2008 《JACS》 单层氧化石墨的Langmuir Blodgett组装

2008 《JACS》 单层氧化石墨的Langmuir Blodgett组装
2008 《JACS》 单层氧化石墨的Langmuir Blodgett组装

Langmuir-Blodgett Assembly of Graphite Oxide Single

Layers

Laura J.Cote,Franklin Kim,and Jiaxing Huang*

Department of Materials Science and Engineering,Northwestern Uni V ersity,

E V anston,Illinois60208

Received August17,2008;E-mail:Jiaxing-huang@https://www.360docs.net/doc/f25780706.html,

Abstract:Single-layer graphite oxide can be viewed as an unconventional type of soft material and has recently been recognized as a promising material for composite and electronics applications.It is of both scienti?c curiosity and technical importance to know how these atomically thin sheets assemble.There are two fundamental geometries of interacting single layers:edge-to-edge and face-to-face.Such interactions were studied at the air-water interface by Langmuir-Blodgett assembly.Stable monolayers of graphite oxide single layers were obtained without the need for any surfactant or stabilizing agent,due to the strong electrostatic repulsion between the2D con?ned layers.Such repulsion also prevented the single layers from overlapping during compression,leading to excellent reversibility of the monolayers.In contrast to molecular and hard colloidal particle monolayers,the single layers tend to fold and wrinkle at edges to resist collapsing into multilayers.The monolayers can be transferred to a substrate,readily creating a large area of?at graphite oxide single layers.The density of such?lms can be continuously tuned from dilute,close-packed to overpacked monolayers of interlocking single layers.For size-mismatched single layers,face-to-face interaction caused irreversible stacking,leading to double layers.The graphite oxide monolayers can be chemically reduced to graphene for electronic applications such as transparent conducting thin?lms.

Introduction

Graphite oxide(GO)is usually made by reacting graphite powder with strong oxidants such as a mixture of concentrated sulfuric acid and potassium permanganate.1After oxidation,the carbon sheets are exfoliated and derivatized by carboxylic acid at the edges,or phenol hydroxyl and epoxide groups mainly at the basal plane.2-5The reaction breaks theπ-πconjugation at those sites,which can be partially recovered by either chemical or thermal methods to yield graphene.6-9Recently, GO has rapidly become a promising material for polymer composite and graphene-related electronics applications.6,9-14 A graphite oxide single layer(GOSL)consists of a hexagonal network of covalently linked carbon atoms with oxygen-containing functional groups attached to various sites(Figure 1a,b).It can be viewed as an unconventional type of soft material15,16in that it is a two-dimensional(2D)membrane-like single polymer molecule that also acts like a colloid.The colloidal“particle”is characterized by two abruptly different length scales,with the thickness determined by a single atomic layer and the lateral sheet extending to up to tens of micrometers. This gives GOSLs a very high aspect ratio and nominal surface area since a single layer is essentially completely surface.It is of both scienti?c curiosity and technical importance to know how these atomically thin sheets assemble and how they behave when interacting with each other.

The interaction between colloidal particles determines their colloidal stability.The three classical types of DLVO stability of charged colloidal particles are illustrated in Figure1f by total energy(U)versus particle separation(d)curves.15-17A colloidal dispersion is stable if the electrostatic repulsion dominates.Its potential energy curve has a high energy barrier against ?occulation or coagulation(dashed red line).If van der Waals

(1)Hummers,W.S.;Offeman,R.E.J.Am.Chem.Soc.1958,80,1339.

(2)Nakajima,T.;Mabuchi,A.;Hagiwara,R.Carbon1988,26,357–

361.

(3)Nakajima,T.;Matsuo,Y.Carbon1994,32,469–475.

(4)He,H.Y.;Riedl,T.;Lerf,A.;Klinowski,J.J.Phys.Chem.1996,

100,19954–19958.

(5)Lerf,A.;He,H.Y.;Forster,M.;Klinowski,J.J.Phys.Chem.B1998,

102,4477–4482.

(6)Stankovich,S.;Dikin,D.A.;Dommett,G.H.B.;Kohlhaas,K.M.;

Zimney,E.J.;Stach,E.A.;Piner,R.D.;Nguyen,S.T.;Ruoff,R.S.

Nature2006,442,282–286.

(7)Stankovich,S.;Piner,R.D.;Chen,X.Q.;Wu,N.Q.;Nguyen,S.T.;

Ruoff,R.S.J.Mater.Chem.2006,16,155–158.

(8)Becerril,H.A.;Mao,J.;Liu,Z.;Stoltenberg,R.M.;Bao,Z.;Chen,

Y.ACS Nano2008,2,463–470.

(9)Li,X.L.;Wang,X.R.;Zhang,L.;Lee,S.W.;Dai,H.J.Science

2008,319,1229–1232.

(10)Dikin,D.A.;Stankovich,S.;Zimney,E.J.;Piner,R.D.;Dommett,

G.H.B.;Evmenenko,G.;Nguyen,S.T.;Ruoff,R.S.Nature2007,(12)Eda,G.;Fanchini,G.;Chhowalla,M.Nature Nanotech.2008,3,270–

274.

(13)Li,D.;Muller,M.B.;Gilje,S.;Kaner,R.B.;Wallace,G.G.Nature

Nanotech.2008,3,101–105.

(14)Ruoff,R.Nature Nanotech.2008,3,10–11.

(15)Jones,R.A.L.Soft Condensed Matter,1st ed.;Oxford University

Press:Oxford,UK,2002.

(16)Hamley,I.W.Introduction to Soft Matter:Polymers,Colloids,

Amphiphiles and Liquid Crystals,2nd ed.;Wiley:New York,2007;

Published on Web10/22/2008

attraction dominates,the colloids are unstable and tend to coagulate irreversibly since there is no repelling barrier on the total energy curve(dotted green line).If the sum of repulsion and attraction generates a secondary minimum(solid blue line), the colloids remain kinetically stable.Their?occulation(the state at the secondary minimum)can be reversed by agitation. GO is known to form a colloidal solution in water due to electrostatic repulsion between the ionized carboxylic and phenol hydroxyl groups.These groups are located mainly at the edges, and so are the charges.When two GOSLs approach each other, they experience both electrostatic repulsion and van der Waals attraction.Their total energy(U)is a sum of these two potentials. Due to their highly anisotropic shape,the total potential energy of two interacting GOSLs should depend on the geometry in which they approach each other.There are two fundamental interacting geometries between GOSLs:edge-to-edge and face-to-face(Figure1c-e).Note that the scaling law of van der Waals potential versus separation(1/d n)depends on the geometry of the interacting bodies.17

Therefore,the colloidal stability of GOSLs should also depend on their interacting geometry.When two?at sheets are brought together in an edge-to-edge manner(Figure1c),their van der Waals potential should scale in a way between those of two atoms(1/d6)and two chains(1/d5),which rapidly decays as the separation increases.Therefore,the electrostatic repulsion should dominate,leading to a potential energy curve without space.If the sheets are brought together in a face-to-face manner, their van der Waals potential now scales with(1/d2).In addition, the residualπ-conjugated domains in the sheets can contribute to the attraction,too.It should then be possible to see a shallow energy minimum before the repelling barrier on the curve, similar to the solid blue line in Figure1f.This would lead to reversible stacking when GOSLs are forced to overlay with other.It is indeed in agreement with the observation that GO colloidal solutions usually form?occulation during storage, which can be redispersed by shaking or gentle sonication (Supporting Information,Figure S1).The face-to-face interaction should also depend on the relative sizes of the sheets.When two GOSLs with very different sizes meet this way,the separation between the charges,which are mostly on the edges, is no longer represented by the physical separation of the layers. Therefore,the repulsive potential has a?nite minimum value due to the size mismatch,while the attractive potential can still scale continuously as the face-to-face separation decreases.This would lead to a potential energy curve without a repelling barrier (Figure1f,dotted green line).The colloidal system would be unstable;therefore,two such GOSLs should tend to stack nearly concentrically to form a double layer.

The2D water surface serves as an ideal platform to investigate the above-mentioned interactions of GOSLs.First, the interface is geometrically similar to GOSL,making it ideal to accommodate the?at sheets.Second,the soft,?uidic “substrate”should allow free movement of GO sheets upon manipulation,which should facilitate interactions between the ?at GO sheets in both edge-to-edge and face-to-face geometries. Here we report Langmuir-Blodgett(LB)assembly of GOSLs. We discovered that GOSLs can?oat on a water surface without

Figure1.(a)Structural model and(b)3D view of a GOSL showing carboxylic acid groups at the edge,and phenol hydroxyl and epoxide groups mainly at the basal plane.3,5There are two fundamental interacting geometries when two single layers meet:edge-to-edge(c)and face-to-face(d,e).The sheets are negatively charged on their edges due to ionized carboxylic acid groups.The competition between electrostatic repulsion and van der Waals attraction determines the colloidal stability of such interacting systems.Edge-to-edge interaction(c)should be stable against?occulation or coagulation due to strong repulsion and weak attraction.With increased van der Waals attraction,face-to-face interaction may lead to reversible?occulation of(d)GOSLs of comparable sizes,or irreversible coagulation of(e)GOSLs of very different sizes.These scenarios correspond to the three classical types of DLVO colloidal stability, for which schematic total potential energy versus separation pro?les are shown in(f):15-17dashed red line,strongly repelling colloids;solid blue line, kinetically stable colloids forming reversible?occulation;dotted green line,unstable colloid forming coagulation.

two points two parallel chains two parallel planes

W~1/d6W~1/d5W~1/d2

A R T I C L E S Cote et al.

hard colloidal particle monolayers,GOSLs tend to fold and wrinkle to resist collapsing into multilayers.We successfully made monolayers of?at GOSLs over large areas with continu-ously tunable density,which can be chemically converted to graphene for electronic applications such as transparent conduc-tor thin?lms.8,11,18

Molecular monolayers?oating at the air-water interface have been a subject of extensive interest since the18th century.19In a typical process for preparing LB monolayers,amphiphilic molecules are?rst dissolved in a volatile organic solvent and then spread onto the water surface.As the solvent evaporates, the molecules are trapped on the water surface,forming a monolayer.A moving barrier is then used to change the area of the monolayer,thus effectively tuning the intermolecular distance.As the?lm is compressed,it can undergo phase transitions from gas to liquid to solid phases before collapsing into a multilayer.The?lm can be transferred to a solid substrate (e.g.,by dip-coating),forming a monolayer coating over a large area.The LB technique is not limited by small molecules; monolayers of polymers20,21and nanomaterials22-25have been prepared in similar manner.Single-layer graphite oxide itself can be viewed as a cross-linked molecular monolayer.26If these monolayers are placed on a water surface,they can be collectively manipulated by the moving barrier.The GO sheets can then be pushed together edge-to-edge by compression.Face-to-face interaction may be induced in situ by overcompression, forcing GOSLs to slide on top of each other,or ex situ through sequential,layer-by-layer dip-coating.These types of interactions are important for understanding the properties of GO thin?lms, as they affect surface roughness,porosity,packing density,etc. On the other hand,for the practical use of GO for graphene-based electronics,it is critical to make large-area,?at,single-layer GO?lms.LB would be an ideal approach to achieve this. Experimental Section

Graphite Oxide(GO)Synthesis and Puri?cation.GO was prepared using a modi?cation of Hummers and Offeman’s method from graphite powders(Bay carbon,SP-1).1,7,11,27In a typical reaction,0.5g of graphite,0.5g of NaNO3,and23mL of H2SO4 were stirred together in an ice bath.Next,3g of KMnO4was slowly added.All chemicals were purchased from Sigma-Aldrich and were used as received.Once mixed,the solution is transferred to a35( 5°C water bath and stirred for about1h,forming a thick paste. Next,40mL of water was added,and the solution was stirred for 30min while the temperature was raised to90(5°C.Finally, 100mL of water was added,followed by the slow addition of3mL of H2O2(30%),turning the color of the solution from dark brown to yellow.The warm solution was then?ltered and washed with100mL of water.The?lter cake was then dispersed in water by mechanical agitation.Low-speed centrifugation was done at1000 rpm for2min.It was repeated until all visible particles were removed(about3-5times)from the precipitates.The supernatant then underwent two more high-speed centrifugation steps at8000 rpm for15min to remove small GO pieces and water-soluble byproduct.The?nal sediment was redispersed in water with mechanical agitation or mild sonication using a table-top ultrasonic cleaner,giving a solution of exfoliated GO.

Langmuir-Blodgett(LB)Assembly of GO.When the as-prepared aqueous solution of GO is directly applied onto a water surface,most material sinks into the subphase.However,we found that methanol is a good solvent for the LB experiment since it disperses GO well and spreads on a water surface rapidly.A deionized(DI)water/methanol mixture with an optimal ratio of 1:5was used for most LB experiments.After addition of methanol, the solution was sonicated for30min using a table-top ultrasonic cleaner.The average size of the GO sheets can be controlled by the time of sonication,and detailed studies are ongoing.Two centrifugation steps were taken to further purify the sample.First, the solution was centrifuged at8000rpm for20min to further remove smaller GO sheets and byproduct from the supernatant. The precipitate was collected and redispersed with1:5)water/ methanol solution.The solution was then centrifuged at2500rpm for10min to remove aggregates and larger GO sheets.The?nal supernatant contained well-dispersed GO sheets with sizes in the range of5-20μm.

For LB,the trough(Nima Technology,model116)was carefully cleaned with chloroform and then?lled with DI water.GO solution was slowly spread onto the water surface dropwise using a glass syringe.Generally,the solution was spread with speed of100μL/ min up to a total of8-12mL.Surface pressure was monitored using a tensiometer attached to a Wilhelmy plate.A GO?lm with faint brown color could be observed at the end of the compression. The?lm was compressed by barriers at a speed of20cm2/min. The dimensions of the trough are10cm×25cm.Typical initial and?nal surface areas were around240and40cm2,respectively. The GO monolayer was transferred to substrates at various points during the compression by vertically dipping the substrate into the trough and slowly pulling it up(2mm/min).As with the LB deposition of other materials,effective transfer occurs when the meniscus spreads on the substrate during dip-coating.We discovered that hydrophilic surfaces are necessary for effectively collecting the graphite oxide single layers from the LB?lm.Poor deposition was observed on hydrophobic surfaces obtained by silane treatment on silicon or glass.Therefore,only hydrophilic substrates were used in this work.Typically silicon wafers were treated with1:1:5) NH4OH:H2O2:DI solution for15min to be more wettable by water. Other substrates used include glass,quartz and mica.Double layer GO was prepared by depositing the?rst layer using the method described above,drying the substrate in an oven at80°C for1h, and then doing the second deposition on the substrate using the same conditions.

Characterization.Brewster angle microscopy study was carried out on a homemade setup,which was described in great detail elsewhere.28The deposited?lm was characterized using scanning electron microscopy(SEM;Hitachi S-4800-II)and atomic force microscopy(AFM;Digital Instrument,MultiMode scanning probe). We have identi?ed the proper set of conditions for reliably seeing single layers under SEM.All the SEM images were taken with low acceleration voltage(e.g.,0.8kV)and high current(e.g.,20μA).Under these conditions,single layers were readily visible and the contrast between single layer,double layer,and multiple layers

(18)Eda,G.;Lin,Y.-Y.;Miller,S.;Chen,C.-W.;Su,W.-F.;Chhowalla,

M.Appl.Phys.Lett.2008,92,233305.

(19)Franklin, B.;Smyth, A.H.The writings of Benjamin Franklin;

Macmillan:New York/London,1905;p10v.

(20)Sun,F.;Castner,D.G.;Mao,G.;Wang,W.;McKeown,P.;Grainger,

D.W.J.Am.Chem.Soc.1996,118,1856–1866.

(21)Reitzel,N.;Greve,D.R.;Kjaer,K.;Hows,P.B.;Jayaraman,M.;

Savoy,S.;McCullough,R.D.;McDevitt,J.T.;Bjornholm,T.J.Am.

Chem.Soc.2000,122,5788–5800.

(22)Collier,C.P.;Saykally,R.J.;Shiang,J.J.;Henrichs,S.E.;Heath,

J.R.Science1997,277,1978–1981.

(23)Kim,F.;Kwan,S.;Akana,J.;Yang,P.J.Am.Chem.Soc.2001,123,

4360–4361.

(24)Tao,A.;Kim,F.;Hess,C.;Goldberger,J.;He,R.;Sun,Y.;Xia,Y.;

Yang,P.Nano Lett.2003,3,1229–1233.

(25)Whang,D.;Jin,S.;Wu,Y.;Lieber,C.M.Nano Lett.2003,3,1255–

1259.

(26)Abraham,F.F.;Goulian,M.Europhys.Lett.1992,19,293–296.

Langmuir-Blodgett Assembly of Graphite Oxide Single Layers A R T I C L E S

was apparent.AFM images recorded on the same samples con?rmed the SEM observation.AFM images were taken with tapping mode at a scanning rate of1Hz.The apparent heights of all the GO sheets observed were around1nm,which is consistent with previously reported values.11,32GOSL?lms collected from the overpacked region(region d in Figure2e)on a glass slide were reduced to graphene by exposure to hydrazine vapor.The samples were placed in a sealed Petri dish with100μL of anhydrous hydrazine(98%,Sigma-Aldrich)for18h at room temperature.They were then rinsed by DI water and dried in an80°C oven for1h. Four gold electrodes with dimensions of1.5mm×7.5mm×40 nm and1.5mm separation were patterned on the slides using a thermal evaporator and a shadow mask.The I-V curves were obtained using a Keithley2400source meter on a homemade probe station.The transmission spectrum was measured in the areas between the electrodes using a?ber optics spectrometer(Ocean Optics,USB2000).Spectroscopy data acquired at?ve different points were averaged to plot the spectrum in Figure6a(below). Average transmittance was calculated by averaging all the data points between400and800nm on the spectrum.

Results and Discussion

The as-made GO colloidal dispersion was puri?ed by several centrifugation and/or dialysis steps.The size of the GOSLs in thus-treated samples was polydisperse but typically larger than

5μm in diameter.With minimal sonication treatment,large sheets of tens of micrometers can be obtained.In order to transfer the GO onto a water surface,a volatile spreading solvent is needed.However,common water-immiscible spreading solvents,such as chloroform or toluene,are not good for dispersing the hydrophilic GO.In addition,prior studies showed that GO tends to collapse and adopt three-dimensional compact conformations in“poor”,less polar solvents such as acetone.29,30 Therefore,we chose the simplest polar protic alcohol s meth-anol s as the spreading solvent.The puri?ed GO dispersion was therefore transferred into a1:5water/methanol mixture before spreading,and the GO colloids were found to be stable in this solution.Since a LB monolayer is very sensitive to surface-active impurities,all parts of the LB trough were thoroughly cleaned and tested before each experiment.Plasticware and rubber were avoided during the storage and handling of both the solvent and the dispersion to minimize contamination.The GO dispersion was carefully spread on the water surface drop-by-drop using a glass https://www.360docs.net/doc/f25780706.html,ually a faint brown color could be observed.The monolayer was then stabilized for about20 min before isothermal compression.Surface pressure was monitored using a tensiometer equipped on the LB trough.The monolayer was transferred to silicon wafers,glass slides,or mica disks by vertical dip-coating and imaged by SEM and AFM. As the monolayer is compressed,slight darkening of the monolayer color can be observed,which is consistent with increased material density at the water surface.To con?rm that the GO sheets were indeed supported by the air-water interface rather than suspended near but beneath the surface,the mono-layer was examined in situ by surface-selective Brewster angle microscopy.28,31Highly re?ective shining pieces were observed, indicating the presence of micrometer-sized,?at GO sheets (Supporting Information,Figure S2)at the surface.The density of the sheets can be reversibly altered during the compression-expansion cycles.A gradual increase in surface pressure was recorded as the barrier was closed,as shown in the isothermal surface pressure-area plot in Figure2e.SEM images of the monolayers collected at different stages of the plot clearly show four types of GO assembly.There was an initial gas phase where the surface pressure essentially remained constant during compression(region a in Figure2e).Monolayer collected at this stage consisted of dilute,well-isolated,individual GO sheets (Figure2a).It is worth noting that most of the GO sheets were larger than5μm in diameter,yet all of them were?at.Prior methods for making GO thin?lms,such as drop-casting,spin-coating,8spraying,11or?ltration,10,12usually produced wrinkled sheets even with submicrometer sizes.

As the area was decreased,the surface pressure started to rise and the GO sheets were pushed closer to each other.A few turning points were observed on the isotherm plot as the monolayer entered the condensed phase,re?ecting different types of interactions of the single layers.At the ?rst stage of pressure increase(region b in Figure2e),the GO sheets started to“touch”each other and eventually formed a close-packed monolayer,where they tiled the entire 2D surface(Figure2b).The increase in surface pressure is likely due to the electrostatic repulsion between the GO sheets.AFM images of the same monolayers on a silicon wafer show uniform thickness of the GO sheets around1 nm(Figure3a),which is consistent with previous reports.11,32 In close-packed?lms,the gaps between two GO sheets were often too small to resolve using our AFM.This suggests that LB assembly may be used for making nanogaps between GO or graphene sheets.When the monolayer was further compressed beyond the close-packed region,a further increase in surface pressure was observed.This is in contrast to monolayers of small molecules or hard colloids,which would collapse into multilayers,leading to constant or

(29)Hwa,T.;Kokufuta,E.;Tanaka,T.Phys.Re V.A1991,44,R2235–

R2238.

(30)Wen,X.;Garland,C.W.;Hwa,T.;Kardar,M.;Kokufuta,E.;Li,Y.;

https://www.360docs.net/doc/f25780706.html,ngmuir-Blodgett assembly of graphite oxide single layers. (a-d)SEM images showing the collected graphite oxide monolayers on a silicon wafer at different regions of the isotherm.The packing density was continuously tuned:(a)dilute monolayer of isolated?at sheets,(b) monolayer of close-packed GO,(c)overpacked monolayer with sheets folded at interconnecting edges,and(d)over packed monolayer with folded and partially overlapped sheets interlocking with each other.(e)Isothermal surface pressure/area plot showing the corresponding regions a-d at which the monolayers were collected.Scale bars in a-d represent20μm.

A R T I C L E S Cote et al.

reduced surface pressure.33A striking interaction between the GO sheets was revealed by the SEM images(Figure2c). Instead of overlapping with each other,the GO sheets started to fold at the touching points along their edges.Since the single layers are soft and?exible,the increased surface pressure is thus dissipated by the folding and wrinkling of the edges,leaving the interior?at and essentially free of buckling or wrinkling.As shown in the AFM image(Figure 3b),the folds or wrinkles were usually much more than2 nm,which would be the height for overlapped edges.They also produced a much higher contrast in the SEM images, marking the boundaries of the sheets.At this stage,the coverage of GO over the surface was much increased,yet the majority area of the monolayer was still?at.At even higher pressure,partial edge-overlapping was observed, leading to a nearly complete monolayer of interlocked GOSLs (Figure2d).This edge-to-edge interaction mechanism con-tinued to prevent the center of the GO sheets from wrinkling up to a point where there was no free space left in the monolayer.With the GO sheets interlocked with each other, the entire monolayer buckled like a whole piece of thin?lm upon further compression.Macroscopic wrinkles at millimeter scale,which can be seen by the eye,eventually led to the collapse of the monolayer.

Based on the total potential energy analysis(Figure1c,f), LB?lms of GOSLs should be stable against?occulation or coagulation.The observed GOSL tiling behavior in Figure2is in good agreement with the hypothesis.The strong edge-to-edge repulsion resisted stacking or overlapping between layers, even when the monolayer was compressed.In addition,the2D GO monolayers did show excellent stability,as they were essentially fully reversible after many cycles of compression-expansion(Figure4).SEM study con?rmed that the folds, wrinkles,and partial overlapping observed during compression (Figure2c,d)completely disappeared when the?lm was opened (Figure4).Since the folding and overlapping would lead to partial face-to-face interaction,the disappearance of such structures upon monolayer expansion suggests that such interac-tion is not stable.Figure4a shows representative surface pressure plots of three cycles of compression/expansion without sample collection.The curves have nearly the same shape and?nal pressure.However,there was a small shift of the gas-liquid phase transition point toward smaller area as the cycles continued(Figure4b).This indicates the loss of a small amount of material from the monolayer after each cycle.Close examina-tion of the monolayer before and after cycling revealed many double-layer structures consisting of a small GO sheet(<5μm) on top of a much larger one(Figure4c,d).Note that the small layer tended to completely overlap with the larger underlayer. No partially overlapped double layers were observed.These small sheets were probably pushed onto the neighboring larger ones at high surface pressure.This introduced the face-to-face type of interaction as discussed in Figure1e.Once a small GO piece was pushed onto a large one,the electrostatic repulsion between the edges of the two sheets would lock them into completely overlapped or even nearly concentric arrangement. This double-layer structure is further stabilized by van der Waals and residualπ-πstacking between the faces of each sheet. The absence of double layers of similarly sized sheets and partially overlapped double layers after the surface pressure was released suggests that face-to-face interaction(Figure1d) between similarly sized single layers should be either unfavor-

Figure3.AFM images showing(a)a close-packed graphite oxide monolayer and(b)two touching GO sheets with folded edges on silicon wafer.The thickness of the graphite oxide sheets was measured to be around1nm,as shown in the line scans.Images(a)and(b)were recorded on the same samples used for Figure2b,c,respectively.

Langmuir-Blodgett Assembly of Graphite Oxide Single Layers A R T I C L E S

layers or possibly even multilayers of GO by isothermal pressure -area cycling.Double layers were also made by sequential,layer-by-layer dip-coating.The ?rst layer,collected at close-packed density,was either aged in air overnight or baked in an oven for 1h to enhance its adhesion to the substrate.The second layer was then deposited at various pressures.Double GO layers were successfully made.However,the second layer of GO sheets experienced repulsion from both their neighbors and those in the underlayer.As a result,the newly deposited second layer tended to be wrinkled,especially at high density (Figure 5c).The density of the second layer was also lower than that of the ?rst layer when deposited at the same surface pressure (Figure 5b).

The electrostatic repulsion between the GOSLs leads to the above-mentioned edge-to-edge and face-to-face assembly be-making high-quality monolayers.In fact,the area of the surface monolayer in our experiment was on the order of 100cm 2,which is already at the scale of a https://www.360docs.net/doc/f25780706.html,rge areas of GO single layers can be collected at the desired surface pressure,yielding uniform coverage of different types of monolayers (Supporting Information,Figure S3).Additional density control can be achieved by varying the pulling speed during LB transfer (Supporting Information,Figure S4).The GO single layers can be reduced by known methods (hydrazine,hydrogen,or thermal annealing)to graphene.7,8The close-packed monolayers (Figure 2b)would readily produce graphene wafers for large-scale device fabrication.The overpacked monolayers (Figure 2c,d)already constitute continuous electrical pathways that can be potentially useful for transparent conductor applications.8,12,34,35

Figure 4.GOSL monolayer was highly reversible and stable against compression.(a)Isotherm plots of three sequential compression -expansion cycles.

The three plots essentially overlapped with each other,except in the early stage of compression,as indicated with the dotted-line box.(b)Close-up view of the initial stage of compression,revealing a shift of the plots to the lower area direction,indicating materials loss at the air -water interface after isotherm cycles.The SEM images of the monolayers (c)before and (d)after cycling show that smaller graphite oxide sheets were pushed onto larger ones,thus effectively reducing the amount of materials at the air -water interface.It also creates double layers of graphite oxide

sheets.

Figure 5.SEM images showing layer-by-layer assembly of graphite oxide double layers of similar sizes.(a)Close-packed single-layer graphite oxide monolayer as the ?rst layer.(b)Double layers with dilute top layer.(c)Double layers with high-density top layer.The heavy degree of folding and wrinkling of the second layer in (c)suggests strong repulsion between the two layers.

A R T I C L E S Cote et al.

As a proof of concept,we collected a GOSL monolayer at the overpacked region of the pressure -area plot (region d in Figure 2e)on a glass slide.The ?lm was chemically reduced to graphene by exposure to hydrazine vapor.Four gold electrodes were patterned onto ?lm for electrical measurement (Figure 6a,inset).Transmission measurement showed that the ?lm has an average of 95.4%transmittance in the visible region of the spectrum (Figure 6a).Figure 6b is the current -voltage plot obtained by four-probe measurement.The sheet resistance was 1.9×107?,which is comparable to previous reports on chemically reduced GO ?lms.8The resistance can be reduced further by thermal treatment.8

Conclusion

We have successfully demonstrated Langmuir -Blodgett assembly of GOSLs and made the following discoveries.Water-supported monolayers of GOSLs can be made without any surfactant or stabilizing agent.The single layers formed stable dispersion against ?occulation or coagulation when con?ned at the 2D air -water interface.The edge-to-edge repulsion between the single layers prevented them from overlapping during monolayer compression.The layers folded and wrinkled at their interacting edges at high surface pressure,leaving the interior ?at.GOSL monolayers can be readily transferred to a solid substrate with density continuously tunable from dilute,close-packed to overpacked monolayers of interlocking sheets.When single layers of very different sizes are brought together face-to-face,they can irreversibly stack to form double layers.The monolayers can be readily imaged by SEM with high contrast between single and multilayers.The geometry-dependent GOSL

interaction revealed here should provide insight into the thin-?lm processing of GO materials since the packing of GOSLs affects surface roughness,?lm porosity,packing density,etc.In addition,LB assembly readily creates a large-area monolayer of GOSL,which is a precursor for graphene-based electronic applications.

Acknowledgment.This work was supported by a Northwestern University new faculty startup fund.We thank Prof.K.Y.Lee for use of her Brewster angle microscopy (BAM)setup and S.Danauskas for help with BAM experiments.We thank Profs.S.T.Nguyen and Y.Huang for helpful discussions,Prof.M.C.Hersam for use of his probe station,and A.Tayi for assistance in electrode fabrication.L.J.C.gratefully acknowledges the National Science Foundation for a graduate research fellowship.We thank the NUANCE Center at Northwestern,which is supported by NSF-NSEC,NSF-MRSEC,Keck Foundation,the State of Illinois,and Northwestern University,for use of their microscope facilities.J.H.thanks Shaoyun Huang and Jing Huang for their assistance in designing the cover art.

Supporting Information Available:Figure S1,pictures of GO

colloidal solution;Figure S2,BAM images of GOSL monolayer;Figure S3,low-magni?cation SEM images showing GOSL monolayers corresponding to those in Figure 2;Figure S4,SEM images showing the effect of pulling speed on the GOSL monolayer density.This information is available free of charge via the Internet at https://www.360docs.net/doc/f25780706.html,.

JA806262M

Figure 6.Transparent conducting thin ?lm obtained by chemical reduction of an overpacked,interlocking GOSL monolayer such as those collected from region d of the isotherm plot in Figure 2.(a)Transmission spectrum of such a thin ?lm deposited on a glass slide (inset),showing an average of 95.4%transmittance in the visible region.(b)Current -voltage plot of the same ?lm obtained by four-point measurement.

Langmuir -Blodgett Assembly of Graphite Oxide Single Layers A R T I C L E S

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

氧化石墨烯的制备方法总结

氧化石墨烯的制备方法: 方法一: 由天然鳞片石墨反应生成氧化石墨,大致分为3 个阶段,低温反应:在冰水浴中放入大烧杯,加入110mL 浓H2SO4,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右。加入-100目鳞片状石墨5g,再加入NaNO3,然后缓慢加入15g KMnO4,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色。中温反应:将冰水浴换成温水浴,在磁力搅拌器搅拌下将烧杯里的温度控制在32~40℃,让其反应30 min,溶液呈紫绿色。高温反应:中温反应结束之后,缓慢加入220mL 去离子水,加热保持温度70~100℃左右,缓慢加入一定双氧水(5 %)进行高温反应,此时反应液变成金黄色。反应后的溶液在离心机中多次离心洗涤,直至BaCl2检测无白色沉淀生成,说明没有SO42-的存在,样品在40~50℃温度下烘干。H2SO4、NaNO3、KMnO4一起加入到低温反应的优点是反应温度容易控制且与KMnO4反应时间足够长。如果在中温过程中加入KMnO4,一开始温度会急剧上升,很难控制反应的温度在32~40℃。技术路线图见图1。 方法二:Hummers 方法 采用Hummers 方法[5]制备氧化石墨。具体的工艺流程在冰水浴中装配好250 mL 的反应瓶加入适量的浓硫酸搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物再分次加入6 g 高锰酸钾控制反应温度不超过20℃搅拌反应一段时间然后升温到35℃左右继续搅拌30 min再缓慢加入一定量的去离子水续拌20 min 后并加入适量双氧水还原残留的氧化剂使溶液变为亮黄色。趁热过滤并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥保存备用。方法三:修正的Hummers方法 采用修正的Hummers方法合成氧化石墨,如图1中(1)过程。即在冰水浴中装配好250 mL的反应瓶,加入适量的浓硫酸,磁力搅拌下加入2 g 石墨粉和1 g硝酸钠的固体混合物,再缓慢加入6 g高锰酸钾,控制反应温度不超过10 ℃,在冰浴条件下搅拌2 h后取出,在室温下搅拌反应5 d。然后将样品用5 %的H2SO4(质量分数)溶液进行稀释,搅拌2 h后,加入6 mL H2O2,溶液变成亮黄色,搅拌反应2 h离心。然后用浓度适当的H2SO4、H2O2混合溶液以及HCl反复洗涤、最后用蒸馏水洗涤几次,使其pH~7,得到的黄褐色沉淀即为氧化石墨(GO)。最后将样品在40 ℃的真空干燥箱中充分干燥。将获得的氧化石墨入去离子水中,60 W功率超声约3 h,沉淀过夜,取上层液离心清洗后放入烘箱内40 ℃干燥,即得片层较薄的氧化石墨烯,如图1中(2)过程。

石墨电极的原料及制造工艺

石墨电极的原料及制造工艺 一、石墨电极的原料 1、石墨电极 是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。2、石墨电极的原料 生产石墨电极的原料有石油焦、针状焦和煤沥青 (1)石油焦 石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑多孔,主要元素为碳,灰分含量很低,一般在%以下。石油焦属于易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 石油焦按硫分的高低区分,可分为高硫焦(含硫%以上)、中硫焦(含硫%%)、和低硫焦(含硫%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 (2)针状焦 针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在以上),在偏光显微镜下可观察到各向异性的纤维状结构,因而称之为针状焦。 针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青原料生产的煤系针状焦。 (3)煤沥青 煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为-cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。 煤沥青在炭素工业中作为粘结剂和浸渍剂使用,其性能对炭素制品生产工艺和产品质量影响极大。粘结剂沥青一般使用软化点适中、结焦值高、β树脂高的中温或中温改质沥青,浸渍剂要使用软化点较低、 QI低、流变性能好的中温沥青。 二、石墨电极的制造工艺

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征 文献综述 材料0802班 李琳 200822046

氧化石墨烯的制备及表征 李琳 摘要:石墨烯(又称单层石墨或二维石墨)是单原子厚度的二维碳原子晶体,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1]。石墨烯可通过膨胀石墨经过超声剥离或球磨处理来制备[2,3],其片层厚度一般只能达到30~100 nm,难以得到单层石墨烯(约0.34 nm),并且不容易重复操作。所以寻求一种新的、容易和可以重复操作的实验方法是目前石墨烯研究的热点。而将石墨氧化变成氧化石墨,再在超声条件下容易得到单层的氧化石墨溶液,再通过化学还原获得,已成为石墨烯制备的有效途径[4]。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景。 关键词:氧化石墨烯,石墨烯,氧化石墨,制备,表征 Oxidation of graphite surfaces preparation and Characterization LI Lin Abstrat:Graphite surfaces (also called single graphite or 2 d graphite )is the single atoms thickness of the 2 d carbon atoms crystal, is considered fullerenes, carbon nanotubes and graphite basic structure unit [1].Graphite surfaces can through the expanded graphite after ultrasonic stripping or ball mill treatment topreparation [2,3], a piece of layer thickness normally only up to 30 to 100 nm, hard to get the single graphite surfaces (about 0.34 nm), and not easy to repeated operation. So to search a new, easy to operate and can be repeated the experiment method of the graphite surfaces is the focus of research. And will graphite oxidization into oxidation graphite, again in ultrasonic conditions to get the oxidation of the single graphite solution, again through chemical reduction get, has become an effective way of the preparation of graphite surfaces [4]. Through the review of graphite oxide and oxidation graphite surfaces of the preparation, structure, modification of polymer and the

石墨电极在黄磷冶炼中的应用

石墨电极在黄磷冶炼中的应用 近年来我国的黄磷企业迅速扩增,其产品不仅遍及全国各地,而且已形成了大量出口的趋势。黄磷冶炼行业的崛起,为炭素厂家又增加了一大市场。仅我国西南地区年产黄磷制品就近百万吨,年耗石墨电极约3万t。因此,石墨电极如何适用于电炉冶炼黄磷的技术课题,已经提到电极生产厂家的面前。人造石墨电极具有良好的导电、导热、耐高温氧化、耐腐蚀性能,是黄磷冶炼炉理想的导电电极。石墨电极的生产工艺过程,一般是将石油焦、沥青焦等炭质原料经煅烧后,再加粘结剂沥青进行混捏、凉料后经挤压成型而形成生制品,生制品再经过1 300 ℃焙烧后成为半成品,半成品再经过2 300 ℃石墨化、机械加工而得到石墨电极成品。目前,炭素企业生产的石墨电极,其部分规格的理化指标列于表1。表1 石墨电极的主要理化指标 规格/mm 品种电阻率/μΩ.m 体积密度/kg/cm3 抗折强度/MPa 弹性模量/GPa 热膨胀系数/×10-6/℃灰分/% 本体接头本体接头本体接头本体接头本体接头 600 UHP 6.5 4.5 1.66 1.75 10.0 18.0 14.0 22.0 1.40 1.20 0.5 500 HP 7.0 6.5 1.60 1.70 9.8 14.0 12.0 14.0 2.20 2.40 0.3 500UHP NP 9.0 8.5 1.52 1.68 6.4 12.7 9.3 13.7 2.90 3.20 0.5 1 黄磷冶炼与石墨电极的消耗 工业上依黄磷冶炼中的热源不同,黄磷冶炼方法可分为电炉法和高炉法。目前我国的黄磷冶炼工业主要以电炉法为主,这种冶炼方法实收率高,产品纯度高。电炉法生产是将磷矿石、硅石和焦炭的混合料加入电炉内,由通过炉盖的石墨电极(作为导电极)将电能转变成热能,从而把混合料加热至熔融状态,使元素磷升华后再将含磷气体进行冷凝、分离和精制而得到元素磷。黄磷冶炼的工艺过程如图1。

氧化石墨烯的制备

大学生创新训练项目 研究报告 项目名称:氧化石墨烯和磁性氧化石墨烯的制备及其吸附性的研究 项目类型:一般项目 项目年度:2014年 项目负责人:李柯学号:32012080015 负责人院(系):安全与环境工程学院环境工程系 专业(方向):环境工程 项目组成员:杨梦凡、杨舒、卢光远 指导教师:任冬梅 教务处制 二〇一五年 摘要

石墨烯是由单层碳原子排列组合而成,呈六边形网状结构,因其特殊的二维结构表现出许多优异的性质。而氧化石墨烯由于在表面及边缘上大量含氧基团的引入,易于修饰与功能化,且保持着化学稳定性。本文采用改良hummers法制备氧化石墨烯。本文采用改良hummers 法制备氧化石墨烯。改进后制备较高氧化程度的氧化石墨的原料:天然鳞片石墨1g,浓硫酸23ml,高锰酸钾3g,硝酸钠0.5g,30%双氧水10ml,35%的盐酸,蒸馏水若干(实验中采用了多组不同的原料用量配比,过程记录以此组数据为例)。并得到如下结论:制取氧化石墨烯时,一定范围内,天然鳞片石墨用量减少可以提高氧化程度;硝酸钠用量的变化对石墨烯氧化程度影响不大;适度增加高锰酸钾和双氧水的用量同样可以提高氧化程度。实验过程中,高锰酸钾对石墨烯的氧化起着至关重要的作用,加入高锰酸钾时长时间缓慢增加对石墨烯氧化程度的效果比一次性直接加入要好。改进后的方法有利于提高实验室合成氧化石墨烯的效率,一定程度上降低了实验操作的难度。制取磁性氧化石墨烯的过程中,是在强碱性(PH>12)的环境下,让氧化石墨烯与FeCl3和FeCl2水浴恒温,使生成的纳米Fe3O4直接镶嵌复合到氧化石墨烯上。最后在不同浓度的PH条件下测得氧化石墨烯和磁性氧化石墨烯对甲基橙和重金属离子的吸收。 关键词:氧化石墨烯、磁性氧化石墨烯、吸附性

氧化石墨烯的制备讲义

实验十、氧化石墨烯的制备实验 一、实验目的 1、掌握Hummers法制备氧化石墨烯。 2、了解氧化石墨烯结构与性能表征。 二、实验原理 1、氧化石墨烯 氧化石墨烯是石墨烯的氧化物,其颜色为棕黄色,市面上常见的产品有粉末状、片状以及溶液状的。氧化石墨烯薄片是石墨粉末经化学氧化及剥离后的产物,氧化石墨烯是单一的原子层,可以随时在横向尺寸上扩展到数十微米,因此,其结构跨越了一般化学和材料科学的典型尺度。氧化石墨烯可视为一种非传统型态的软性材料,具有聚合物、胶体、薄膜,以及两性分子的特性。氧化石墨烯长久以来被视为亲水性物质,因为其在水中具有优越的分散性,但是,相关实验结果显示,氧化石墨烯实际上具有两亲性,从石墨烯薄片边缘到中央呈现亲水至疏水的性质分布。 经过氧化处理后,氧化石墨仍保持石墨的层状结构,但在每一层的石墨烯单片上引入了许多氧基功能团。这些氧基功能团的引入使得单一的石墨烯结构变得非常复杂。鉴于氧化石墨烯在石墨烯材料领域中的地位,许多科学家试图对氧化石墨烯的结构进行详细和准确的描述,以便有利于石墨烯材料的进一步研究,虽然已经利用了计算机模拟、拉曼光谱,核磁共振等手段对其结构进行分析,但由于种种原因(不同的制备方法,实验条件的差异以及不同的石墨来源对氧化石墨烯的结构都有一定的影响),氧化石墨烯的精确结构还无法得到确定。大家普遍接受的结构模型是在氧化石墨烯单片上随机分布着羟基和环氧基,而在单片的边缘则引入了羧基和羰基。 图1 氧化石墨烯的结构 2、氧化石墨烯的制备 氧化石墨烯的制备一般有三种方法:brodie法、Staudenmaier法、hummers法。这三种方法的共同点都是利用石墨在酸性质子和氧化剂的作用下氧化而成的,但是不同的方法各有优点。Brodie 等人于1859年首次用高氯酸和发烟硝酸作为氧化剂插层制备出

石墨烯的氧化还原法制备及结构表征

实验目的: (1)了解石墨烯的结构和用途。 (2)了解氧化后的石墨烯比纯石墨烯的性能有何提升 (3)了解Hummers法的原理 一、实验原理: 天然石墨需要进行先氧化,得到氧化石墨,再经过水合肼的作用下还原,才能得到在水相条件下稳定分散的石墨烯。 石墨的氧化过程采用浓硫酸和高锰酸钾这两种强氧化剂,氧化过程中先加浓硫酸,搅拌均匀后再加高锰酸钾,氧化过程从石墨的边沿进行,然后再到中间,氧化程度与持续时间有关。氧化过程中要增加石墨的亲水性,以便于分散,分散一般使用超声分散法。 氧化后的氧化石墨烯需要进行离心处理,使得pH值在6到7之间,目的是洗去氧化石墨烯的酸性,根本原因是研究表明氧化石墨烯和石墨烯在碱性条件下可以形成稳定的悬浮液。 氧化石墨烯的还原有多种方法,化学还原和热还原等,化学还原采用水合肼,热还原采用作TGA后,加热到200℃,一般大部分的含氧官能团都能除去。 二、实验内容: 1、利用氧化还原法制备石墨烯 2、对制得的石墨烯进行结构表征 三、实验过程: 实验利用Hummers法进行实验: 1、在三颈瓶外覆盖冰块,制造冰浴环境,并在三颈瓶内放入搅拌磁石; 2、将冰状天然石墨4g和硝酸钠2g倒入三颈瓶中; 3、将92ml浓硫酸倒入三颈瓶中; 4、开启磁力搅拌器,把溶液搅拌均匀后再缓慢加入高锰酸钾12g,在冰浴环境下搅拌3h; 5、升温至35℃,保持搅拌0.5h或1h,此时是对石墨片层中间进行氧化作用,氧化程度与持续时间有关; 6、加入去离子水184ml,缓慢滴加,保持温度低于100℃,升温至90℃,保温3h,溶液变红; 7、加300ml去离子水和30%的双氧水溶液10ml,使得高锰酸钾反应掉,静置一晚,倒掉上层清液; 8、对溶液进行离心操作7-8次,使得pH值在6-7; 9、减压蒸馏,进行还原反应得到石墨烯; 10、对得到的产物进行结构表征。

石墨电极

石墨电极 石墨电极(graphite electrode) 以石油焦、沥青焦为颗粒料,煤沥青为黏结剂,经过}昆捏、成型、焙烧、石墨化和机械加工而制成的一种耐高温的石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温为热源,使炉料熔化进行炼钢,其他一些电冶炼或电解设备也常使用石墨电极为导电材料。2000年全世界消耗石墨电极100万t左右,中国2000年消耗石墨电极25万t左右。利用石墨电极优良的物理化学性能,在其他工业部门中也有广泛的用途,以生产石墨电极为主要品种的炭素制品工业已经成为当代原材料工业的重要组成部门。 简史早在1810年汉佛莱?戴维(Humphry Davy)利用木炭制成通电后能产生电弧的炭质电极,开辟了使用炭素材料作为高温导电电极的广阔前景,1846年斯泰特(Stair)和爱德华(Edwards)用焦炭粉及蔗糖混合后加压成型,并在高温下焙烧从而制造出另一种炭质电极,再将这种炭质电极浸在浓糖水中以提高其体积密度,他们获得了生产这种电极的专利权。1877年美国克利夫兰(Cleveland)的勃洛希(C.F.Brush)和劳伦斯(https://www.360docs.net/doc/f25780706.html,wrence)采用煅烧过的石油焦研制低灰分的炭质电极获得成功。1899年普利查德(O.G.Pritchard)首先报道了用锡兰天然石墨为原料制造天然石墨电极的方法。1896年卡斯特纳(H.Y.Gastner)获得了使用电力将炭质电极直接通电加热到高温,而生产出比天然石墨电极使用性能更好的人造石墨电极的专利权。1897年美国金刚砂公司(Carborundum Co.)的艾奇逊(E.G.Acheson)在生产金刚砂的电阻炉中制造了第一批以石油焦为原料的人造石墨电极,产品规格为22mm×32m mX380mm,这种人造石墨电极当时用于电化学工业生产烧碱,在此基础上设计的“艾奇逊”石墨化炉将由石油焦生产的炭质电极及少量电阻料(冶

石墨电极的生产工艺流程和质量指标的及消耗原理知识讲解

石墨电极的生产工艺流程和质量指标的及 消耗原理

目录 一、石墨电极的原料及制造工艺 二、石墨电极的质量指标 三、电炉炼钢简介及石墨电极的消耗机理 石墨电极的原料及制造工艺 ●石墨电极是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混 捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。生产石墨电极的原料有石油焦、针状焦和煤沥青 ●石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑 多孔,主要元素为碳,灰分含量很低,一般在0.5%以下。石油焦属于 易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 ●石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟 焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 ●石油焦按硫分的高低区分,可分为高硫焦(含硫1.5%以上)、中 硫焦(含硫0.5%-1.5%)、和低硫焦(含硫0.5%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 ●针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石 墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在1.75以上),在偏光显微镜下可观察到各向异性的纤维状结 构,因而称之为针状焦。 ●针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具 有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 ●针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青 原料生产的煤系针状焦。 ●煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合 物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为1.25-1.35g/cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。

氧化石墨烯的制备

氧化石墨烯的制备 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

化学还原法制备石墨烯的研究进展

化学还原法制备石墨烯的研究进展近年来,研究人员利用多种方法开展了石墨烯的制备工作,主要包括化学剥离法、金属表面外延法、SiC表面石墨化法和化学还原法等[1]。目前应用最广泛的合成方法是化学还原法。石墨烯在氧化的过程中会引入一些化学基团,如羧基(-COOH)、羟基(-OH)、羰基(-C = O)和环氧基(-C-O-C)等,这些基团的生成改变了C-C之间的结合方式,导致氧化石墨烯的导电性急剧下降,并且使具有的各种优异性能也随之消失。因此,对氧化石墨烯进行还原具有非常重要的意义,主要是先将氧化石墨烯分散(借助高速离心、超声等)到水或有机溶剂中形成稳定均相的溶胶,再按照一定比例用还原剂还原,得到单层或者多层石墨烯。还原得到的石墨烯有望在电子晶体管、化学传感器、生物基因测序以及复合材料等众多领域广泛应用。 目前,制备氧化石墨烯的技术已经相当成熟,其层间距(0.7~1.2 nm)较原始石墨烯层间距大,更有利于将其他物质分子插入。研究表明氧化石墨烯表面和边缘有大量的羟基、羧基等官能团,很容易与极性物质发生反应,得到改性氧化石墨烯。氧化石墨烯的有机改性可使其表面由亲水性变为亲油性,表面能降低,从而提高与聚合物单体或聚合物之间的相容性,增强氧化石墨烯与聚合物之间的粘接性。如果使用适当的剥离技术(如超声波剥离法、静电斥力剥离法、热解膨胀剥离法、机械剥离法、低温剥离法等),那么氧化石墨烯就能很容易的在水溶液或有机溶剂中分散成均匀的单层氧化石墨烯溶液,使利用其反应得到石墨烯成为可能。氧化还原法最大的缺点是制备的石墨烯有一定的缺陷,因为经过强氧化剂氧化得到的氧化石墨烯,并不一定能被完全还原,可能会损失一部分性能,如透光性、导热性,尤其是导电性,所以有些还原剂还原后得到的石墨烯在一定程度上存在不完全性,即与严格意义上的石墨烯存在差别。但氧化还原方法价格低廉,可以制备出大量的石墨烯,所以成为目前最常用制备石墨烯的方法。

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

电化学法制备石墨烯

电化学法制备石墨烯 石墨烯(Graphene,GN)是由sp2杂化C原子组成的具有蜂窝状六边形结构的二维平面晶体。石墨烯独特的结构特征使其具有优异的物理、化学和机械等性能,在晶体管太阳能电池传感器、锂离子电池、超级电容器、导热散热材料、电发热膜、场发射和催化剂载体等领域有着良好的应用前景。石墨烯的制备方法对其品质和性能有很大影响,低成本、高品质、大批量的制备技术是石墨烯能得到广泛应用的关键。现有制备石墨烯的方法有很多,包括机械剥离石墨法、液相剥离法、溶剂热合成法、化学气相沉积法、外延生长法和电化学法等。其中,电化学方法因其成本低、操作简单、对环境友好、条件温和等优点而越来越受到人们的关注。据最新研究报道,通过电化学方法制备的石墨烯可以达到克量级,这为石墨烯的工业化生产带来了曙光。 电化学制备技术则是通过电流作用进行物质的氧化或还原,不需要使用氧化剂或还原剂而达到制备与提纯材料的目的,具有生产工艺简单、成本低、清洁环保等优点,已在冶金、有机与聚合物合成、无机材料制备等方面得到广泛应用。而且通过电化学电场作用,可以实现外在电解液离子(分子)对一些层状材料的插入,如锂离子电池石墨负极充电时就是锂离子在石墨层间的插入及石墨层间化合物的电化学制备。根据电化学原理主要有两种路线制备石墨。 1、通过电化学氧化石墨电极可得氧化石墨烯,再通过电化学还原以实 现电化学或化学氧化的氧化石墨烯的还原而得到石墨烯材料。 2、采用类似液相剥离,但施以电场力作用驱动电解液分子以电化学方式直接对石墨阴极进行插层,使石墨层间距变大,层间范德华力变弱,以非氧化方式直接对石墨片层进行电化学剥离制备得到石墨烯。 电化学法制备石墨烯的优势主要为:1)与普通化学氧化还原法相比,不需要用到强氧化剂、强还原剂及有毒试剂,成本低,清洁环保;2)通过电化学方式,在氧化时可以更多地以离子插入方式剥离而减少氧化程度降低对石墨烯结构的破坏,电化学还原时则能更彻底还原,因此制得的石墨烯具有更好的物理化学性质;3)以石墨工作电极为阴极进行非氧化直接剥离时,石墨片层结构没有受到破坏,可以得到与液相或机械剥离法一样高品质的石墨烯片,但因为电化学的强电场作用,比单纯的溶剂表面作用力或超声作用力要大得多,剥离的效率更高,与液相或机械剥离法相比,电化学剥离易实现高品质石墨烯批量制备;4)电化学制备过程中,电流与电压很容易精确控制,因此容易实现石墨烯的可控制备与性能调控,而且电化学法工艺过程与设备简单,容易操作控制;5)与CVD 及有机合成法相比,电化学法采用石墨为原料,我国石墨产量居世界前列,原料丰富成本低廉,不需要用到烯类等需大量进口的高价石化原料。 一、石墨阳极氧化剥离制备石墨烯 阳极氧化剥离制备石墨烯就是将石墨作为阳极,电源在工作时电解质中的阴离子向阳极移,进而进入阳极石墨导致石墨被插层而体积膨胀,当阳极石墨的体积增加到一定程度时,就会由于层间范德华作用力的减小而最终从块体上脱落下来,形成层状具有一定含氧官能团的石墨烯或氧化石墨烯(包括单层和2~10层的少层氧化石墨烯)。石墨由于电化学氧化和酸性阴离子的插层导致表面体积剧烈膨胀,这种现象在很早之前就有报道。近年来提出了电化学法阳极氧化石墨制备石墨烯的机理,在进行电化学反应时电解液中的阴离子会向阳极迁移,由于石

碳素材料简介

碳素材料简介 炭和石墨材料是以碳元素为主的非金属固体材料,其中炭材料基本上由非石墨质碳组成的材料,而石墨材料则是基本上由石墨质碳组成的材料。为了简便起见,有时也把炭和石墨材料统称为炭素材料(或碳材料)。 主要分类: 碳素散热片是以不干胶的形色直接将碳素散热片贴在芯片表面,碳素散热片因其柔软可与所贴附对象十分紧密的粘合,另外因其高热传导性(树脂的5-15倍)、横向的高热传导性(铜的两倍),与传统使用中的导热硅胶、硅胶片、金属片等比较,高碳素散热片能将热量均匀扩散更大幅度的散热。 高热传导平面用散热片: 利用其平面的高热传导性(铜的两倍),可将热迅速传递到金属壳以及散热型材上,降低发热点的温度,从而达到更好的散热效果。 炭素制品按产品用途可分为石墨电极类、炭块类、石墨阳极类、炭电极类、糊类、电炭类、炭素纤维类、特种石墨类、石墨热交换器类等。石墨电极类根据允许使用电流密度大小,可分为普通功率石墨电极、高功率电极、超高功率电极。炭块按用途可分为高炉炭块、铝用炭块、电炉块等。炭素制品按加工深度高低可分为炭制品、石墨制品、炭纤维和石墨纤维等。炭素制品按原

料和生产工艺不同,可分为石墨制品、炭制品、炭素纤维、特种石墨制品等。炭素制品按其所含灰分大小,又可分为多灰制品和少灰制品(含灰分低于l%)。 我国炭素制品的国家技术标准和部颁技术标准是按产品不同的用途和不同的生产工艺过程进行分类的。这种分类方法,基本上反映了产品的不同用途和不同生产过程,也便于进行核算,因此其计算方法也采用这种分类标准。下面介绍炭素制品的分类及说明。 主要制品 碳素行业的上游企业主要有:1、无烟煤的煅烧企业;2、煤焦油加工生产企业;3、石油焦生产及煅烧企业。炭和石墨制品: (一)石墨电极类 主要以石油焦、针状焦为原料,煤沥青作结合剂,经煅烧、配料、混捏、压型、焙烧、石墨化、机加工而制成,是在电弧炉中以电弧形式释放电能对炉料进行加热熔化的导体,根据其质量指标高低,可分为普通功率、高功率和超高功率。石墨电极包括:(1)普通功率石墨电极。允许使用电流密度低于17A/厘米2的石墨电极,主要用于炼钢、炼硅、炼黄磷等的普通功率电炉。 (2)抗氧化涂层石墨电极。表面涂覆一层抗氧化保护层的石墨电极,形成既能导电又耐高温氧化的保护层,降低炼钢时的电极消耗。

常用溶液的配置+氧化石墨烯的制备

PB和PBS是免疫细胞化学实验中最为常用的缓冲液, 0.01mol/L的PBS主要用于漂洗组织标本、稀释血清等,其pH应在7.25~7.35之间,否则需要调整。 0.1mol/L的PB常用于配制固定液、蔗糖等。 一般情况下,0.2mol/l PB的pH值稍高些,稀释成0.01mol/L的PBS时,常可达到要求的pH值,若需调整pH,通常也是调PB的pH。 配制方法为: 1.0.2mol/L(pH7.4)磷酸盐缓冲液(Phosphate Buffer, PB) 试剂:NaH2PO4?2H2O Na2HPO4?12H2O 配制方法:配制时,常先配制0.2mol/L的NaH2PO4和0.2mol/L的Na2HPO4,两者按一定比例混合即成0.2mol/L的磷酸盐缓冲液(PB),根据需要可配制不同浓度的PB和PBS。 (1)0.2mol/L的Na2HPO4;称取Na2HPO4.12H2o 31.2g(或NaH2PO4?H2O 27.6g)加重蒸水至1000ml溶解。 (2)0.2mol/L的Na2HPO4:称取NaHPO4.?12H2o 71.632g(或Na2HPO4?7H2O 53.6g或Na2HPO4?2H2o 35.6g)加重蒸水至1000ml溶解。 (3)0.2mol/L pH7.4的PB的配制:取19ml 0.2mol/L的NaH2PO4和81ml 0.2mol/L的 Na2HPO4?12H2O,充分混合即为0.2mol/L的PB(pH约为7.4~7.5)。若pH偏高或偏低,可通过改变二者的比例来加以调整,室温保存即可。 2.0.01mol/L磷酸盐缓冲生理盐水(Phosphate Buffered Saline, PBS) 试剂:0.2mol/L PB 50ml NaCl 8.5~9g(约0.15mol/L) 重蒸水至1000ml 配制方法:称取NaCl 8.5~9g及0.2mol/L的PB 50ml,加入1000ml的容量瓶中,最后加重蒸水至1000ml,充分摇匀即可。若拟配制0.02mol/L的PBS,则PB量加倍即可,依此类推

石墨电极编程作业

目的: 为了完善公司的编程管理制度,电脑文档管理,编程方法,加工参数,程序单制做,各种类型的工件的刀路编写能有固定.统一的制度及方法。以达到公司各类型产品制做周期准时,确保生产编排运作正常,产品质量稳定,赢得客户信任。和提高编程技术人员编程技能之目的。 目录: 1.电脑管理制度。 2.图档管理及NC程序管理规范。 3.程序单编写归定。 4.一般类型电极编程技巧及实例。 5.超行程电极的编程方法。 6.喇叭网孔电极编程方法。 7.EROWA制具使用方法。 8.长条(小电极用)夹具组使用方法。 电脑管理制度 1.1 每台电脑责任人必须管理好所用电脑及其各组件之保护及保养,

以确保无遗失,无损坏,能够长期正常运作。 1.2 电脑外表面必须每天清理.主机箱每周清理一次。 1.3 电脑不得私自更改.添加及删除用户名和密码。 1.4 未经主管批准.不得安装工作必须使用的软件之外的任何电脑程序及软件.如:游戏.音乐.非本公司常用编程软件等。 1.5不得私自拷贝.删除公司电脑内的任何资料。 1.6电脑如有硬件方面故障要及时填写“电脑维修申请单”交由电脑 部处理。 图档管理及NC程序管理规范 电极编程技巧及实例 特别说明:骨位电极侧面光刀一般选用平底刀或平底R角刀,其加工步距一定要跟据骨位斜度设定加工下切步距.我公司归定为:从0到0.5度每刀下切0.22MM, 从0.5到1度每刀下切0.2MM, 从1到2度每刀下切0.17MM, 从2到5度每刀下切0.12---0.15MM,如斜度大于5度可跟据电极型壮选合理的刀具及步距(一般用球头刀)。 扫顶程序:(目的:铲掉高度方向多余材料)每个电极必须要有扫顶程序,编程用“偏置粗加工策略”分2层加工,每层下2MM,高度方

氧化还原法制备石墨烯

创新实验课报告 题目:石墨烯的制备 专业…………………学生……… 学号……………指导教师……… 日期2014.05.09 哈尔滨工业大学

目录 1.绪论 (3) 1.1纳米技术概述 (3) 1.2碳纳米结构概述 (3) 1.3石墨烯的结构 (4) 1.4石墨烯的性能简介 (4) 2.实验目的及意义 (7) 3. 实验方案与实验步骤 (8) 3.1氧化还原法制备石墨烯概述 (8) 3.2 实验设备和实验试剂 (9) 3.3 制备氧化石墨烯 (10) 3.4 制备石墨烯 (11) 3.5 实验操作注意事项 (13) 4. 实验结果和分析 (15) 4.1 石墨烯的SEM分析 (15) 4.2 石墨烯的IR分析 (16) 4.2 石墨烯的Raman分析 (16) 5. 课程体会与建议 (18)

1.绪论 1.1纳米技术概述 纳米技术被称为第四世界的难题和21世纪的化学难题。纳米技术的重要意义在于,其技术应用尺度在0.1nm数量级至10nm数量级间,这属于量子尺度和静电尺度的模糊边界。从而导致纳米材料具有很特殊的性质,这种特殊性比较全面的表现在材料的物理性质和化学性质的各个方面。例如表面效应,在进行纳米尺度堆垛时,表面原子所占的比例越大的情况下堆垛体的直径越小。 1.2碳纳米结构概述 在石墨烯被发现后,碳纳米结构形成了一个从零维到三维的完整的体系。包括富勒烯,碳纳米管和石墨烯。 1.2.1 富勒烯 富勒烯即为,是第三种形式的单质碳。富勒烯这一名字来源于一次世博会上类 似的结构,在英文中也被称为Bucky Ball。在富勒烯被发现的过程中,有很多有趣的设想和实验。如Kroto设想红巨星附近的碳长链分子是一种碳团聚。Rice大学利用TOF-MS (飞行时间质谱仪)发现了峰。1985年《Science》上一篇文章的发表表明富勒烯的发现,但更伟大的意义在于这一事件标志着纳米技术的开端。 富勒烯由12个五边形和20个六边形构成,满足“定点数+面数-棱数=2”,D=0.7nm。这是一种完美的对称结构,在科研上具有很大的价值。例如富勒烯是一个可装入金属离子的绝缘体,有开发吵到材料的潜力,这也是笼中化学的范畴。但是富勒烯由于难以大量生产,实际应用的意义收到了很大限制。 1.2.2 碳纳米管 碳纳米管在1991年的时候由日本名城大学的S.Iijima发现,93年的时候,单壁碳纳米管被制备出来。碳纳米管是一种一维结构,在一维方向上具有非常高的强度和韧性,可以作为一种“超级纤维”使用。同时可以功能化为公家碳纳米管和非共价碳纳米管。 1.2.3 石墨烯 石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子,但实际上10层以内的石墨结构也可称作石墨烯。而10层以上的则被称为石墨薄膜。在石墨烯发现前,科学界已经有无法制备出石墨烯的结论。从传统的物理学来讲,越薄的材料越易气化;朗道物理学中的观点是:在有限温度下,任何二维晶格体系都不能稳定存在。也就是说除非绝对零度,石墨烯不会存在,然而绝对零度是不可能达到的,也就是说无法得到稳定存在的石墨烯。即使这样,依旧有科学家不断尝试制备出石墨烯:在99年的时候,

2016年 北京市 高考化学 试卷及解析

2016年北京市高考化学试卷 一、选择题. 1.(3分)我国科技创新成果斐然,下列成果中获得诺贝尔奖的是()A.徐光宪建立稀土串级萃取理论 B.屠呦呦发现抗疟新药青蒿素 C.闵恩泽研发重油裂解催化剂 D.侯德榜联合制碱法 2.(3分)下列中草药煎制步骤中,属于过滤操作的是()A.冷水浸泡B.加热煎制C.箅渣取液D.灌装保存 A.A B.B C.C D.D 3.(3分)下列食品添加剂中,其使用目的与反应速率有关的是()A.抗氧化剂B.调味剂C.着色剂D.增稠剂 4.(3分)在一定条件下,甲苯可生成二甲苯混合物和苯.有关物质的沸点、熔点如表: 1

对二甲苯邻二甲苯间二甲苯苯 沸点/℃138******** 熔点/℃13﹣25﹣476 下列说法不正确的是() A.该反应属于取代反应 B.甲苯的沸点高于144℃ C.用蒸馏的方法可将苯从反应所得产物中首先分离出来 D.从二甲苯混合物中,用冷却结晶的方法可将对二甲苯分离出来 5.(3分)K2Cr2O7溶液中存在平衡:Cr2O72﹣(橙色)+H2O?2CrO42﹣(黄色)+2H+.用K2Cr2O7溶液进行下列实验: 结合实验,下列说法不正确的是() A.①中溶液橙色加深,③中溶液变黄 B.②中Cr2O72﹣被C2H5OH还原 C.对比②和④可知K2Cr2O7酸性溶液氧化性强 D.若向④中加入70%H2SO4溶液至过量,溶液变为橙色 2

6.(3分)在两份相同的Ba(OH)2溶液中,分别滴入物质的量浓度相等的H2SO4、NaHSO4溶液,其导电能力随滴入溶液体积变化的曲线如图所示.下列分析不正确的是() A.①代表滴加H2SO4溶液的变化曲线 B.b点,溶液中大量存在的离子是Na+、OH﹣ C.c点,两溶液中含有相同量的OH﹣ D.a、d两点对应的溶液均显中性 7.(3分)用石墨电极完成下列电解实验. 实验一实验二 装 置 现象a、d处试纸变蓝;b处变红,局部褪 色;c处无明显变化 两个石墨电极附近有气泡产生;n 处有气泡产生;… 下列对实验现象的解释或推测不合理的是() 3

相关文档
最新文档