光电检测综合实验

光电检测综合实验
光电检测综合实验

硅光电池特性测试实验报告

硅光电池特性测试实验报告 系别:电子信息工程系 班级:光电08305班 组长:祝李 组员:贺义贵、何江武、占志武 实验时间:2010年4月2日 指导老师:王凌波 2010.4.6

目录 一、实验目的 二、实验内容 三、实验仪器 四、实验原理 五、注意事项 六、实验步骤 七、实验数据及分析 八、总结

一、实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池伏安特性测试实验 5、硅光电池负载特性测试实验 6、硅光电池时间响应测试实验 7、硅光电池光谱特性测试实验 设计实验1:硅光电池光控开关电路设计实验 设计实验2:简易光照度计设计实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台 四、实验原理 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合

光电实验

光电综合实验(2) 实验报告 姓名学号 学院: 专业: 类型大型综合实验 指导教师: 年月日

实验一阿贝成像原理和空间滤波实验 1.引言 阿贝所提出的显微镜成像的原理以及随后的阿—波特实验在傅里叶光学早期发展历史上具有重要的地位。这些实验简单而且漂亮,对相干光成像的机理、对频谱的分析和综合的原理做出了深刻的解释。同时,这种用简单模板做滤波的方法,直到今天,在图像处理中仍然有广泛的应用价值。 人眼对灰度图像的分辨率是不高的,最多有15~20个层次。但是人眼对色度的识别能力却很高,可以分辨数十种乃至上百种色彩。若能将图像的灰度分布转换为彩色分布,势必大大提高人们对图像的分辨能力,这种技术称为图像的假彩色编码。黑白图像的假彩色化已经在遥感、生物医学、信息处理中得到了广泛的应用。 1.1实验目的和意义 1、通过实验来重新认识夫琅禾费衍射的傅里叶变换性质,加深对空间频率、空间频谱和空间滤波等概念的理解; 2、熟悉阿贝成像原理,从信息量的角度理解透镜孔径对分辨率的影响; 3、完成一维空间滤波、二维空间滤波及高通空间滤波; 4、掌握θ调制假彩色编码的原理; 5、巩固和加深对光栅衍射基本理论的理解; 6、通过实验,利用一张二维黑白图像获得假彩色编码图像; 7、巩固光学实验中有关光路调整和仪器使用的基本技能。 2.系统概述 2.1 系统原理 1、共轴光路调节 调节激光束平行于光具座,并位于光具座正上方,把屏Q插在光具座滑块上, 并移近激光架L S ,把L S 作上下、左右移动,使光束偏离O,调节L S 的俯仰及侧转, 使光束又穿过小孔;再把Q推至L S 边上,反复调节,直到Q在光具座平移时激 光束均穿过O为圆心的孔,以后就不再需要改变L S 的位置。

APD光电二极管特性测试实验

APD光电二极管特性测试实验 一、实验目的 1、学习掌握APD光电二极管的工作原理 2、学习掌握APD光电二极管的基本特性 3、掌握APD光电二极管特性测试方法 4、了解APD光电二极管的基本应用 二、实验内容 1、APD光电二极管暗电流测试实验 2、APD光电二极管光电流测试实验 3、APD光电二极管伏安特性测试实验 4、APD光电二极管雪崩电压测试实验 5、APD光电二极管光电特性测试实验 6、APD光电二极管时间响应特性测试实验 7、APD光电二极管光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、光敏电阻及封装组件 1套 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、示波器 1台

四、实验原理 雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。 雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。 图6-1为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I 区。图4的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P 区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪崩区较窄,不能充分吸收光子,相当多的光子进入了I区。I区很宽,可以充分吸收光子,提高光电转换效率。我们把I区吸收光子产生的电子-空穴对称为初级电子-空穴对。在电场的作用下,初级光生电子从I区向雪崩区漂移,并在雪崩区产生雪崩倍增;而所有的初级空穴则直接被P+层吸收。在雪崩区通过碰撞电离产生的电子-空穴对称为二次电子-空穴对。可见,I区仍然作为吸收光信号的区域并产生初级光生电子-空穴对,此外它还具有分离初级电子和空穴的作用,初级电子在N+-P区通过碰撞电离形成更多的电子-空穴对,从而实现对初级光电流的放大作用。

光电探测技术实验报告

光电探测技术实验报告 班级:08050341X 学号:28 姓名:宫鑫

实验一光敏电阻特性实验 实验原理: 光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、 各种光源、遮光罩、激光器、光照度计(由用户选配) 实验步骤: 1、测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩 盖,用万用表测得的电阻值为暗电阻 R暗,移开遮光罩,在环境光照下测得的光敏电阻的 阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光 电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻, 试作性能比较分析。 2、光敏电阻的暗电流、亮电流、光电流 按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 分别测出两种光敏电阻的亮电流,并做性能比较。 图(2)几种光敏电阻的光谱特性 3、伏安特性: 光敏电阻两端所加的电压与光电流之间的关系。 按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果填入表格并作出V/I曲线。 注意事项: 实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

实验七 光电倍增管的特性与特性参数测试

实验七光电倍增管的特性与特性参数测试 1. 实验目的: 光电倍增管是最灵敏的光电器件。它的暗电流、噪声、灵敏度大范围可调和时间响应等特性都具有独特的特点,因此,光电倍增管是非常优秀的光电器件。掌握光电倍增管的主要特性参数,及其它的供电电路对于正确应用光电倍增管解决微弱辐射的测量技术是非常重要的。 2. 实验仪器: 1)GDS-Ⅱ型光电综合实验平台主机; 1)GDBS-Ⅰ型光电倍增管实验装置; 3. 实验内容: 1、光电倍增管阳极暗电流I D的测量; 2、光电倍增管阳极光照灵敏度S a的测量;光电倍增管的灵敏度S a与电源电压U bb 的关系; 3、测量光电倍增管的增益G; 4. 实验原理 1)光电倍增管工作原理 光电倍增管是真空光电器件,它主要由光入射窗、光电阴极面、电子聚焦系统、倍增电极和阳极等5部分构成。其工作原理如“光电技术”教材第4章所讲述,分下面5部分: (1)光子透过入射窗口玻璃入射到玻璃内层光电阴极上,窗口玻璃的透过 率满足光电倍增管的光谱响应特性; (2)进入到光电阴极上的光子使光电阴极材料产生外光电效应,激发出电 子,并飞离表面到真空中,称其为光电子; (3)光电子通过电场加速,并在电子聚焦系统的作用下射入到第一倍增极 D1上,倍增极D1将发射出比入射光电子数目增多δ倍,这些二次电子又在电场 作用下射入到下一增极; (4)入射电子经N级倍增后,电子数就被放大δN倍; (5)经过电子倍增后的二次电子由阳极收集起来,形成阳极电流,在负载上产生压降,输出电压信号U o。 2)光电倍增管的基本特性参数 光电倍增管的特性参数包括光电灵敏度、电流增益、光电特性、阳极特性、暗电流特性与时间响应等特性。 ①光电灵敏度 光电灵敏度是光电倍增管探测光信号能力的一个重要标致,光电灵敏度通常分为阴极灵

光电检测实验报告(2)硅光电池

光电检测实验报告 实验名称:硅光电池特性测试实验实验者: 实验班级: 实验时间: 指导老师:宋老师

一:实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池负载特性测试实验 5、硅光电池光谱特性测试实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台

四、实验步骤 1、硅光电池短路电流特性测试: (1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。 (2)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。 (3)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。 (4)按图2-11所示的电路连接电路图 (5)记录下此时的电流表读数I即为硅光电池短路电流。 图2-11 硅光电池短路电流特性测试 2、硅光电池开路电压特性测试 (1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4

与光通路组件光源接口使用彩排数据线相连。 (2)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。 (3)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。 (4)按图2-12所示的电路连接电路图 (5)记录下此时电压表的读数u即为硅光电池开路电压。 图2-12 硅光电池开路电压特性测试 3、硅光电池伏安特性测试 (1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。 (2)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。 (3)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。 (4)电压表档位调节至2V档,电流表档位调至200uA档,将“光照度调节”旋钮逆时针调节至最小值位置。

光伏工程实验室建设仪器清单

光伏工程实验室仪器清单 设备名称/支出项目设备型号规格数量光电综合实验平台 彩色面阵CCD/CMOS综合实验仪 太阳能电池实验系统 光纤特性及传输实验仪 太阳能—氢能转换综合实验仪 单晶硅太阳电池组件120W 单晶硅太阳电池组件55W 多晶硅太阳电池组件80W 多晶硅太阳电池组件25W 多晶硅太阳电池组件10W 太阳能草坪灯 太阳能草坪灯 太阳能路灯 蓄电池12V 100Ah、 蓄电池12V 200Ah 蓄电池12V 65Ah 蓄电池24V 100Ah 蓄电池24V 200Ah 蓄电池24V 65Ah 光伏控制器DC12V 10A 光伏控制器DC12V 20A 光伏控制器DC12V 30A 光伏控制器DC12V 50A 光伏控制器DC12V 80A 光伏控制器DC24V 10A 光伏控制器DC24V 20A 光伏控制器DC24V 30A 光伏控制器DC24V 50A 光伏控制器DC24V 80A 光伏控制器用PIC开发系统 便携式光伏方阵测试仪 真空吸盘 冰箱 氙灯光源 卤钨灯光源 硅光电探测器 恒温电焊台942 恒温电焊台936A PSP太阳总辐射表 太阳能便携式电源 阳光辐照计

数字存储示波器 手持式数字万用示波表 LED灯(带灯套)DC 12V 18W LED灯(带灯套)DC 12V 35W 节能灯泡AC 220V 8W 节能灯泡DC 12V 11W 低压钠灯(带灯套)DC 24V 18W 低压钠灯(带灯套)DC 24V 30W 粉末压片机 温控仪 台式离心机 实验室球磨机 光谱辐射分析仪 电脑 电脑 太阳模拟器 风力储能电池12V 22Ah 风光互补控制器fg24-1000 风光互补控制器fg24-600 控制逆变器SK12-240 半导体传感器实验仪 振动样品磁强计 多晶X射线衍射仪 风力发电机 光伏逆变器DSP开发套件 光伏逆变器DSP开发套件 光伏逆变器DSP仿真器 并网逆变电源BNSG1KD 并网逆变电源BNSG1K5D 并网逆变电源SG3K 正弦波逆变器SK2000 -212 正弦波逆变器SK2000-224 直流稳压稳流电源WYK-6010B2-H 锁相放大器 光谱仪 斩波器 太阳电池单片测试仪 精密金相研磨抛光机 电热恒温干燥箱202-2(A)箱式电阻炉 色度实验装置 太阳电池组件测试仪 氢气发生器普用

光电检测实验报告

光电检测试验报告 专业:应用物理学 姓名:叶长军 学号:10801030125 指导教师:王颖 实验时间:2011.4 重庆理工大学光电信息学院

实验一 光敏电阻特性实验 实验原理: 利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻。光敏电阻采用梳 状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 内光电效应发生时,光敏电阻电导率的改变量为: p n p e n e σμμ?=???+??? ,e 为 电荷电量,p ?为空穴浓度的改变量,n ?为电子浓度的改变量,μ表示迁移率。当两端加上电压U 后,光电流为:ph A I U d σ=??? 式中A 为与电流垂直的表面,d 为电极间的间距。在一定的光照度下,σ?为恒定的值,因而光电流和电压成线性关系。 光敏电阻的伏安特性如图1-2所示,不同的光照度可以得到不同的伏安特性,表明 电阻值随光照度发生变化。光照度不变的情况下,电压越高,光电流也越大,光敏电阻的工作电压和电流都不能超过规定的最高额定值。 图1-2光敏电阻的伏安特性曲线 图1-3 光敏电阻的光照特性曲线 实验仪器: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器、光照度计(做光照特性测试,由用户自备或选配) 实验步骤: 1. 测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表欧姆档测得的电阻值为 暗电阻R 暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻R 亮,暗电阻 与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。 2. 光敏电阻的暗电流、亮电流、光电流 按照图1-5接线,分别在暗光及有光源照射下测出输出 电压暗和U 亮,电流L 暗=U 暗/R,亮电流L 亮=U 亮/R ,亮电流 与暗电流之差称为光电流,光电流越大则灵敏度越高。 3. 光敏电阻的伏安特性测试 按照上图接线,电源可从直流稳压电源+2~+12V 间选用, 每次在一定的光照条件下,测出当加在光敏电阻上电压 为 +2V ;+4V ;+6V ;+8V ;+10V ;+12V 时电阻R 两端的电压U R ,

光电技术实验

光电技术实验实验报告

目录 一、光源与光辐射度参数的测量(必做) (3) 二、PWM调光控实验 (5) 三、LED色温控制实验 (8) 四、光敏电阻伏安特性实验 (11) 五、线阵CCD驱动电路及特性测试(必做) (13) 六、相关器的研究及其主要参数的测量(必做) (15) 七、多点信号平均器(必做) (19) 八、考试内容 (23)

实验一 光源与光度辐射度参数的测量 一、实验目的 1.熟悉进行光电实验过程中所用数字仪表使用方法 2.了解LED 发光二极管 3.研究影响LED 光照度的参数 二、实验仪器 光电综合实验平台主机系统 1 台、发白光的 LED 平行光源(远心照明光源)及其夹持装置各 1 个 三、实验原理 (1)LED 发光原理:LED 发光二极管为 PN 结在正向偏置下发光的特性。有些材料构成的 PN 结在正向电场的作用下,电子与空穴在扩散过程中要产生复合。复合过程中电子从高能级的“导带”跌落至低能级的“价带”, 电子在跌落过程中若以辐射的形式释放出多余的能量,则将产生发光或发辐射的现象。并且,可以通过控制电流来控制(或调整)发光二极管的亮度,即可以通过改变发光管的电流改变投射到探测器表面上的照度,这就是 LED 光源具有的易调整性。 (2)光度参数与辐射度参数:光源发出的光或物体反射光的能量计算通常是用“通量”、“强度”、“出射度”和“亮度”等参数,而对于探测器而言,常用“照度”参数。辐照度或光照度均为单位探测器表面所接收的辐射通量或光通量。即 )/(2m W S e Ee φ= 或 )(lx S v Ev φ= 式中S 为探测器面积。 (3)点光源照度与发光强度的关系:各向同性的点光源发出的光所产生的照度与发光强度 I v 成正比,与方向角的余弦(COS φ)成正比,与距离光源的距离平方(l^2)成反比,即 )(cos 2 lx l Iv Ev φ = 四、实验内容 (1)安装LED 发光装置与照度探测器装置,并在电路中接入电流表、限流电阻和可调电阻测量发光LED 的电流。 (2)测量发光管未点亮时的暗背景照度。 (3)测量同一距离、同一LED 的照度值随电流变化的情况。记录实验数据。 (4)调节LED 与照度探测器间的距离,重复步骤(3)。记录实验数据。 (5)更换不同的LED ,重复步骤(3)和(4)。 (6)测量遮罩时红光LED 的照度值和与探测器间距的关系,实验步骤类似,注意保持LED 电流不变。记录实验数据。 (7)关机结束实验。 五、数据处理 (1)测量不同距离、不同LED 光照度参数的测量 背景光强:Evb=7.35×10 Lx

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

光电信号检测实验

实验一 光敏电阻特性实验 实验原理: 利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻,又称为光导管。是一种均质的半导体光电器件,其结构如图1-1所示。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 光敏电阻应用得极为广泛,可见光波段和大气透过的几个窗口都有适用的光敏电阻。利用光敏电阻制成的光控开关在日常生活中随处可见。当光电效应发生时,光敏电阻电导率的改变量为: p n p e n e σμμ?=???+??? 在上式中,e 为电荷电量,p ?为空穴浓度的改变量,n ?为 电子浓度的改变量,μ表示迁移率。当两端加上电压U 后,光电流为:ph A I U d σ= ??? 式中A 为与电流垂直的表面,d 为电极间的间距。在一定的光照度下,σ?为恒定的值,因而光电流和电压成线性关系。 光敏电阻的伏安特性如图1-2所示,不同的光照度可以得到不同的伏安特性,表明电阻值随光照度发生变化。光照度不变的情况下,电压越高,光电流也越大,光敏电阻的工作电压和电流都不能超过规定的最高额定值。 图1-2光敏电阻的伏安特性曲线 图1-3 光敏电阻的光照特性曲线 光敏电阻的光照特性则如图 1-3 所示。不同的光敏电阻的光照特性是不同的,但是在大多数的情况下,曲线的形状都与图1-3 类似。由于光敏电阻的光照特性是非线性的,因此不适宜作测量型的线性敏感元件,在自动控制中光敏电阻常用作开关量的光电传感

器。 图1-4 几种光敏电阻的光谱特性 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器 实验步骤: 1.测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表欧姆档测得的电阻值为 暗电阻R 暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻R 亮 ,暗电阻与 亮电阻之差为光电阻,光电阻越大,则灵敏度越高。 结果:用万用表欧姆档测得的暗电阻为∞,超出万用表的量程。在环境光照下的亮电阻为6.5k?。 在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。 2.光敏电阻的暗电流、亮电流、光电流 按照图1-5接线,分别在暗光及有光源照射下测出输出U 暗和U亮,电流L 暗=U 暗 /R,亮电流L 亮 =U 亮 /R,亮电流与 暗电流之差称为光电流,光电流越大则灵敏度越高。 结果:暗光时电流为0。有光源照射时光电流为71uA。 3. 光敏电阻的伏安特性测试 按照图1-5接线,电源可从直流稳压电源+2~+12V间 选用,每次在一定的光照条件下,测出当加在光敏电阻上 电压为+2V;+4V;+6V;+8V;+10V时电阻R两端的电压U R,和电流数据,同时算出此时光敏电阻的阻值,并填入以下表格,根据实验数据画出光敏电阻的伏安特性曲线。 图1-5 光敏电阻的测量电路 光敏电阻伏安特性测试数据表(暗光) 电源电压(毫 伏) 2 4 6 8 10 U R(伏) 1.98 3.98 5.98 7.98 9.87 电阻(欧姆)∞∞∞∞∞ 电流(毫安)0 0 0 0 0

光电信号转换测试

实验报告:光电信号转换测试 一、实验目的 1、了解光电响应现象及光电响应的原理。 2、熟悉利用电化学手段测试光电响应的方法,能熟练的操作电化学工作站进行光电响应的测试。 二、实验内容 通过电化学的方法测试样品的光电相应参数,如记录光电流值,开路电压,计算样品的功率,并根据数据进行作图分析。 三、实验原理 光伏响应原理: P 型半导体(空穴多)和n 型半导体(电子多)相结合时,在其交界处形成p-n 结,p 区的空穴向n 区扩散,n 区的电子向p 区扩散,引起p 区荷负电,n 区荷正电,在p-n 交界面附近的一个区域(结区,或称耗尽区)内形成一电 图1(a) 太阳光辐照下的硅p-n 结太阳能带, 图1(b)太阳能电池的理想等效

场,称为内建电场,如图1(a)所示。图中左侧为n区,右侧为p区,纵坐 标为电子能量。电子能量越高,电势越低。n区电势比p区电势高,电场方向 由n区指向p区。当光电池受到太阳光照时,能量大于构成p-n结的半导体材料的禁带宽度Eg的光子将价带电子激发到导带,同时在价带中产生空穴,它 们都称为光生载流子。在p-n结的结区,光生电子和空穴被内建电场分别推到势垒的n、p区边沿,然后向各自的内部扩散,在两端形成电压,这就是光伏 效应。若在p-n结两端接入外电路,该光生电压就可形成电流。从外电路来看,发生光伏效应的那个p-n结就是一个电源,即光电池,如图1(b)所示。 四、材料与仪器 电化学工所站、太阳能电池。 五、实验步骤 1. 完成电化学工作站的测试电路的连接; 2. 点start开始测试,测量样品的光电响应曲线、暗态和光照下的开路电极电势,并记录所得的光电流以及开路电压,并计算样品的功率。 六、实验数据记录与分析 1. I-V特征曲线: 暗态:

光电检测技术实验设计

光电检测技术 实验报告 题目:光电报警系统的设计和制作学院:仪器科学与光电工程学院专业:测控技术与仪器 班级: 学生姓名: 指导老师:

实验三 光电报警系统的设计和制作 一、设计任务 红外报警器系统的原理框图如图1所示。由红外光源发出的红外辐射被红外探测器接收,红外辐射信号变为电信号,经信号放大和处理电路后送报警电路。系统分成发送和接收两部分,分开放置。当没有人和物体进入这两部分之间,红外辐射没有被阻挡时,报警处于不报警状态。一旦有人或物体进入这两部分之间。红外辐射被阻挡,报警器立即翻转到报警状态。 图1 红外报警器系统原理框图 二、设计方案 (1)发射端电路 用NE555组成振荡器来驱动发光管,NE555构成多谐振荡器原题图如图2所示。下面对照电路图简述其工作原理及参数选择。 图2 多谐振荡器 注:1地 GND 2触发 3输出 4复位 5控制电压 6门限(阈值) 7放电 8电源电压Vc 当3脚为高电平(略低于Vc 时),输出电压将通过R1对C1充电。A 点电压按指数规律上升,时间常数为R1C1。 当A 点电压上升到上限阙值电压(约2Vc/3时),定时器输出翻转成低电平

(略大于0V)。这时,A点电压将随C1放电而按指数规律下降。当A点下降到下限阙值电压(约Vc/3)时,定时器输出变成高电平,调整R2的阻值得到严格的方波输出。 用NE555组成振荡器来驱动发光管时,要注意发光管上串联一个限流电阻。使输出电流小于或等于发光管的最大正向电流 F I。若振荡器输出电压为Vo,则 限流电阻R取值为F F O I V V R - ≥ 。如果限流电阻低于上述公式所得值,或未加限流电阻,则会造成发光管和定时器烧毁。 D2 LED 图3 振荡发射电路原理图 (2)光电检测、比较报警电路 D4 LED R8 500 图4 光电检测放大器电路原理图比较报警电路的设计利用光敏二极管的反向特性,当接收到光信号时,光敏二极管导通良好,产生电压,放大器即可对信号处理;当没有接收到光信号时,光敏二极管截止,放大器的同相端电压几乎为0。利用1/2LF353构成的光放大器,如图所示。用1/2LF353构成一个比较放大器。放大器的正端加2V左右偏压,负端加信号电压。当光线未阻断时,从主放大器来的交流信号经二极管检波电路,再经低通滤波器后得到直流电压,使后面的放大器负载输入端电位大于(或等于)正输入端电位。

光电实验报告.

长春理工大学 光电信息综合实验一实验总结 名:赵儒桐 学号:S1******* 专业:信息与通信工程学院:电子信息工程2016年5月20号

实验一:光电基础知识实验 1、实验目的 通过实验使学生对光源,光源分光原理,光的不同波长等基本概 念有具体认识。 2、实验原理 本实验我们分别用了普通光源和激光光源两种。普通光源光谱 为连续光谱,激光光源是半导体激光器。在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。激光光源发射出来的是波长为630 纳米的红色光。 3、实验分析 为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。 实验二:光敏电阻实验 1、实验目的 了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。 2、实验原理 在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照越强,器件自身的电阻越小。光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。 3、实验结果

当 光敏电阻的工作电压(Vcc )为+5V 时,通过实验我们看出来 改变光照度的值,光源的电流值是发生变化的。光照度增加电流值也 是增加的。测得实验数据如表2-1 : 光敏电阻光照特性实验数据 光照度 (Lx ) 20 40 60 80 100 120 140 160 180 电流mA 0.37 0.52 0.68 0.78 0.88 1.00 1.07 1.18 1.24 表2-1光敏电阻光照特性实验数据 得到的光敏电阻光照特性实验曲线: 光敏电阻伏安特性实验数据 型号:G5528 电压 (U ) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 照度 (Lx ) 50 电流 (mA 0 0.05 0 .11 0. 17 0.2 4 0.29 0.35 0 1.42 0. 48 0.5 4 0.6 100 电流 (mA 0 0.09 0 .19 0. 28 0.3 3 0.48 0.58 0 .67 0. 77 0.8 7 0.95 150 电流 (mA 0.12 0 .24 0. 37 0.4 9 0.62 0.74 0.87 0. 98 1.1 2 1.19 通过实验我们看出光敏电阻的光电流值随外加电压的增大而增 大,在光照强度增大的情况下流过光敏电阻的电流值也是增大的, 得 到 数据如表2-2。 光敏电阻光照特性实验曲线 图2.1

实验一 电力系统综合实验平台认识与基本要求

实验一电力系统综合实验平台认识与基本要求 内容一:电力系统综合实验平台认识 一、THLZD-2型电力系统综合自动化实验台 实验台包括以下单元: 1.输电线路单元:采用双回路输电线路,每回输电线路分两段,并设置有中间开关站,可以构成四种不同的联络阻抗。输电线路的具体结构如下图所示: 图1-3 单机-无穷大系统电力网络结构图 输电线路分“可控线路”和“不可控线路”,在线路XL4上可设置故障,该线路为“可控线路”,其他线路不能设置故障,为“不可控线路”。 ⑴“不可控线路”的操作 操作“不可控线路”上的断路器的“合闸”或“分闸”按钮,可投入或切除线路。按下“合闸”按钮,红色按钮指示灯亮,表示线路接通;按下“分闸”按钮,绿色按钮指示灯亮,表示线路断开。 ⑵“可控线路”的操作 在“可控线路”上预设有短路点,并在该线路上装有“微机线路保护装置”,可实现过流保护,并具备自动重合闸,通过控制QF4和QF6来实现。QF4和QF6上的两组指示灯亮或灭分别代表QF4和QF6的A相、B相和C相的三个单相开关的合或分状态。 为了实现非全相运行和分相切除故障,QF4和QF6的分、合控制与“不可控线路”上断路器操作不同,区别如下: 正常工作时,按下QF4合闸按钮,三个单相指示灯亮,而QF4红色合闸按钮灯不亮,手动分闸或微机线路保护装置动作三相全跳时,绿色分闸指示灯亮,三个单相指示灯全灭;当保护装置跳开故障相时,故障相的指示灯灭。 ⑶中间开关站的操作 中间开关站是为了提高暂态稳定性而设计的。不设中间开关站时,如果双回路中有一回路发 生严重故障,则整条线路将被切除,线路的总阻抗将增大一倍,这对暂态稳定是很不利的。 设置了中间开关站,即通过开关QF5的投入,在距离发电机侧线路全长的1/3处,将双回路并联起来,XL4上发生短路,保护将QF4和QF6切除,线路总阻抗也只增大2/3,与无中间开关站相比,这将提高暂态稳定性。中间开关站线路的操作同“不可控线路”。 ⑷短路故障的设置 实验台面板右下方有短路类型设置模块,由短路类型设置按钮,设置短路持续时间用的

实验报告_光电效应实验

南昌大学物理实验报告 学生姓名: 学号: 专业班级:材料124班 实验时间:10时00分 第十一周 星期四 座位号:28 一、 实验名称: 光电效应 二、 实验目的: 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、实验仪器: 光电效应测试仪、汞灯及电源、滤色片、光阑、光电管、测试仪 四、实验原理: 1、 光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了“光量子"的概念,认为对于频率为γ的光波,每个光子的能量为E h ν=,其中 h =6.626 s J ??-3410为普朗克常数。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: 21 2h m W νυ=+ (1) 式中, 为入射光的频率,m 为电子的质量, 为光电子逸出金属表面的初速度,W 为被 光线照射的金属材料的逸出功,1/2mv 2 为从金属逸出的光电子的最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零.这个相对于阴极为负值的阳极电位0U 被称为光电效应的截止电压。 显然,有 eu 0-1/2m v2 =0 (2) 代入上式即有 0h eU W ν=+ (3) 由上式可知,若光电子能量h + W,则不能产生光电子。产生光电效应的最低频率是 0 =W /h,通常称为光电效应的截止频率。不同材料有不同的逸出功,因而 也不同.由

光电传感器实验平台软件设计

光电传感器实验平台软件设计 摘要:此光电传感器实验平台软件设计包括光电转换、测量计算、输入输出三部分,光源信号作用于各光电传感器,由模数 转换ADC0809采集光敏电阻、光敏二极管、光敏三极管、光电池的输出信号,透射式光电开关、热释电红外器件的输出信号 为开关量,不需要经过模数转换ADC0809,把采集到的数据经单片机测量编程测量计算,将传感器主要特征参数实时显示出 来。我们用按键选择要进行的实验项目。测量计算的核心器件为单片机,单片机系统实时测算并显示出传感器元件的主要参 数。 关键字:传感器;转换模块;单片机 第1章引言 我国理工科院校现有的大学实验教学仪器都属于单一模式的仪器,即光学工程类、模电类、数电类、 传感器类等单一功能的实验教学方法和仪器。这些实验教学仪器虽然能够进行本学科的单科教学实验,但 不能进行多学科综合性的实验教学,更无法培养学生的综合实验技能。 此光电传感器实验平台由光源、光电转换、测量计算、输入输出部分组成。可以完成光电传感器的原理性实验,同时可进行应用性实验;整体结构紧凑,功能完整,实验平台即构成完整的光电传感器系统。 所有器件均在同一侧,有利于对具体的光电元件和转换电路的感性认识,深刻理解具体电路的参数与组成。通过更换光源器件可以进行光谱特性的初步测量。单片机系统对光电传感器信号进行处理是传感器系统的重要应用方向。 第2章方案设计

本设计由光源、光电转换、测量计算、输入输出部分组成。可以完成光电传感器的原理性实验,同时可进行应用性实验,以实验平台构成完整的光电传感器系统。 安装不同的光源,通过调节电路改变光强,经过光电转换部分得到合适的处理信号,用ADC0809来采集。 测量计算部分包括AD转换和单片机,采用ADC0809作为模数转换控制器,单片机采用51单片机,且支持在线调试,学生可以充分理解软件框架与控制流程;可以对实验软件做自主性的修改。进行模数转换的器件都有一定的电压输入范围,当传感器信号经调理过程进入模数转换器时电压量也应保持在两成范围内。接入模数转换控制器的信号有两路,第一路信号为光源电路中的电压信号,第二路信号为光电传感器输出经信号调理电路调整后的电压信号。51单片机将第二路信号经电路模型和算法处理,得出光电传感器元件的主要参数送驶入输出部分。 输入输出部分包括LCD显示器,小键盘和执行部件。显示器件为字符型液晶显示器,显示光源信号值和光电传感器主要参数;小键盘包括0~9的数字键和“确定”、“返回”,共12个按键,实现实验项目的选择;电子音响和LED作为执行部件,在光电传感器应用系统中根据传感器的信号做出不同执行动作。 可以进行各种光电传感器的原理与应用实验,基本光电传感器包括:光敏电阻、光敏二极管、光敏三极管、光电池、透射式光电开关、热释电红外器件。 2.1光电传感器实验平台模块分布 图2 2.2光电传感器实验平台的硬件结构[1] (1)光源通过调节电路改变光强,不同的实验给出不同的光强。 (2)在实验平台上用遮光板盖住光源和光敏电阻,入射光强,电阻减小,入射光弱,电阻增大。 (3)在实验平台上用遮光板盖住光源和光敏二极管,当有光照的时候,光敏二极管的暗电流增大,无光照的时候,其暗电流很小。 (4)在实验平台上用遮光板盖住光源和光敏三极管,其测试电路就有暗电流,取走遮光板时即有光电流。(5)在实验平台上当有光入射到光电池表面时,电路中产生光电流。 (6)在实验平台上安装好光源和接收器,用遮光板盖住光源和接收器,测试透射式光电开关接收器的信号量。 (7)在实验平台上安装好光源和接收器,用遮光板盖住或移开光源和接收器,观察热释电红外传感器信号的变化。将以上试验测得数据,通过ADC0809的采集,送到单片机通过相应的公式计算得出要测得参数,并显示出来。

光电信号的检测方法(莫尔拓扑图)

第五章:光电信号的检测方法 单频光相位调制和条纹检测 在使用窄光束单频光波相位调制的干涉测量中,干涉条纹的形成和检测是在光束重叠的较小空间范围内进行的,通常采用单元光电器件检测局部位置上的干涉条纹波数或相位随时间的变化。 1.单频光的相位调制 在单一频率相干光路中,被测量使相干光波的相位发生变化,同时通过干涉作用把波相位的变化变换为振幅的变化,这个过程称单频光波的相位调制或称相幅变换。由前面的公式可知,能引起相位变化的参量是光路长L和介质折射率n。因此相位调制通常是利用不同形式的干涉仪,借助机械的、光学的、光电子学等变换器伴将被测量的变化转换为光路长L 和折射率n的变化。前者用来检测几何和机械运动参量,后者用于分析物质的理化特性。 为了定量描述被测参量对相位调制的影响,采用规一化相位响应表示在单位长度的光路内由被测参量引起的相位变化。 (1/L)(dφ/dF)=(2π/λ0)[dn/dF+(n/L)(dL/dF)] 式中,(1/L)(dφ/dF)为规一化相位响应,L为干涉光路长度,F为被测参量。 等式右端两项分别表示折射率变化和光路长度变化引起的相位响应。上式可用来衡量相位调制的各种类型光学干涉仪和光纤干涉仪的工作特性。 1)光学干涉仪相位调制 通常作为相位调制用的光学干涉仪有迈克尔逊干涉仪、吉曼干涉汉、马赫-泽德干涉仪、萨纳克干涉仪和法布里-珀罗干涉仪等。下图给出了它们的原理示意图。 典型的光学干涉仪原理示意图 除了法布里-珀罗干涉仪外,前述干涉仪皆属双光束干涉。干涉强度分布满足公式。图a的迈克尔逊干涉仪其特点是结构简单,条纹对比度好,信噪比高。测量镜M2与被测物连接可以感知位移、变形等参量。由于M2的位移量Δx引起测量光路2Δx的变化,即λ/2的位移引起干涉条纹一个周期的变化,所以条纹的计数和被测位移的计算关系简单。它的测量灵敏度达10-13m的数量级。其缺点是输出光束能经分束镜返回激光器,这将使激光器工作不稳定,这可以通过设置偏振器来防止。图b是吉曼干涉仪。同样厚度的二块玻璃板背面镀以反射膜,利用两玻璃表面的反射形成光束的分束和再合成。由于两光路的光程差很小,即使相干性较差的光源也可进行精密测量。它主要用来测定透光物质(例如气体)的折射率,可进行标准试样和被测试样的比较测量。若试样长度为L,条纹测量精度为λ/50,则折射率误差在δn=λ/50L之内。图c是马赫-泽德干涉仪,由二片分束镜和二片反射镜组成。输出分束镜有两束干涉光输出,可用于布置多路接收器,它的返回散射光较少,有利于降低激光的不稳定噪声。被测位移的引入通过可移动反射镜进行,位移范围不能超过相干光束的截面。

相关文档
最新文档