活塞的上止点处温度就已经超过可燃混合汽的燃点,则可燃混合汽就会爆燃,这就是俗称的敲缸,可以听到明显的金属撞击声,严重的爆燃甚至会使发动机倒转,给发动机造成致命的伤害。 影响发动机爆燃的还有一个因素就是点火提前角(即点火的时机),通俗地说点火时间越早,发动机的效率越高,感觉车也越有力,但却越容易产生敲缸现象,也就是爆燃。过去的化油器的的点火提前角的变化规律是固定的,不会根据发动机的具体运转状况而改变。现在的发动机都是电喷的,其点火时机是由电脑控制,发动机上还有爆震传感器,一旦有爆燃的现象产生,在一定的范围内可以自动延迟点火时间,减少或消除敲缸现象。所以现在的电喷车一般很少会听到敲缸声。

揭阳潮汕国际机场的功能定位及发展趋势研究

77 2018.8 第4期 | 交通与港航 揭阳潮汕国际机场的功能定位及发展趋势研究肖文明,耿铭君,雷 宏,胡 婷 深圳市都市交通规划设计研究院有限公司 摘 要:经济全球化的发展和科学技术的进步促进了区域发展环境的改变,“十三五”期间,粤东的地位将逐渐提升;揭阳潮汕国际机场服务于揭阳、潮州和汕头三个城市,面临空前的发展机遇。从亚太、大珠三角、区域以及空港经济区等不同层面和视角,分析揭阳潮汕国际机场的竞争优势和发展趋势,明确揭阳潮汕国际机场功能定位的深层次内涵以及机场综合交通枢纽的具体服务功能。理论上指明了揭阳潮汕国际机场未来的发展方向——打造面向国际、辐射粤东,达到国际水准的综合交通枢纽;实践上则对揭阳潮汕国际机场的建设有较为直接的借鉴价值,可有效指导其交通规划,从而实现区域交通一体化。关键词:交通规划;功能定位;发展趋势;综合交通枢纽;揭阳潮汕国际机场Abstract :The economic globalization and science and technology advancement have accelerated the change of development environment; in the Thirteen Five Period, eastern Guangdong region is undergoing a process of marginalization. Jieyang Chaoshan International Airport, which serves three cities, Jieyang, Chaozhou and Shantou, is facing unprecedented opportunities. From the Asia-Pacific, Greater Pearl River Delta, regional and airport economic zones and so on, the competitive advantage and development trend of Jieyang Chaoshan International Airport have been analyzed; it is the deep-level connotation of Jieyang Chaoshan Airport function orientation and the specific service functions of the comprehensive transportation terminal is clear. Theoretically, the development aim of Jieyang Chaoshan International Airport is pointed out, which is to build a comprehensive transport hub terminal facing international and radiating eastern Guangdong region. Practically, it provides invaluable references to the construction of Jieyang Chaoshan International Airport, which can guide its traffic planning effectively, so as to realize regional traffic integration.Keywords :traffic planning ;function orientation ;development trend ;comprehensive transportation terminal ;Jieyang Chaoshan International Airport Study on the Function Orientation and Development Trend of Jieyang Chaoshan International Airport 第一作者简介 肖文明(1990—),男, 硕士,交通规划师,从事 交通规划工作。E m a i l : 747495460@https://www.360docs.net/doc/fa5459080.html, 0 引 言随着经济全球化与区域交通一体化进一步深入,“天空开放”进程加速推进,航空自由化呈现新的发展趋势[1]。国内机场建设步伐日益加快,机场群概念逐渐形成,大型枢纽机场地位凸显,区域枢纽机场日益完善[2]。揭阳潮汕国际机场于2011年12月15日正式通航,是潮汕地区唯一的民用航空港,2016年旅客吞吐量达381.8万人次[3];规划集中了机场、高速铁路、城际轨道、高速公路等多种交通方式,成为区域交通一体化的重要载体。揭阳潮汕国际机场对整个潮汕地区的对外交流和地区内部交通具有重要意义;“十三五”期间,揭阳潮汕国际机场面临空前 的发展机遇。通过不同视角分析

相关文档
最新文档