fork创建多个子进程

fork创建多个子进程
fork创建多个子进程

Fork同时创建多个子进程方法(一)

第一种方法:验证通过

特点:同时创建多个子进程,每个子进程可以执行不同的任务,程序可读性较好,便于分析,易扩展为多个子进程

int main(void)

{

printf("before fork(), pid = %d\n", getpid());

pid_t p1 = fork();

if( p1 == 0 )

{

printf("in child 1, pid = %d\n", getpid());

return 0; //若此处没有return 0 p1 进程也会执行pid_t p2=fork()语句

}

pid_t p2 = fork();

if( p2 == 0 )

{

printf("in child 2, pid = %d\n", getpid());

return 0; //子进程结束,跳回父进程

Printf("hello world\");//没有打印

}

int st1, st2;

waitpid( p1, &st1, 0);

waitpid( p2, &st2, 0);

printf("in parent, child 1 pid = %d\n", p1);

printf("in parent, child 2 pid = %d\n", p2);

printf("in parent, pid = %d\n", getpid());

printf("in parent, child 1 exited with %d\n", st1);

printf("in parent, child 2 exited with %d\n", st2);

return 0;

}

第二种方法:验证通过

特点:同时创建两个子进程,结构比较繁琐,程序可读性不好,不易扩展#include

#include

#include //这个头文件不能少,否则pid_t没有定义main()

{

printf("This is parent process%d\n",getpid());

pid_t p1,p2;

if((p1=fork())==0)

{

printf("This is child_1 process%d\n",getpid());

}

Else

{

if((p2=fork())==0)

{

printf("This is child_2 process%d\n",getpid());

}

Else

{

wait(p1,NULL,0);

wait(p2,NULL,0);

printf("This is parent process%d\n",getpid());

}

}

}

第三种方法:for 循环方法

特点:其实每次循环只是创建了单个进程,并没有同时创建多个进程

#include

#include

#include

main()

{

printf("This is parent process%d\n",getpid());

pid_t p1,p2;

inti;

for(i=0;i<=2;i++)

{

if((p1=fork())==0)

{

printf("This is child_1 process%d\n",getpid());

return 0;//这个地方非常关键

}

wait(p1,NULL,0); //父进程等待p1子进程执行后才能继续fork其他子进程

printf("This is parent process%d\n",getpid());

}

}

注意:标注的return 0 对程序结果影响很大

无return 0 情况

#include

#include

#include

main()

{

printf("This is parent process%d\n",getpid());

pid_t p1,p2;

inti;

for(i=0;i<=2;i++)

{

if((p1=fork())==0)

{

printf("This is child_1 process%d\n",getpid());

//return 0;//这个地方非常关键

}

wait(p1,NULL,0);

printf("This is parent process%d\n",getpid());

}

}

结论:父进程会生成n(n+1)/2+1个子进程,N 为循环次数,本例中共有7 个子进程,但实际上只有3

个是父进程产生的,其余都为子进程fork()出来的。父进程fork了3个进程,第一个子进程执行完之

后又fork了2个进程,第2个子进程fork了1个进程。

正确的使用Linux中的用fork()由一个父进程创建同时多个子进程的格式如下:

intstatus,i;

for (i = 0; i< 10; i++)

{

status = fork();

if (status == 0 || status == -1) break;//每次循环时,如果发现是子进程就直接从创建子进程的循环中跳出来,不让你进入循环,这样就保证了每次只有父进程来做循环创建子进程的工作

}

if (status == -1)

{

//error

}

else if (status == 0)//每个子进程都会执行的代码

{

//sub process

}

else

{

//parent process

}

linux中fork同时创建多个子进程的方法(二)

怎么创建多个进程呢?我说那还不容易,看下边代码:

//省略必要头文件

int main()

{

pid_tpid[2];

inti;

printf("This is %d\n",getpid());

for(i = 0;i < 2;i++ ){

if((pid[0] = fork()) < 0){

printf("Fork() Error!");

exit(-1);

}

if(pid[0] == 0)

printf("This is parent %d,child is %d\n",getppid(),getpid());

else

wait(5);

}

return 0;

}

好,这段代码还是挺简单的,我们的意思是:主线程通过循环创建2个子进程,这时系统中的总进程数应该是3,看看输出结果吧:

这个结果图看的效果不好,我们看个直接点的:

这下你明白了吧,问题没有想象中的那样简单,父进程现在标号为1的循环中创了一个子进程,然后第二次循环,前边的第一个子线程又创建一个子进程,这时明显系统中有四个进程,还是不懂?在下边的时序图吧:

这下你应该明白了吧,好了问题知道了,怎么解决,方法有二;

方法一:直接看代码for循环

voidcreatesubprocess(intnum)

{

pid_tpid;

inti;

for(i=0;i

{

pid=fork();

if(pid==0||pid==-1) //子进程或创建进程失败均退出,这里是关键所在

{

break;

}

}

if(pid==-1)

{

perror("fail to fork!\n");

exit(1);

}

else if(pid==0)

{

printf("子进程id=%d,其对应的父进程id=%d\n",getpid(),getppid());

exit(0);

}

else

{

printf("父进程id=%d\n",getpid());

exit(0);

}

}

这种方法的关键就在于每次循环时,如果发现是子进程就直接从创建子进程的循环中跳出来,不让你进入循环,这样就保证了每次只有父进程来做循环创建子进程的工作。

方法二:直接看代码递归函数voidcreatesubprocess(intnum,int max)

{

if(num>=max)return;

pid=fork();

if(pid<0)

{

perror("fork error!\n");

exit(1);

}

//子进程

else if(pid==0)

{

sleep(3);

printf("子进程id=%d,父进程id=%d\n",getpid(),getppid());

}

//父进程

else

{

num++;

if(num==1)printf("父进程id=%d\n",getpid());

if(num

//此处加sleep是为了防止父进程先退出,从而产生异常sleep(5);

}

}

这里的关键在于递归操作,只有父进程才进入递归创建子进程,子进程不进行这样的操作。

fork函数和子进程

Fork函数 函数pid_t fork(void) 正确返回:在父进程中返回子进程的进程号,在子进程中返回0 错误返回:-1 子进程是父进程的一个拷贝。即,子进程从父进程得到了数据段和堆栈段的拷贝,这些需要分配新的内存;而对于只读的代码段,通常使用共享内存的方式访问。fork返回后,子进程和父进程都从调用fork函数的下一条语句开始执行。父进程与子进程的不同之处在于:fork的返回值不同——父进程中的返回值为子进程的进程号,而子进程为0。 以下是fork的两个示例程序: //fork.c #include #include void main () { int pid; //printf("Process [%d] begin",getpid()); //print twice printf("Process [%d] begin\n",getpid()); //print once //由于fork时pc等值的拷贝,子进程只会从fork处开始执行 pid = fork(); if (pid < 0) printf("error in fork!"); else if (pid == 0) printf("I'm child process, my pid is %d\n", getpid()); else printf("I'm parent process, my pid is %d\n", getpid()); printf("Process [%d] end\n",getpid()); return; } 输出结果: 使用printf("Process [%d] begin\n",getpid())时 Process [11155] begin I'm parent process, my pid is 11155

惠州学院操作系统进程的创建与并发执行实验(精编文档).doc

【最新整理,下载后即可编辑】 实验一进程的创建与并发执行 一、实验目的: (1) 熟悉Linux工作环境、文本编辑器工具和GCC工具 (2) 加深对进程概念的理解,明确进程和程序的区别 (3) 进一步认识并发进程的实质和特征 二、实验仪器及材料: 微型计算机、Linux系统 三、实验内容: 1、任务1:进程创建 编写一段程序,让父进程产生两个子进程,父进程显示字符“a”、两个子进程,分别显示字符“b”、“c”。 任务2:将上述的输出字符改为输出较长的字符串,观察进程并发执行,分析执行结果。 2、源代码: 任务1: #include main(){ int p1, p2; while ((p1=fork())==-1); /*父进程创建第一个进程,直到成功*/ if (p1==0) /*0返回给子进程1*/ printf(“b\n”); /*P1的处理过程*/ else/*正数返回给父进程(子进程号)*/ { while ((p2=fork())==-1); /*父进程创建第二个进程,直到成功*/ if (p2==0) /* 0返回给子进程2*/ printf(“c\n”); /*P2的处理过程*/ else printf(“a\n”); /*P2创建完成后,父进程的处理过程*/

} } 任务2: #include main(){ int p1, p2; while ((p1=fork())==-1); /*父进程创建第一个进程,直到成功*/ if(p1==0) while (1) printf(“A ”) else { while ((p2=fork())==-1); /*父进程创建第二个进程,直到成功*/ if (p2==0) while (1) printf(“B ”) else /*P2创建完成后,父进程的处理过程*/ while (1) printf(“P ”); } } 四、实验结果记录: 任务1:

进程与线程的区别 进程的通信方式 线程的通信方式

进程与线程的区别进程的通信方式线 程的通信方式 进程与线程的区别进程的通信方式线程的通信方式2011-03-15 01:04 进程与线程的区别: 通俗的解释 一个系统运行着很多进程,可以比喻为一条马路上有很多马车 不同的进程可以理解为不同的马车 而同一辆马车可以有很多匹马来拉--这些马就是线程 假设道路的宽度恰好可以通过一辆马车 道路可以认为是临界资源 那么马车成为分配资源的最小单位(进程) 而同一个马车被很多匹马驱动(线程)--即最小的运行单位 每辆马车马匹数=1 所以马匹数=1的时候进程和线程没有严格界限,只存在一个概念上的区分度 马匹数1的时候才可以严格区分进程和线程 专业的解释: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程.

线程的划分尺度小于进程,使得多线程程序的并发性高。另外,进程在执 行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序 的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行 的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在 应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可 以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程 的调度和管理以及资源分配。这就是进程和线程的重要区别。 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的 能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中 必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的 其他的线程共享进程所拥有的全部资源. 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以 并发执行 进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有 独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响, 而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线 程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程 的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。如果有兴趣深入的话,我建议你们看看《现代操作系统》或者 《操作系统的设计与实现》。对就个问题说得比较清楚。 +++ 进程概念

进程的创建与并发执行-带答案版课案

实验二进程管理 2.1 进程的创建与并发执行 1.实验目的 (1) 加深对进程概念的理解,理解进程和程序的区别。 (2) 认识并发进程的实质。分析进程争用资源的现象,学习解决进程互斥的方法。 (3) 理解系统调用和用户命令的区别。 2.实验类型:验证型 3.实验学时:2 4.实验原理和知识点 (1) 实验原理:程序的并发执行具有随机性和不可再现性。程序并发执行会导致资源共享和资源竞争,各程序向前执行的速度会受资源共享的制约。程序的动态执行过程用进程这个概念来描述。由于向前推进的速度不可预知,所以多个进程并发地重复执行,整体上得到的结果可能不同。但要注意,就其中某单个进程而言,其多次运行结果是确定的。 (2) 知识点:进程、子进程、并发执行的特性; 5.实验环境(硬件环境、软件环境): (1)硬件环境:Intel Pentium III 以上CPU,128MB以上内存,2GB以上硬盘 (2)软件环境:linux操作系统。 6. 预备知识 (1) fork()系统调用 头文件:#include unix standard header /*是POSIX标准定义的unix类系统定义符号常量的头文件,包含了许多UNIX系统服务的函数原型,例如read函数、write函数和getpid函数*/ 函数原型: pid_t fork(void); /*是Linux下的进程号类型,也就是Process ID _ Type 的缩写。其实是宏定义的unsigned int类型*/ 函数功能:fork的功能是创建子进程。调用fork的进程称为父进程。如图2.1所示。子进程是父进程的一个拷贝,它继承了父进程的用户代码、组代码、环境变量、已打开的文件代码、工作目录及资源限制。fork语句执行后,内核向父进程返回子进程的进程号,向子进程返回0。父子进程都从fork()的下一句开始并发执行。 返回值: 返回值==-1:创建失败。 返回值==0:程序在子进程中。 返回值>0:程序在父进程中。(该返回值是子进程的进程号) 编程提示:虽然子进程是父进程的一个复制品,但父子的行为是不同的。编程时要抓住内核的返回值。通过返回值,可以知道是父进程还是子进程,因而可以编写不同行为的代码。

查看程序的进程和线程实验报告

查看程序的进程和线程实验报告 篇一:程序实验2:11-多线程编程---实验报告 程序实验二:11-多线程编程实验 专业班级实验日期 5.21 姓名学号实验一(p284:11-thread.c) 1、软件功能描述 创建3个线程,让3个线程重用同一个执行函数,每个线程都有5次循环,可以看成5个小任务,每次循环之间会有随即等待时间(1-10s)意义在于模拟每个任务到达的时间是随机的没有任何的特定规律。 2、程序流程设计 3.部分程序代码注释(关键函数或代码) #include #include #include #define T_NUMBER 3 #define P_NUMBER 5 #define TIME 10.0

void *thrd_func(void *arg ) { (本文来自:https://www.360docs.net/doc/ff5890982.html, 小草范文网:查看程序的进程和线程实验报告) int thrd_num=(int)arg; int delay_time =0; int count =0; printf("Thread %d is staraing\n",thrd_num); for(count=0;count { delay_time =(int)(rand()*TIME/(RAND_MAX))+1; sleep(delay_time); printf("\tTH%d:job%d delay =%d\n",thrd_num,count,delay_time); } printf("%d finished\n",thrd_num); pthread_exit(NULL); } int main()

操作系统第二章进程和线程复习题

第二章练习题 一、单项选择题 1.某进程在运行过程中需要等待从磁盘上读入数据,此时该进程的状态将( C )。 A. 从就绪变为运行; B.从运行变为就绪; C.从运行变为阻塞; D.从阻塞变为就绪 2.进程控制块是描述进程状态和特性的数据结构,一个进程( D )。 A.可以有多个进程控制块; B.可以和其他进程共用一个进程控制块; C.可以没有进程控制块; D.只能有惟一的进程控制块。 3.临界区是指并发进程中访问共享变量的(D)段。 A、管理信息 B、信息存储 C、数 据 D、程序 4. 当__ B__时,进程从执行状态转变为就绪状态。 A. 进程被调度程序选中 B. 时间片到 C. 等待某一事件 D. 等待的事件发生 5. 信箱通信是一种( B )通信方式。 A. 直接通信 B. 高级通信 C. 低级通信 D. 信号量 6. 原语是(B)。

A、一条机器指令 B、若干条机器指令组成 C、一条特定指令 D、中途能打断的指令 7. 进程和程序的一个本质区别是(A)。 A.前者为动态的,后者为静态的; B.前者存储在内存,后者存储在外存; C.前者在一个文件中,后者在多个文件中; D.前者分时使用CPU,后者独占CPU。 8. 任何两个并发进程之间存在着(D)的关系。 A.各自完全独立B.拥有共享变量 C.必须互斥D.可能相互制约 9. 进程从运行态变为等待态可能由于(B )。 A.执行了V操作 B.执行了P操作 C.时间片用完 D.有高优先级进程就绪 10. 用PV操作管理互斥使用的资源时,信号量的初值应定义为(B)。 A.任意整数 B.1 C.0 D.-1 11. 现有n个具有相关临界区的并发进程,如果某进程调用P操作后变为等待状态,则调用P操作时信号量的值必定为(A)。 A.≤0 B.1 C.n-1 D.n

fork函数实验总结

针对fork函数难以理解,根据网上的解释,参考他人代码,做了如下实验,并附以实验分析 2 #include 3 #include 4 #include 5 #include 6 #include 7 8 int main () 9 { 10 pid_t pc,pr; 11 pc=fork(); (gdb) 12 13 if (pc<0) 14 { 15 printf("error fork.\n"); 16 17 } 18 else if (pc==0) 19 { 20 printf("this is pc=%d\n",getpid()); 21 sleep(5); (gdb) 22 printf("5 s over\n"); 23 //exit(0); 24 } 25 pr=fork(); 26 if (pr==0) 27 { 28 printf("this is pr =%d\n",getpid()); 29 } 30 31 else if (pr>0&&pc>0) (gdb) 32 printf("this is main =%d",getpid()); 33 34 35 36 37 38 } (gdb) b 12

Breakpoint 1 at 0x804849d: file /home/lsp/fork3.c, line 12. (gdb) b 19 Breakpoint 2 at 0x80484b7: file /home/lsp/fork3.c, line 19. (gdb) b 24 Breakpoint 3 at 0x80484e4: file /home/lsp/fork3.c, line 24. (gdb) b 26 Breakpoint 4 at 0x80484ec: file /home/lsp/fork3.c, line 26. (gdb) run Starting program: /home/lsp/fork3 Detaching after fork from child process 13200. ---说明pc=fork()函数已经建立子进程 this is pc=13200 Breakpoint 1, main () at /home/lsp/fork3.c:13 13 if (pc<0) (gdb) 5 s over this is pr =13201 --说明pc=fork()进程13200启动了新的子进程pr 其pid=13201 next Breakpoint 3, main () at /home/lsp/fork3.c:25 25 pr=fork(); --父进程停在pr=fork()处, (gdb) next Detaching after fork from child process 13254. this is pr =13254 --此处pr的pid=13254 与上一个pr=13201不同,这说明此处的pr是由main创建的 Breakpoint 4, main () at /home/lsp/fork3.c:26 26 if (pr==0) (gdb) next 31 else if (pr>0&&pc>0) (gdb) next 32 printf("this is main =%d",getpid()); (gdb) next 38 } (gdb) next 0x00a6d5d6 in __libc_start_main () from /lib/libc.so.6 (gdb) next Single stepping until exit from function __libc_start_main, which has no line number information. this is main =13199 ---main函数退出,器pid=13199 Program exited with code 023. (gdb)

操作系统课程设计并发进程的模拟

课程设计说明书题目: 并发进程的模拟 院系:计算机科学与工程 专业班级: 学号: 学生姓名: 指导教师: 2014年 11月 12 日

安徽理工大学课程设计(论文)任务书 2014年11月21日

安徽理工大学课程设计(论文)成绩评定表 I

目录 1问题描述 0 2需求分析 0 3概要设计 (1) 1. P操作 (1) 2. V操作 (2) 3. P,V操作实现进程同步 (3) 4. 功能模块设计 (4) 4详细设计 (6) 1.主界面的设计程序 (6) 2.进程Pa的执行 (7) 3.进程Pb的执行 (8) 4.进程Pc的执行 (8) 5.按钮的执行 (9) 5 调试的分析与运行结果 (10) 6 设计体会 (12) 参考文献 (13)

1问题描述 在进程并发执行的过程中,进程之间存在协作的关系,例如,有互斥、同步的关系。该课程设计的是了解进程同步的概念,理解信号量机制的原理,掌握运用信号量解决进程并发控制问题的方法,进而学会运用进程的同步,利用信号灯的P,V操作实现三个进程的同步。这三个进程的同步关系如下: 从上图中可以看出:任务启动后pa先执行,当它结束后,pb、pc可以开始执行,pb、pc 都执行完毕后,任务终止;设两个同步信号灯sb、sc分别表示进程pb和pc能否开始执行,其初值均为0。 在现代操作系统中,有大量的并发进程在活动,它们都处在不断的申请资源,使用资源以及其它进程的相互制约的活动中,这些进程什么时候停止运行,什么时候该继续向前推进,应根据事先的约定来规范它们的行为,这时我们可以根据同步信号灯来实现进程的同步协调工作。例如本题中,只有pa进程顺利的进行完,Pb,Pc这两个进程才能正常的进行。如果进程Pa在进行中出现停止或中断,则Pb和Pc是不会顺利的完成的;而进程Pb,Pc这两个进程是并行执行的,两个进程的进行是互不干扰的,只要进程Pa完成后,进程Pb和Pc才会正常执行,否则只有处在等待就绪中。 2需求分析 进程执行的并发性的意义是关于一组进程的执行在是时间上是重叠的,从宏观上看,并发性反应的是一个时间段中几个进程都在同一个处理器上,处于运行还未运行结束状态。从微观上看,任何一个时刻仅有一个进程在处理器上运行。并发的实质是一个处理器在几个进程之间的多路复用,并发是对有限的物理资源强制行驶多用户共享,消除计算机部件之间的乎等现象,以提高系统资源利用率。

操作系统--进程和线程实验报告

一.进程的创建 1.编辑源程序。 2. 编辑结果如下。 3.编译和运行程序。 4.运行解释结果 在语句p1=fork()之前,只有一个进程在执行这段代码,但在这条语句之后,就变成两个进程在执行了.这两个进程的几乎完全相同,将要执行的下一条语句都是if(p1==0). 而fork函数有三种返回值。(1)在父进程中,fork返回新创建子进程的进程ID; (2)在子进程中,fork返回0; (3)如果出现错误,fork返回一个负值; 所以,子进程中p1==0,输出I am child。父进程p1>0,输出I am parent。

1.编辑源程序。 2.编辑结果如下。 3.编译和运行程序。 4. 运行解释结果 在语句p1=fork()之前,只有父进程执行,putchar(‘x’)语句将x放入父进程的缓冲区。当成功创建子进程后,子进程复制父进程的缓冲区。接着子进程运行输出xby,父进程输出xay。

1.编辑源程序。 2.编辑结果如下。 3.编译和运行程序。 4. 运行解释结果 在语句p1=fork()之前,只有父进程执行,putchar(‘x’)语句将x放入父进程的缓冲区。当成功创建子进程后,子进程复制父进程的缓冲区。接着子进程输出b后,执行exit(0)系统调用终止执行。父进程输出a 后继续输出y。所以父进程输出xay而子进程输出xb。

1.编辑源程序。 2.编辑结果如下。 3.编译和运行程序。 4. 运行解释结果 语句while(p1=fork()==-1)创建了子进程和父进程。父进程执行到wait()时,等待子进程的终止信号,当子进程执行完exit(0)后,父进程才继续执行。实现了父进程等待子进程。

进程创建之fork系统调用

4 进程创建 (1) 4.1 实验内容及要求 (1) 4.2 实验目的 (1) 4.3 实验环境 (1) 4.4 实验思路 (1) 4.5 实验代码 (2) 4.6 运行结果 (3) 4.7 实验心得 (3) 4 进程创建 4.1 实验内容及要求 利用fork()系统调用创建进程。要求如下: 编制一段程序,使用系统调用fork( )创建两个子进程,这样在此程序运行时,在系统中就有一个父进程和两个子进程在活动。每一个进程在屏幕上显示一个字符,其中父进程显示字符A,子进程分别显示字符 B和字符C。试观察、记录并分析屏幕上进程调度的情况。 4.2 实验目的 了解进程的创建过程,进一步理解进程的概念,明确进程和程序的区别。 4.3 实验环境 Ubuntu 18.04.1 LTS 64位,编译器gcc 7.3.0 (Ubuntu 7.3.0-16ubuntu3) 4.4 实验思路 (1)可用fork()系统调用来创建一个新进程。 系统调用格式:pid=fork() fork()返回值意义如下: =0:若返回值为0,表示当前进程是子进程。 >0:若返回值大于0,表示当前进程是父进程,返回值为子进程的pid值。

<0:若返回值小于0,表示进程创建失败。 如果fork()调用成功,它向父进程返回子进程的pid,并向子进程返回0,即fork()被调用了一次,但返回了两次。此时OS在内存中建立一个新进程,所建的新进程是调用fork()父进程的副本,称为子进程。子进程继承了父进程的许多特性,并具有与父进程完全相同的用户级上下文。父进程与子进程并发执行。 (2)编译和执行的方法: 编译:在shell提示符下输入gcc 源文件名 -o 可执行文件名 运行:在shell提示符下输入 ./可执行文件名 4.5 实验代码 #include #include #include int main(void) { pid_t p1=fork();pid_t p2=fork(); //迭代调用fork(),创建三个新进程printf("this is parent, pid = %d\n", getpid()); //父进程 if(p1<0||p2<0){ //fork()失败 printf("fork failed with p1=%d, p2=%d\n", p1, p2); exit(1); }if(p1==0&&p2==0){ //子进程B创建的子进程D,即孙进程 printf("D in grandson Damson, pid = %d\n", getpid()); }if(p1==0&&p2>0){ //父进程创建的子进程B printf("B in child Blueberry, pid = %d\n", getpid()); }if(p1>0&&p2==0){ //父进程创建的子进程C printf("C in child Carambola, pid = %d\n", getpid()); }if(p1>0&&p2>0){ //父进程 printf("A in parent Apple, pid = %d\n", getpid()); }return 0; }

Linux的fork、exec、wait函数的分析

Linux 的fork 、exec 、wait 函数分析 I 数学与计算机学院 课程设计说明书 课 程 名 称: 操作系统原理-课程设计 课 程 代 码: 8404061 题 目: Linux 的fork 、exec 、wait 函数的分析 年级/专业/班: 学 生 姓 名: 学 号: 3 开 始 时 间: 2010 年 12 月 12 日 完 成 时 间: 2011 年 01 月 09 日 课程设计成绩: 指导教师签名: 年 月 日

Linux 的fork 、exec 、wait 函数分析 II 目 录 1 引 言 ................................................................. 1 1.1 问题的提出 ...................................................................................................................... 1 1.2国内外研究的现状 ........................................................................................................... 1 1.3任务与分析 ....................................................................................................................... 1 2代码分析结果 ............................................................ 2 2.1 数据结构 ......................................................................................................................... 2 2.1.1 struct task_struct ............................................................................................. 2 2.1.2 task ......................................................................................................................... 3 2.1.3 tarray_freelist ................................................................................................... 3 2.1.4 struct--linux_binprm ......................................................................................... 3 2.1.5进程状态 .................................................................................................................. 4 2.2常量和出错信息的意义 .................................................................................................. 4 2.3调用关系图 ...................................................................................................................... 4 2.4各模块/函数的功能及详细框图 .................................................................................... 5 2.4.1 do_fork 模块 .......................................................................................................... 5 2.4.2 get_pid 模块 .......................................................................................................... 8 2.4.3 do_execve 模块 ........................................................................................................ 10 3.4.4 do_exit 模块 ........................................................................................................ 14 3.4.5 sys_wait4模块 .................................................................................................. 18 3 总结与体会 ............................................................ 20 4 参考文献 .. (20)

进程和线程的CPU亲和性

进程和线程的亲缘性(affinity)是指可以将进程或者是线程强制限制在可用的CPU子集上运行的特性,它一定程度上把进程/线程在多处理器系统上的调度策略暴露给系统程序员。 CPU的数量和表示在有n个CPU的Linux上,CPU是用0...n-1来进行一一标识的。CPU的数量可以通过proc文件系统下的CPU相关文件得到,如cpuinfo和stat: $ cat /proc/stat | grep "^cpu[0-9]\+" | wc -l 8 $ cat /proc/cpuinfo | grep "^processor" | wc -l 8 在系统编程中,可以直接调用库调用sysconf获得: sysconf(_SC_NPROCESSORS_ONLN); 进程的亲缘性Linux操作系统在2.5.8引入了调度亲缘性相关的系统调用: int sched_setaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask); int sched_getaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask); 其中sched_setaffinity是设定进程号为pid的进程调度亲缘性为mask,也就是说它只能在mask中指定的CPU 之间进行调度执行;sched_getaffinity当然就是得到进程号为pid的进程调度亲缘性了。如果pid为0,则操纵当前进程。 第二个参数指定mask所指空间的大小,通常为sizeof(cpu_set_t)。 第三个参数mask的类型为cpu_set_t,即CPU集合,GNU的c库(需要在include头文件之前定义 __USE_GNU)还提供了操作它们的宏: void CPU_CLR(int cpu, cpu_set_t *set); int CPU_ISSET(int cpu, cpu_set_t *set); void CPU_SET(int cpu, cpu_set_t *set); void CPU_ZERO(cpu_set_t *set); 如果我们所关心的只是CPU#0和CPU#1,想确保我们的进程只会运作在CPU#0之上,而不会运作在CPU#1之上。下面程序代码可以完成此事: cpu_set_t set; int ret, i; CPU_ZERO(&set); CPU_SET(0, &set); CPU_CLR(1, &set); ret = sched_setaffinity(0, sizeof(cpu_set_t), &set); if( ret == -1) { perror("sched_se"); } for( i=0; i < 3; i++) { int cpu; cpu = CPU_ISSET(i, &set); printf("cpu = %i is %s/n", i, cpu? "set" : "unset"); } Linux只提供了面向线程的调度亲缘性一种接口,这也是上面只提调度亲缘性而不直言进程亲缘性的原因。当前Linux系统下广泛采用的线程库NPTL(Native Posix Thread Library)是基于线程组来实现的,同一个线程组中的线程对应于一组共享存储空间的轻量级进程,它们各自作为单独调度单位被内核的调度器在系统范围内调度,这种模型也就是我们通常所说的1-1线程模型。正因如此,目前线程的调度范围

任务、进程和线程的区别

任务、进程和线程的区别 推荐 摘: 任务(task)是最抽象的,是一个一般性的术语,指由软件完成的一个活动。一个任务既可以是一个进程,也可以是一个线程。简而言之,它指的是一系列共同达到某一目的的操作。例如,读取数据并将数据放入内存中。这个任务可以作为一个进程来实现,也可以作为一个线程(或作为一个中断任务)来实现。 进程(process)常常被定义为程序的执行。可以把一个进程看成是一个独立的程序,在内存中有其完备的数据空间和代码空间。一个进程所拥有的数据和变量只属于它自己。 线程(thread)则是某一进程中一路单独运行的程序。也就是说,线程存在于进程之中。一个进程由一个或多个线程构成,各线程共享相同的代码和全局数据,但各有其自己的堆栈。由于堆栈是每个线程一个,所以局部变量对每一线程来说是私有的。由于所有线程共享同样的代码和全局数据,它们比进程更紧密,比单独的进程间更趋向于相互作用,线程间的相互作用更容易些,因为它们本身就有某些供通信用的共享内存:进程的全局数据。 一个进程和一个线程最显著的区别是:线程有自己的全局数据。线程存在于进程中,因此一个进程的全局变量由所有的线程共享。由于线程共享同样的系统区域,操作系统分配给一个进程的资源对该进程的所有线程都是可用的,正如全局数据可供所有线程使用一样。 简而言之,一个程序至少有一个进程,一个进程至少有一个线程。线程的划分尺度小于进程,使得多线程程序的并发性高。另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。从逻辑角度来看,多线程的意义在于一个应用程序中,由多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配,这就是进程和线程的重要区别。 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以并发执行。 进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。 进程概念

最新Linux多进程并发执行实验

一、实验目的 1 2 1、对理论课中学习的进程、程序等的概念作进一步的理解,明确进程和程序3 的区别; 2、加深理解进程并发执行的概念,认识多进程并发执行的实质; 4 5 3、观察进程争夺资源的现象,分析其过程和原因,学习解决进程互斥的方法;6 4、对经典的多用户、多任务的优先级轮转调度系统Linux有一定的了解; 7 5、了解Linux系统中多进程之间通过管道通信的基本原理和应用方法。 8 9 二、实验内容 10 1、用virtual虚拟机运行linux虚拟系统; 11 2、分析并理解源程序; 12 3、在linux中输入相应程序并观察运行结果。 13 14 三、实验原理 15 (一)多进程并发执行是使用后台任务来实现任务的“多进程化”。在不加控16 制的模式下,不管有多少任务,全部都后台执行。也就是说,在这种情况下,有17 多少任务就有多少“进程”在同时执行。 18 (二)实验中要用到的函数 19 1、fork()函数——进程创建函数。

2、getpid()函数——取得目前进程的进程标识码。 20 21 3、exit()函数——用来正常终结目前进程的执行。 22 4、sleep()函数——用来延时,它会被挂起,把处理器让给其他的进程。 23 5、printf()函数——是格式化输出函数, 一般用于向标准输出设备按规24 定格式输出信息。 25 (三)实验中要用的命令 1、cd 命令: 26 27 功能:改变工作目录。 28 语法:cd [directory] 说明:该命令将当前目录改变至directory所指定的目录。若没有指定 29 30 directory,则回到用户的主目录。为了改变到指定目录,用户必须拥有对指定31 目录的执行和读权限。该命令可以使用通配符。 32 2、mkdir命令: 33 功能:创建一个目录(类似MSDOS下的md命令)。 34 语法:mkdir [选项] dir-name 35 说明:该命令创建由dir-name命名的目录。要求创建目录的用户在当前目录36 中(dir-name的父目录中)具有写权限,并且dirname不能是当前目录中已有37 的目录或文件名称。 38 3、ls 命令: 功能:ls是英文单词list的简写,其功能为列出目录的内容。这是用户最常 39 40 用的一个命令之一,因为用户需要不时地查看某个目录的内容。该命令类似于

Linux C 中vfork和fork的区别

Linux C 中vfork和fork的区别 我们知道, fork会创建一个新的进程,这个新的进程是当前进程的子进程,区别在于, fork函数会复制父进程的一些资源,也就是,仅仅是复制的关系,而非共享。而vfork就不同了,利用vfork创建的子进程和父进程共享地址空间,下面,我们通过实际程序来看看: 1、fork函数的简单应用: #include #include #include int main() { int a = 0; pid_t pid; pid = fork(); if(pid < 0) { printf("error\n"); return -1; } else if(0 == pid) { printf("child\n"); printf("%d\n" a); } else { a = 1;

printf("parent\n"); printf("%d\n" a); } return 0; } 运行一下,结果为: parent 1 child 由此可见,父进程值的修改,不会影响到子进程,为什么呢?因为他们没有共享地址空间啊。 2、我们再看看vfork: #include #include #include int main() { int a = 0; pid_t pid; pid = vfork(); if(pid < 0) { printf("error\n"); return -1;

} else if(0 == pid) { a = 1; printf("child\n"); printf("%d\n" a); _exit(0); // 这个先不管它,以后再说 } else { printf("parent\n"); printf("%d\n" a); } return 0; } 结果为: child 1 parent 1 可见, vfork创建的子进程和父进程确实共享着内存空间呢。

fock()函数问题

#include #include #include int main() { pid_t pid1; pid_t pid2; pid1 = fork(); pid2 = fork(); printf("pid1:%d, pid2:%d\n", pid1, pid2); } 输出: pid1:3411, pid2:3412 pid1:0, pid2:3413 pid1:3411, pid2:0 pid1:0, pid2:0 1. 基础知识: 1)fork函数总是“调用一次,返回两次”,在父进程中调用一次,在父进程和子进程中各返回一次。fork在子进程中的返回值是0,而在父进程中的返回值则是子进程的id。 2)子进程在创建的时候会复制父进程的当前状态(PCB信息相同,用户态代码和数据也相同)。 3)程序运行的结果基本上是父子进程交替打印,但这也不是一定的,取决于系统中其它进程的运行情况和内核的调度算法。 2. 第一个fork: 子进程A被创建,之后从fork函数往下执行与父进程相同的代码,即后一个fork和printf 会被父进程和子进程A分别执行一次: 父进程打印的pid1和pid2是两个子进程的pid,即结果的第一行:pid1:3411, pid2:3412 子进程A打印的pid1和pid2是这个fork在子进程A中的返回(0)和子进程A中调用fork返回的pid,即结果的第二行:pid1:0, pid2:3413 3. 第二个fork: 这个fork会被父进程和子进程A都执行一遍。假设子进程B被主进程创建,子进程C被子进程A创建。子进程A也可以说是子进程C的父进程,为了避免混淆,我这里改叫主进程而不再使用父进程的概念。 子进程B的打印即结果的第三行:pid1:3411, pid2:0。其中,其中,pid1为复制的主进程的数据,pid2为该fork在子进程B中的返回。 子进程C的打印,即结果的最后一行:pid1:0, pid2:0。其中,pid1为复制的进程A的数据,pid2为该fork在子进程C内部的返回。

相关文档
最新文档