关于极限的四则运算法则

关于极限的四则运算法则
关于极限的四则运算法则

关于极限的四则运算法则

作者:郑晓珍

作者单位:襄樊职业技术学院,湖北,襄樊,441021

刊名:

考试周刊

英文刊名:KAOSHI ZHOUKAN

年,卷(期):2010(57)

本文链接:https://www.360docs.net/doc/fe6059750.html,/Periodical_kszk201057057.aspx

极限的四则运算教案(1)

2.4 极限的四则运算(一) 古浪五中---姚祺鹏 【教学目标】 (一)知识与技能 1.掌握函数极限四则运算法则; 2.会用极限四则运算法则求较复杂函数的极限; 3.提高问题的转化能力,体会事物之间的联系与转化的关系; (二)过程与方法 1.掌握极限的四则运算法则,并能使用它求一些复杂数列的极限. 2.从函数极限联想到数列极限,从“一般”到“特殊”. (三)情态与价值观 1.培养学习进行类比的数学思想 2.培养学习总结、归纳的能力,学会从“一般”到“特殊”,从“特殊”到“一般”转化的思想.同时培养学生的创新精神,加强学生的的实践能力。 (四)高考阐释: 高考对极限的考察以选择题和填空题为主,考察基本运算,此类题目的特点在于需要进行巧妙的恒等变形,立足课本基础知识和基本方法 【教学重点与难点】 重点:掌握函数极限的四则运算法则; 难点:难点是运算法则的应用(会分析已知函数由哪些基本函数经过怎样的运算结合而成的). 【教学过程】 1.提问复习,引入新课 对简单函数,我们可以根据它的图象或通过分析函数值的变化趋势直接写出它们的极

限.如 1lim ,2121lim 1 1==→→x x x x . 让学生求下列极限: (1)x x 1lim →; (2)x x 21lim 1→; (3))12(lim 21+→x x ; (4)x x 2lim 1→ 对于复杂一点的函数,如何求极限呢?例如计算??? ? ?+→x x x 21lim 1即x x x 212lim 21+→,显然通过画图或分析函数值的变化趋势找出它的极限值是不方便的.因此、我们有必要探讨有关极限的运算法则,通过法则,把求复杂函数的极限问题转化为求简单函数的极限. 板书课题:极限的四则运算. 2.特殊探路,发现规律 考察x x x 212lim 21+→完成下表: 根据计算(用计算器)和极限概念,得出2 3212lim 21=+→x x x ,与1lim 2121lim 11==→→x x x x 、 对比发现:2321121lim lim 21lim 212lim 11121=+=+=??? ? ?+=+→→→→x x x x x x x x x x . 由此得出一般结论:函数极限的四则运算法则: 如果b x g a x f x x x x ==→→)(lim ,)(lim 0 0,那么 []b a x g x f x x ±=±→)()(lim 0 []b a x g x f x x ?=?→)()(lim 0 )0()()(lim 0≠=??????→b b a x g x f x x 特别地:(1)[])(lim )(lim 0 0x f C x f C x x x x →→?=?(C 为常数) (2)[])N ()(lim )(lim *00∈??????=→→n x f x f n x x n x x

极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

人教版高中数学(理科)选修函数极限的运算法则教案

函数极限的运算法则 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2x x x +→ 例2 求1 12lim 231++-→x x x x

例3 求4 16lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限. 例4 求1 33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→ 例5 求1 342lim 232+--+∞→x x x x x 分析:同例4一样,不能直接用法则求极限. 如果分子、分母都除以3x ,就可以运用法则计算了。 四 课堂练习(利用函数的极限法则求下列函数极限) (1))32(lim 21 -→x x ; (2))132(lim 22 +-→x x x (3))]3)(12[(lim 4 +-→x x x ; (4)14312lim 221-++→x x x x

高三选修2教案2.4极限的四则运算(一)

课 题:2.4极限的四则运算(一) 教学目的:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数a ,那么就说数列}{n a 以a 为极限.记作lim n n a a →∞ =. 2.几个重要极限:

(1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)无穷等比数列}{n q (1

极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

数列极限四则运算法则的证明

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(A n+B n)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An ? Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n T+R的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于?£> 0(不论它多么小),总存在正数N,使得对于满足n > N的一切Xn,不等式|Xn-A| v &都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身) 法则1的证明: ?/ limAn=A,二对任意正数 &存在正整数N?,使n > N?时恒有|An-A| v&①(极限定义)同理对同一正数&存在正整数N?,使n>N?时恒有|Bn-B| v 设N=max{N ?,N?},由上可知当n > N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)| < |An-A|+|Bn-B| v & + & =2 &. 由于&是任意正数,所以2&也是任意正数. 即:对任意正数2 &存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 &. 由极限定义可知,lim(An+Bn)=A+B. 即:对任意正数C&存在正整数N,使n > N时恒有|C ? An-CA|v C&. 由极限定义可知,lim(C ? An)=C?A若C=0的话更好证) 法则2的证明: lim(A n-B n) =limA n+lim(-B n)(法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理. 引理3:若limAn=0,limBn=0,则lim(An ? Bn)=0. 证明:?/ limAn=0,二对任意正数 &存在正整数N?,使n>N?时恒有|An-0| v &③(极限定义)同理对同一

函数极限的运算法则

教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞ →lim ,01lim .若求极限的函 数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数 二 0). 说明:当三 例1 求)3(lim 2 2 x x x +→ 例2 求1 1 2lim 2 31 ++-→x x x x 例3 求4 16lim 2 4 --→x x x

分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数4 16 2 --= x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即 可求出函数的极限. 例4 求1 33lim 22 ++-∞ →x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、2 总结:lim x x o →lim x ∞ →例5 求lim ∞ →x 分析:同例计算了。 四 (1)lim 2 1 → x (3)lim 4 →x 1 432 1 -+→x x x (5)1 1lim 2 1 +--→x x x (6)9 65lim 2 2 3 -+-→x x x x (7)1 3322lim 2 3 2 +--+∞ →x x x x x (8)5 2lim 3 2 --∞ →y y y y

五 小结 1 有限个函数的和(或积)的极限等于这些函数的和(或积); 2 函数的运算法则成立的前提条件是函数 )(),(x g x f 的极限存在,在进行极限运算时, 要特别注意这一点. 3 两个(或几个)函数的极限至少有一个不存在时,他们的和、差、积、商的极限不一定不存在. 4 在求几个函数的和(或积)的极限时,一般要化简,再求极限. 六 作业(求下列极限) (1) lim -→x 2 (4)lim 0 →x (7)lim 2 →x (10)x → (13)1 3lim 2 4 3 +++∞ →x x x x x (14)2 3 3 2 )2 312( lim -+→x x x (15)3 526113lim 2 2 1 --+-→x x x x x (16) 3 526113lim 22 --+-∞ →x x x x x (17) 3 2 320 3526lim x x x x x x x ----→ (18) 3 2 323526lim x x x x x x x ----∞ →

极限的四则运算

极限的四则运算(1) 【目的要求】 1. 掌握涵数极限四则运算法则的前提条件及涵数极限四则运算法则。 2. 会用极限四则运算法则求较复杂涵数的极限。 【教学过程】 1. 提问入手,导入新课 对简单涵数,我们可以根据它的图象或通过分析涵数值的变化趋势直接写出它们的极限。如 1 lim →x x 21=21, limx=1. 对于复杂一点的涵数, 如何求极限呢? 例如计算 1 lim →x (x+x 21) 1lim →x (x+x 21)即1 lim →x x x 21 22+,显然通过画图或分析涵数值的变化趋势找出 它的极限值是不方便的。因此、我们有必要探讨有关极限的运算法则,通过法则,把求复杂涵数的极限问题转化为求简单涵数的极限。 板书课题:极限的四则运算。 2.特殊探路,发现规律 考察1 lim →x x x 2122+,完成下表: 根据计算(用计算器)和极限概念,得出1 lim →x x x 21 22+=23, 与1 lim →x x 21 =21、 1 1lim →=x x 对此发现: 1 lim →x x x 21 22+=1 lim →x (X+X 21)=1 lim →x x +1 lim →x x 21 =1+21=23 .

由此得出一般结论:涵数极限的四则运算法则: 如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b, 那麽 lim x x →[ f(x)+g(x)]=a +b 0 lim x x →[f(X)?g(X)]=a b ? ][)() (0 lim X g x f x x →=b a ( b )0≠ 特别的 (1)0 lim x x →[C )(X f ?]=C ?0 lim x x →f(X) (C 为常数) (2)0 lim x x →[f(X)]n =[0 lim x x →f(X)]n (n ∈N *) (3)这些法则对X ∞→的情况仍然成立 (4)两个常用极限0 lim x x n x →=X n 0, ∞→x lim n x 1 =0 (n ∈N *) 3.应用举例, 熟悉法则 例1 求1lim →x 1 21222 32-+++x x x x 问:已知涵数中含有哪些简单涵数?它是经过怎样的运算结合而成的?是否适用法则? 适用哪一条法则?师生共同分析,边问边答规范写出解答过程。 解:1 lim →x 1212232 -+++x x x x =1 231 2)12lim() 12lim(→→-+++x x x x x x =1 1 21 311 21 1lim 2lim 1 lim lim 2lim →→→→→→-+++x x x x x x x imx l x x =1 12111122 3 2-?+++?=2 (1)讲解时注意提问每一步的依据,做到“言必有据”,培养严谨的思维。 (2)书写时,由于极限符号“lim”有运算意义,因此在未求出极限值时,丢掉符号是错误的。 点评:例1说明,求某些涵数(到底是哪些涵数,学了2。6节就知道了。激发学生学习积极性,为讲连续涵数埋下伏笔)在某一点x=x 0处的极限值时,只要把x=x 0代入涵数解析式中就可得到极限值,

高中数学教案:极限与导数函数极限的运算法则

函数极限的运算法则(4月30日) 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2x x x +→

例2 求1 12lim 231++-→x x x x 例3 求4 16lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数 4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限. 例4 求1 33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→

极限的四则运算

极限的四则混合运算 一、口算: 3.6+ 4.4 = 10- 5.2 = 3.4 × 0.2= 7.8÷ 6= 1÷4 = 7.5÷0.3 = 9.8- 8 = 0÷27.9= 6.5 ×0.2= 0.1×0.5= 13.2+6.8= 0.15÷15= 2+3.8= 9-4.5= 0.42×3= 11+0.92= 4÷5= 1.8÷0.03= 75÷2.5= 0×25.4= 0.125×8= 7.24 - 2.4= 17.2÷17.2= 0.99×0.1= 二、计算 1.简算。 7.5-0.26-1.74+2.5 0.25×13×4 18-2.7-9.3 32×0.125 3.5×3+3.5×7 4.5×20-3.5×20 2、脱式计算。 82.3-40.5÷0.81×1.2 4.53+19.8÷(26.8-1.2×4) (9-0.45)÷(2.5+1.5×3) [1-0.98×(3.51-3.51)]÷2 三、列式计算。 4.5 除 3 与 1.5 的和,商是多少? 0.5 乘4.8 与 3.5 的差,积是多少? 3.6 加上 1.2 的 5 倍,再减去 2.88 ,差是多少? 335.7除以0.7的商,加上12.5与 4.8的积,和是多少?

四、把下列的分步算式改写成综合算式。 (1)7.8-2.9=4.9 (2)1-0.8=0.2 4.9×0.8=3.92 1.2÷0.2=6 9.15+3.92=13.07 18-6=24 0.5×24=12 五、应用题 1、水稻专业组有两块早稻田。一块450平方米,平均每平方米产1.3千克;另一块560平方米,平均每平方米产1.45千克。这两块早稻田的总产量是多少千克?合多少吨? 2、小红的身高是1.36米,小强比小红高0.04米,他们两人身高的和是小林身高的2倍,小林身高是多少米? 3、四年级要为图书馆修补244本图书,第一天修补了49本,第二天修补了51本。剩下的要3天修补完,平均每天要修补多少本? 4、先锋小学要用长0.96米,宽0.69米的红纸布置一个光荣榜,这个光荣榜高1.92米,长 3.45米。布置这个光荣榜需要多少张这种纸?

《数列极限的运算法则》教案(优质课)

《数列极限的运算法则》教案 【教学目标】:掌握数列极限的运算法则,并会求简单的数列极限的极限。 【教学重点】:运用数列极限的运算法则求极限 【教学难点】:数列极限法则的运用 【教学过程】: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]= ±→)()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限..多个数列的情况。例如,若{}n a ,{}n b ,{} n c 有极限,则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 三、例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ →

例2.求下列极限: (1))45(lim n n +∞→; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限: (1) )1 1 2171513( lim 2222+++++++++∞ →n n n n n n (2))39312421( lim 1 1 --∞→++++++++n n n

极限四则运算

§1.5 极限的运算法则 极限定义为我们提供了一种求极限的方法,但这种方法使用起来很不方便,并且在大多数情形下也是不可行的.这一节我们将给出极限的若干运算法则,应用这些法则将帮助我们比较方便的进行有关极限的证明和计算. 一 无穷小的运算定理 设,,αβγ是0x x →时的无穷小,即0 lim ()0,lim ()0,lim ()0,x x x x x x x x x αβγ→→→===下面 来叙述有关无穷小的运算定理。 定理1 1)有限个无穷小的和也是无穷小; 2)有界函数与无穷小的乘积是无穷小。 推论:1)常数与无穷小的乘积是无穷小; 2) 有限个无穷小的乘积也是无穷小。 二 极限的四则运算法则 利用极限与无穷小的关系及无穷小的运算性质,下面叙述极限的极限的四则运算法则。 定理2 如果()0 lim x x f x A →=, ()0 lim x x g x B →= 则()() ()(),()(), 0() f x f x g x f x g x B g x ±≠,的极限都存在,且 (1) ()()()()0 lim lim lim ;x x x x x x f x g x f x g x A B →→→±=±=±???? (2) ()()()()0 lim lim lim ;x x x x x x f x g x f x g x AB →→→==???? (3) ()()()()000 lim lim (0).lim x x x x x x f x f x A B g x g x B →→→==≠ 证 1因为()0 lim x x f x A →=, ()0 lim x x g x B →=,所以,当0x x →时,0,01>?>?δε, 当100δ<-?δ,当200δ<-

2019-2020年高二数学函数极限的运算法则教案 上教版

2019-2020年高二数学函数极限的运算法则教案 上教版 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如.若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 0). 说明:当n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于的情况仍然适用. 三 典例剖析 例1 求 例2 求 例3 求 分析:当时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数在定义域内,

可以将分子、分母约去公因式后变成,由此即可求出函数的极限. 例4 求 分析:当时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim * N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→ 例5 求 分析:同例4一样,不能直接用法则求极限. 如果分子、分母都除以,就可以运用法则计算了。 四 课堂练习(利用函数的极限法则求下列函数极限) (1); (2) (3); (4) (5) (6) (7) (8)

第二章极限习题及答案:极限的四则运算

分类讨论求极限 例 已知数列{}n a 、{}n b 都是由正数组成的等比数列,公比分别为q p ,,其中q p >,且1≠p ,1≠q ,设n n n b a c +=,n S 为数列{}n C 的前n 项和,求1lim -∞→n n n S S . (1997年全国高考试题,理科难度0.33) 解: ()() 1 1 1111--+--=q q b p p a S n n n ()( )()() ()( )()( ) 1 1111 1111111111--+----+--= ---n n n n n n q p b p q a q p b p q a S S . 分两种情况讨论; (1)当1>p 时,∵ 0>>q p ,故10<< p q , ∴1 lim -∞→n n n S S ()()()()????? ? ?????????????????? ??--+???? ??--?????????? ??--+???? ??-------1111111111111111111lim n n n n n n n n n n p p q p b p q a p p p q p b p q a p ()()()()()()010110 10111111?-+--?-+--? =p b q a p b q a p ()() p q a q a p =--? =1111 (2)当1

(完整版)极限四则运算.doc

§1.5极限的运算法则 极限定义为我们提供了一种求极限的方法 , 但这种方法使用起来很不方便 , 并且在大多数情形下也是不可行的 . 这一节我们将给出极限的若干运算法则 , 应 用这些法则将帮助我们比较方便的进行有关极限的证明和计算. 一无穷小的运算定理 设 , , 是 x x0 时的无穷小,即 lim ( x) 0, lim ( x) 0, lim ( x) 0, 下面 x x0 x x0 x x0 来叙述有关无穷小的运算定理。 定理 1 1 )有限个无穷小的和也是无穷小; 2)有界函数与无穷小的乘积是无穷小。 推论: 1)常数与无穷小的乘积是无穷小; 2)有限个无穷小的乘积也是无穷小。 二极限的四则运算法则 利用极限与无穷小的关系及无穷小的运算性质,下面叙述极限的极限的四则 运算法则。 定理 2 如果 lim f x A , lim g x B 则 f ( x) g(x), f ( x) g(x), f ( x) B 0 , x x0 x x0 g( x) 的极限都存在,且 ( 1)lim f x g x lim f x lim g x A B; x x0 x x0 x x0 ( 2)lim f x g x lim f x lim g x AB; x x0 x x0 x x0 f x lim f x A ( 3)lim x x0 ( B 0). g x lim g x B x x0 x x0 证 1 因为 lim f x A, lim g x B ,所以,当 x x0时,0, 1 0 ,x x0 x x0 当 0 x x0 1 时,有 f (x) A ,对此, 2 0 ,当0 x x0 2 时, 2 有 g (x) B 2 ,取min{ 1 , 2 } ,当0 x x0 时,有 ( f (x) g( x)) ( A B) ( f ( x) A) ( g( x) B) f ( x) A g( x) B 2 2 所以 lim ( f (x) g( x)) A B 。 x x0 2)因为 lim f (x) A,lim g( x) B ,由极限与无穷小的关系可以得出 x x0 x x0 f (x) A , g ( x) B , ( , 均为无穷小) 于是有 f (x) g( x) ( A)( B) AB ( A B) ,记A B,

极限的运算法则

极限的运算法则 目的要求 1.掌握数列极限与函数极限的运算法则。 2.能运用极限的运算法则,求出较复杂的函数和数列的极限。 3.让学生体验“化归”、“类比”的数学思想方法。 内容分析 1.简单的函数极限可以从函数值的变化趋势中找出,但较为复杂的函数极限,就必须把它“化归”为简单的函数的极限,通过运算而得出。因此,极限的运算法则是我们实现化繁为简的基本手段。 2.教科书中给出了0x x →时,函数f (x )极限的四则运算法则,我们类似地可以给出当x →∞时,函数f(x)极限的运算法则,即 如果极限)(lim x f x ∞→与)(lim x g x ∞ →都存在,那么 )()(x g x f ±,)()(x g x f ?,) ()(x g x f (当x →∞时)的极限也存在,并且 )(lim )(lim )]()([lim x g x f x g x f x x x ∞→∞ →∞→±=±, )(lim )(lim )]()([lim x g x f x g x f x x x ∞ →∞→∞→?=?, )0)(lim ()(lim )(lim )()(lim ≠=∞ →∞ →∞→∞→x g x g x f x g x f x x x x 。 这些法则,可用类比的方法,直接改变式中的0x x →为x →∞而得出,以便学生理解记忆。 3.对于函数极限的运算法则,教科书只给出结论,不要求证明。 4.在上一节课中,已经给学生讲述了数列与函数的关系,即把数列看成是特殊的函数,根据演绎推理,很自然地得出数列的极限运算法则。进一步地令C b n =(C 为常数),则可推得:n n n n a C a C ∞ →∞→?=?lim )(lim 。 5.极限运算法则可以推广到有限多个数列的情况,让学生感受数学思维的一般规律,养成从特殊到一般,从具体到抽象的归纳思维习惯。 6.教科书中的例1~例5,共包含了0x x →与x →∞两类极限的计算问题。其中,0x x →的函数f (x )的极限计算时,分f(x)在0x x =处有定义和无定义的两种(例1、例2是有定

高三数学教案:数列极限的运算法则

数列极限的运算法则(5月3日) 教学目标:掌握数列极限的运算法则,并会求简单的数列极限的极限。 教学重点:运用数列极限的运算法则求极限 教学难点:数列极限法则的运用 教学过程: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]=±→) ()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限.. 多个数列的情况。例如,若{}n a ,{}n b ,{}n c 有极限, 则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 二.例题: 例1.已知,5lim =∞ →n n a 3lim =∞ →n n b ,求).43(lim n n n b a -∞ → 例2.求下列极限: (1))45(lim n n + ∞ →; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限, 上面的极限运算法则不能直接运用。

高二数学上册 7.7《极限的运算法则》教案 沪教版

7.7 (2)极限的运算法则 一、教学内容分析 本小节的教学内容是在理解无穷数列极限的概念的基础上学习数列极限的运算性质及四个重要的极限,鉴于高二学生现有的数学基础,教材采取从实际的例子引入,给出数列极限的运算性质及四个重要极限的结论,然后通过例题加以说明的方式. 教学重点是数列极限的运算性质,教学中要强调运算性质成立的条件是两个数列的极限都存在. 教学难点是数列极限的运算性质及四个重要极限结论的灵活运用,会进行恒等变形,运算性质可从两个数列推广到有限个数列,注意有限与无限的本质区别. 二、教学目标设计 掌握数列极限的运算性质,会利用这些性质计算数列的极限. 知道数列极限的四个重要结论,并会用它们来求有关数列的极限; 会运用式的恒等变形,把分子、分母极限不存在的分式转化为若干个极限存在的数列的代数和,从而求出极限,提高观察,分析以及等加转换的能力. 三、教学重点及难点 重点:数列极限的运算性质. 难点:数列极限的运算性质及重要极限的灵活运用. 四、教学流程设计 五、教学过程设计 课堂小结并布置作业 实例 引入 极限概念 数列极限的结论 运用与深化(例题分析,巩固练习) 极限的运算性质

一、复习回顾 1、数列极限的定义. 2、已知1 23-= n n a n 试判断数列{}n a 是否有极限,如果有,写 出它的极限. 二、讲授新课 1、实例引入 计算由抛物线x y =2 ,x 轴以及直线x=1所围成的区域 面积S :26) 12)(1(lim lim n n n S S n n n --==∞→∞ → 2、数列极限的运算性质 (1)数列极限的运算性质 如果B b A a n n n n ==∞ →∞ →lim ,lim ,那么 (1)B A b a b a n n n n n n n ±=±=±∞ →∞ →∞ →lim lim )(lim ; (2)B A b a b a n n n n n n n ?=?=?∞ →∞ →∞ →lim lim )(lim ; (3)B A b a b a n n n n n n n ==∞ →∞ →∞→lim lim lim ; (2)的推论:若C 是常数,则A C a C b C n n n n n ?=?=?∞ →∞ →∞ →lim lim )(lim 说明:1、运算性质成立的条件 2、在数列商的极限中,作为分母的数列的项及其极 限都不为零. (2)常用的数列极限的几个结论 (1)对于数列{}n q ,当1

《函数极限的运算法则》教案(优质课)

《函数极限的运算法则》教案 【教学目标】:掌握函数极限的运算法则,并会求简单的函数的极限 【教学重点】:运用函数极限的运算法则求极限 【教学难点】:函数极限法则的运用 【教学过程】: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组

成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 22 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.

注意函数4 16 2--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变 成4+x ,由此即可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim * N k x C C k x x ∈==∞→∞ →

相关文档
最新文档