怎么划定可约与不可约

怎么划定可约与不可约

1.怎么划定可约与不可约?

它就是矩阵的约化,一个矩阵有最简式和一般的形式,就像2=4/2=6/3

2.特征标表的推导

特征标表是由特征表组成的。一种操作对应一个矩阵,这个矩阵可能是可约的,需要你约化一下,然后去求他的特征标,说到底还是矩阵的表示与约化。

3.如何画出分子的简正震动?

简正震动是水分子的振动光谱那道例题里的吗,没明白你说的怎么画是什么意思

补充知识:

书上P120

对称元素:旋转轴、镜面、对称中心

对称元素系:由全部对称元素构成

对称操作群:和对称元素群对应的全部对称操作构成一个群(或者叫对称操作的集合)群:群是按照一定规律相互联系的一些元的集合

元:元是操作、数字、矩阵或者算符等等,本章中表示矩阵

连续做两个对称操作即和这两个元的乘法对应。

三次正多项式p_不可约的充要条件(精)

第 19卷第 2期宁波大学学报(理工版 V ol.19 No.2 2006年 6月 JOURNAL OF NINGBO UNIVERSITY ( NSEE June 2006 文章编号 :1001-5132(2006 02-0193-03 三次正多项式 p -不可约的充要条件 解烈军 (宁波大学理学院 , 浙江宁波 315211 摘要:通过对所有可能正分解的详细讨论,给出了三次正多项式 p -不可约的显式充要条件, 该条件为由三次正多项式的系数构成的一个简单不等式 . 本文使用的主要工具是笛卡尔符号法则的推论和多项式完全判别系统相关结论等 . 关键字:正多项式; p -不可约;充要条件 中图分类号:O151.1 文献标识码:A 在许多生理过程中都包含所谓的“蛋白质-配位体的键合(protein-ligand binding ”过程 . 在众多的用于描述和解释这个过程的数学模型中, Wyman J [1]引入了键合多项式(binding polyno- mial这个基本工具 . 在生物化学领域,这样的一个事实是熟知的:如果某个大分子的键合多项式是 p -不可约的, 则其所有键合位点组成“联动结构” (linkage , 即配位体在一个位点的键合会加速或抑制其他位点的键合过程 . 反之,如果对应的键合多项式有正分解,则其位点可以分解成若干独立的组,不同组的位点互不影响 . 这样,一个大分子的诸键合位点是否联动的问题就归结为其键合多项式是否有正分解,即是否为 p -不可约的问题, 而键合多项式都是正多项式 . 所以,由一个正多项式的系数直接给出其 p -不可约的充要条件,就显得非常重要 . 关于这个问题,已有不少学者进行了讨论 [1-3]. 但是研究的多项式都是四次正多项式 . 显然,不能将这些结论简单地移植到三次正多项式,相对于四次,讨论三次正多

不可约多项式的判定及应用(黄嘉盛)详解

不可约多项式的判定及应用 摘 要 多项式理论是高等代数的重要组成部分,而不可约多项式是多项式中重要的概念. 本文主要对有理数域上不可约多项式的判别方法进行整理归纳, 较为系统的给出不可约多项式的判定方法。对于一般的不可约多项式的判定有Eisenstein 判别法、Kronecker 判别法、Perron 判别法、Browm 判别法等。研究了各判定方法的等价和包含关系。此外,我们还给出了不可约多项式的一些应用。 关键词 不可约多项式;判定方法;应用 2. 不可约多项式的概念及性质 2.1 整除的概念 设P 是一个数域,对于[]P x 中任意两个多项式()f x 与()g x ,其中()0g x ≠,一定有[]P x 中的多项式()q x ,()r x 存在,使得 ()()()()f x q x g x r x =+ 成立,其中(())(())r x g x ?

证明: 如果()r x = 0那么()f x =()()q x g x ,即()g x |()f x 。反过来,如果()g x |()f x ,那么()f x =()()q x g x =()()q x g x +0,即()r x = 0。 注1: 带余除法中()g x 必须不为零。 下面介绍整除性的几个常用性质: (1) 如果()f x |()g x ,()g x |()f x ,那么()()f x cg x =,其中c 为非零常数。 (2)如果()f x |()g x ,()g x |()h x ,那么()f x |()h x (整除的传递性)。 (3) ()f x |()g x ,()f x |()g x 1,2,,i r =,那么 ()f x |()1122()()()()()()r r u x g x u x g x u x g x +++, 其中()i u x 是数域P 上任意多项式。[1] 2.2 本原多项式 若是一个整系数多项式()f x 的系数互素, 那么()f x 叫做一个本原多项式。 2.3 有理数域上多项式的等价 设()g x 有理数域上的一个多项式, 若()g x 的系数不全是整数,那么以()g x 系数分母的一个公倍数乘()g x 就得到一个整系数多项式()f x 。显然,多项式()g x 与()f x 在有理数域上同时可约或同时不可约。 2.4 多项式的不可约相关概念 在中学我们学过一些具体方法,把一个多项式分解为不能再分的因式的乘积,但并没有深入探讨和讨论这个问题,并没有严格地论证它们是否真的不可再分,所谓不可再分的概念,其实不是绝对的,而是相对于系数的数域而言,有例如下 把49x -进行分解,可分解为 49x -()()2233x x =+-

一般矩阵可逆的判定

一般矩阵可逆的判定 Good (11统计数学与统计学院 1111060231) 摘要:作为一张表,矩阵的运算规则具有特殊性。在运算的过程中,逆矩阵则是作为矩阵乘法的逆运算而存在的。由于矩阵乘法的逆运算仅限于方阵,故而逆矩阵又作为一项特殊的矩阵除法运算而存在。对于矩阵的运算来说,逆矩阵是不可缺少的一部分。在以线性代数为基础的研究中,逆矩阵是解决实际问题的一个最直观,最实用的工具。然而在实际研究中,并不是所有方阵都存在逆矩阵,那么对于矩阵可逆的判定就显得极其重要了。 关键字:n阶方阵A;A≠0;r A=n;?λn≠0;AB=BA=I n 0 引言 逆矩阵是矩阵乘法逆运算的结果。这个逆运算的过程被作为矩阵运算的一部分而不可或缺。对于所有矩阵而言,只有方阵中可逆的那部分才存在逆矩阵;就好像四边形一样,只有当矩形的四边相等才能被叫做正方形。然而也就是这很特殊的一小部分,它的运用却充斥着所有与线性代数相关的领域。比如:物理学,经济学,统计学,数学,社会管理学等等。对于矩阵的运算来说,逆矩阵的运算至关重要。由于矩阵在实际运用中具有的重要作用,而逆矩阵对于矩阵来说又具有重要的作用。在以矩阵为研究对象的研究过程中,研究逆矩阵也就有了很重要的意义。 对于研究逆矩阵的过程中,“什么样的矩阵才可逆?”是值得深讨的问题。就像求四边形中的正方形一样,要求正方形,最基本的前提就是:四边形必须是矩形。只有四边形满足四个内角都是90度的时候,四边形才称的上是矩形。而对于矩形来说,只有满足矩形的四条边都相等时,这样的矩形才能被称为正方形。对于矩阵可逆来说,一个矩阵要可逆,最基本的前提:必须满足矩阵的行列相等,矩阵必须是一个方阵才行。研究方阵的可逆,对于实际应用才存在实际意义。那么对于方阵来说,又需要满足什么样的条件,方阵才可逆呢?本文也就是从可逆矩阵的判定条件入手,着重分析可逆判定的充要条件。最后介绍几种常用的求解逆矩阵的方法。 1 矩阵的概念 1.0矩阵的定义 定义1:令F是一个数域,用F上的m×n个数a ij(i=1,2,?,m;j=1,2,?,n)排成m行n列的矩阵列,则称为m×n阵,也称为一个F上的矩阵,简记为A mn。 A=a11a12 a21a22 ?a1n ?a2n ?? a m1a m2 ?? ?a mn 1.1逆矩阵的定义 定义2:设A是数域F上的n阶方阵,若数域F上同时存在一个n阶方阵B,使得 AB=BA=I n 则称B是A的逆矩阵,记作:B=A?1。

不可约M-矩阵的一种判别法

不可约M-矩阵的一种判别法 许晓玲 (闽江学院数学系,福建,福州350108) 关晋瑞 (厦门大学数学科学学院,福建,厦门361005) 摘要:本文中我们提出了一个判定不可约M-矩阵的实用算法,给出了相应的理论分析,并用数值算例展示了该算法的有效性和优越性。 关键词:M-矩阵;判别法;不可约 中图分类号:O151.21 1 引言 M-矩阵是一类很重要的特殊矩阵,自1937年由Ostrowski 提出之后,由于它的重要性和优美的性质,得到了深入的研究和广泛的应用。从那时起,新的性质和等价条件不断被发现,1977年Plemmons 在[11]中总结的非奇异M-矩阵的等价条件已有40个,在后来的专著 [2]中又扩充到多达50个。另一方面,M-矩阵的应用十分广泛,数学上应用在矩阵理论,微分方程数值解,Markov 链,线性互补问题,线性方程组迭代法等问题中,其他学科如物理,生物,经济中也有着广泛的应用。这方面的详细内容可参考[2][7][8][15]。 下面我们给出M-矩阵的定义及一些基本性质,主要来自[2] [15]。 记{}()|0,n n n ij ij A a a i j ?==∈≤?≠。 对任意的n A ∈,我们总可以将A 表示为A cI B =-,其中0c ≥为常数,0B ≥是一个非负矩阵。若()c B ρ≥,我们称A 是一个M-矩阵。特别的,当()c B ρ>时称A 是一个非奇异M-矩阵,当()c B ρ=时称A 是一个奇异M-矩阵。 关于非奇异M-矩阵我们有下面几个常见的等价条件。 定理1.1 设n A ∈,则下列各条件等价: (1) A 是一个非奇异的M-矩阵; (2) A 可逆,且1 0A -≥; (3) 存在0x >,使得0Ax >; (4) A 的任意特征值都有正实部;

括号里最大能填几

9×()<65 4×()<10 6×()<53 7×()<20 5×()<16 8×()<60 6×()<38 5×()<37 4×()<27 3×()<4 8×()<53 4×()<11 7×()<58 9×()<40 7×()<60 5×()<32 3×()<11 8×()<73 7×()<53 6×()<26 6×()<9 8×()<27 2×()<11 7×()<44 8×()<38 4×()<29 9×()<20 4×()<34 8×()<37 5×()<36 3×()<16 6×()<35 8×()<66 4×()<38 5×()<27 9×()<78 8×()<20 5×()<40 9×()<30 6×()<16 9×()<78 4×()<17 6×()<44 7×()<32 4×()<26 7×()<66 5×()<29 3×()<8 6×()<59 8×()<34 5×()<42 9×()<53 8×()<42 6×()<56 4×()<19 4×()<35 6×()<43 3×()<29 9×()<73 5×()<48 6×()<59 8×()<12 4×()<27 9×()<43 6×()<11 8×()<34 4×()<13 3×()<17 6×()<58 5×()<26 7×()<40 9×()<75 4×()<23 6×()<38 8×()<23 5×()<32 7×()<29 2×()<11 8×()<33 9×()<26 5×()<17 9×()<36 8×()<43 5×()<36 23>4×() 47>9×() 34>8×() 26>9×() 13>5×() 47>8×() 34>6×() 56>9×() 41>7×() 53>7×() 66>9×() 72>8×() 39>6×() 24>5×() 48>6×() 61>7×() 25>7×() 65>9×() 23>6×() 39>7×() 32>6×() 43>5×() 39>9×() 41>7×() 48>9×() 63>9×() 43>9×() 33>8×()

反证法证明多项式不可约

反证法证明多项式不可约 在有理数域上,直接判别一个多项式是否不可约,是一件及其困难和复杂的事情,此时我们可以利用反证法来判别. 例 1 已知)(x p 是次数大于零的多项式,若对于任意两个多项式)(x f 和)(x g ,由)()(|)(x g x f x p 可以推出)(|)(x f x p 或)(|)(x g x p ,则)(x p 是不可约多项式. 证明 假设)(x p 可约,则必存在次数小于))((x p ?的多项式)(x f 与)(x g ,使得)()()(x g x f x p =,即)()(|)(x g x f x p ,又由已知条件,知)(|)(x f x p ,)(|)(x g x p ,但))(())((x p x f ??x f ,所以)(x f 在整数环Z 上也可约,即有整系数多项式)(1x f 与)(2x f ,使得)()()(21x f x f x f =,其中))(())((x f x f i ?

矩阵可逆的条件以及特征值,特征向量与可对角化条件

矩阵可逆的条件: 1 秩等于行数 2 行列式不为0,即|A|≠0 3 行向量(或列向量)是线性无关组 4 存在一个矩阵,与它的乘积是单位阵 5 齐次线性方程组AX=0 仅有零解 6 非齐次线性方程组AX=b 有唯一解 7 可以经过初等行变换化为单位矩阵,即该矩阵等价于n阶单位矩阵 8 它去左(右)乘另一个矩阵,秩不变 特征值、特征向量与可对角化条件: 定义:设A 是数域F 上n 阶矩阵,如果存在可逆阵P ,使P -1AP 为对角阵,那么A 称为可对角化矩阵。 并不是所有的n 阶矩阵都可对角化,例如,A= 就一定不可对角化,所以我们要首先讨论可对角化的条件。 数域F 上n 阶矩阵A 可对角化的充分必要条件为存在n 个数λ1 , λ2 , ... , λn F 及n 个线性无关的向量p1,p2,...,pn, 使APi = λiPi i=1,2, ...,n. 。 数域F 上n 阶矩阵A 可对角化的充分必要条件是A 有n 个线性无关的特征向量。

特征值与特征向量的性质: (1 )相似矩阵有相同的特征多项式,从而有相同的特征值、相同的迹和相同的行列式。 (2 )如果λ是矩阵A 的一个特征值,是一个多项式,那么是矩阵多项式的一个特征值 . (3 )如果A 是一个可逆阵,λ是A 的一个特征值,那么, 1 /λ 是A -1 的一个特征值 . (4 )属于不同特征值的特征向量线性无关。 (5 )对矩阵A 的每个特征值,它的几何重数一定不超过代数重数。(6 )如果A 是一个是对称矩阵,那么它的每个特征值的几何重数与代数重数相等,从而它有个线性无关的特征向量,他一定可以对角化。

不可约多项式本源多项式

有限域第一次大作业 一、实验内容 (1)构造有限域202F . (2)找到有限域202F 上的任意元素的极小多项式; (3)找到2F 上的一个本原多项式。 二、算法设计 (1)我们知道有限域()n q F q p =的表达有三种形式:()i {} q q F ααα==,α为 ()q h x x x =-的根;()ii []()()()[],p q p F x F f x F x n f x =∈的次不可约多项式; ()iii {}0,q q F F α=U 为上的一个生成元;在这里我们主要通过找到2F 上的一个20次可约多项式来构造有限域202F ,并进行相应的运算。由于只要找到一个2F 上的不可约多项式,我们采用的算法:()a 随机生成一个20次2F 上的多项式,()b 判断多项式为不可约的,pari 代码见附录1;通过pari 我们得到了一个20次的不可约多项式()(x)f ,则[]()2(x)F x f 即为我们想要的有限域,在这有限域上可以直接进行相应的代数运算,pari 代码见附录2; (2)找到有限域202F 上的任意元素α的极小多项式()f x 的思路 第一步:通过元素α的共轭元个数来判断极小多项式()f x 的次数; 第二步:通过α的共轭元生成极小多项式()f x ; 第三步:进一步判断该元素α是否为本原元,若是,则生成的极小多项式()f x 就是2F 上的本原多项式。 pari 代码见附录3;

(3)由于上述方法(2)生成的极小多项式不一定是本原多项式,因此,我们还给出一个能找到上的本原多项式的方法,该方法也是基于随机生成多项式并判断是否为本原多项式,我们知道一个n 次不可约多项式()f x 是本原多项式的条件是其周期达到最大1n p -,由于()() 11n p f x x --,所以只要11n k p p p -=L 时,若()|f x ()11 1,,n i p p x i k -?? ?-= ???L ,则()f x 就是本原多项式,所用的算法思路如下 第一步:随机产生一个2F 上的20次多项式()f x ; 第二步:利用方法一判断该多项式()f x 是否为不可约的; 第三步:进一步判断该多项式()f x 是否为本原多项式。 pari 代码见附录4; 三、实验结果 (1)第一问产生的不可约多项式 我们选择()20191814136++1f x x x x x x x =++++作为我们的所要的不可约多项式 第一问有限域上元素的运算

线性代数中的若干个充要条件

线性代数中的若干个充要条件 一、n 阶方阵可逆的充要条件 A 是n 阶可逆方阵 ?E BA AB ==)( ?0det ≠A (非奇异) ?n A =rank (满秩) ?A 的最高阶非零子式的阶数等于n ?E A ~(等价) ?A 的伴随矩阵*A 可逆 ?)rank()rank(B AB = ?存在n 阶可逆矩阵P ,使E AP = ?存在n 阶可逆矩阵Q ,使E QA = ?存在有限个初等方阵s i P i ≤≤1 , ,使s P P P A 21= ?0=Ax 只有零解 ?0=Ax 解空间的维数是零 ?ββ=∈?Ax R n ,总有唯一解 ?A 的行(列)向量组线性无关 ?ββ ,n R ∈?总可以由n ααα,,,21 唯一的线性表示 ?A 的特征值均不为零 实对称 A ?A 的正、负惯性指数的和n q p =+ ?A A T 是正定矩阵

?A 的行(列)向量组是n R 的一组基 ?A 的列向量组与单位向量组?????? ? ??=??????? ??=??????? ??=100,,010,00121 n εεε等价 ?A 是n R 的某两组基之间的过渡矩阵 二、β=?x A n m 有(无)解的充要条件 β=?x A n m 有(无)解 ?),rank(rank βA A = (),rank(rank βA A <) ?向量β可以(不能)被A 的列向量组n ααα,,,21 线性表示 三、β=?x A n m 有唯一(无穷多)解的充要条件 β=?x A n m 有唯一(无穷多)解 ?)(),rank(rank n n A A <==β ?A 的列向量组n ααα,,,21 线性无关,且β可以被n ααα,,,21 唯一线性表示(n ααα,,,21 线性相关,β的表示法不唯一) 四、0=?x A n m 只有零(有非零)解的充要条件 0=?x A n m 只有零(有非零)解 ?n A =rank (n <) ?A 列满秩(列亏秩)

矩阵可逆性总结

矩阵的可逆性 摘要:本文通过由矩阵的除法引出可逆矩阵,介绍了可逆 矩阵的定义,性质,算法及其判定方法等等,之后对可逆矩阵进行了推广,还有关于广义逆的介绍。 关键词:可逆矩阵;伴随矩阵;三角矩阵;广义逆矩阵 正文: 一、逆矩阵的定义: 因为数的除法a ÷b 是:已知两数的乘积b 及其中一个因数a 求另外一个因数x ,也就是解方程ax =b 。只要能求出除数a 的倒数a ?1使aa ?1=1,则除法b ÷a 可以转化为乘法b ×a ?1。而我们联想到矩阵的运算上,对矩阵A , B ,用B “除以”A 也就是要求一矩阵X 使AX =B 。在之前的学习过程中已经了解了矩阵的乘法不满足交换律,还应考虑求另一矩阵Y 满足YA =B 。如果能找到一个A ?1满足条件A ?1A =I ,在矩阵方程AX =B 两边左乘A ?1就得到A ?1AX =A ?1B 从而X =A ?1B 。如果这个A ?1还满足条件AA ?1=I ,则A (A ?1B )=B ,X =A ?1B 就是AX =B 的唯一解。类似地,如果上述A ?1存在,可知YA =B 有唯一解Y =BA ?1。 所以给逆矩阵下一个定义:对于矩阵A,如果存在矩阵B满足条件AB=且BA=I (表示单位矩阵),就称A可逆,并且称B是A的逆。表示成B=A 1- 二、矩阵可逆的等价条件: 1、A 可逆?F ∈?B ,使得I AB =;(定义法) 2、若A 可逆,则A 是方阵且0≠A ; 3、若0≠A ,则方阵A 可逆; 4、n 级矩阵A 可逆?矩阵A 的秩为n,即r(A )=n ; 5、n 级矩阵A 可逆?A 的行向量组线性无关; 6、n 级矩阵A 可逆?A 的列向量组线性无关; 7、n 级矩阵A 可逆?A 可以表示成一系列初等矩阵的乘积; 8、n 级矩阵A 可逆?A 可以经过一系列初等行变换化为I ; 9、n 级矩阵A 可逆?A 可以经过一系列初等列变换化为I ; 10、n 级矩阵A 可逆?齐次线性方程组A x=0只有唯一零解. 三、逆矩阵的性质: 1、 逆的唯一性: 假如A 可逆,那么A 的逆B 是唯一的。

不可约多项式外文文献加翻译

不可约多项式外文文献加翻译不可约多项式外文文献加翻译 = irreducible polynomial Let f (x) = fl (x)ll--fk(x)lk be the standard factorization of f(x) in the polynomial ring F[x], where fi (x) is an irreducible polynomial with leading coefficient 1 and degree ni. f (x) =f_l (x) 1???f_k (x) ~lk是f (x)在多项式环F[x]中的标准分 解 式,f_i (x)是最高系数为1、次数为n_i的不可约多项式. In this note, we suppose n is a composite, Z_n is a residue class ring mod n> r (x) WZ_n[x] and r (x) is a monic irreducible polynomial of degree k (k>0) over Z_n. 设n是一个合数,Z_n表示模n的剩余类环,r (x) EZ_n[x]是一个首一的k(>0)次不可约多项式。 From these, the cyclic Zq? code with the generator hm(x) whichis primitive basic irreducible polynomial over Zq can be mapped for nonlinearcode with big distance over Zp. 由此将Zq上的一类由本原基本不可约多项式hm(x)生成的循环码映射成Zp上具有较大距离的非线性码,其中本原基本不可约多项式hm(x)是指hm(x)在模p映射下的象hm(x)是Zp [x]中的本原多项式. As a matter of fact, the met hod starts from Z_2, and t here is an irreducible polynomial x~2+x+l over Z_2. As a generating element, which may be regarded as a Princpal Ideal (x~2+x+l). Therefore, as are know from the thory of Modern Algebra, Z_2[x]/(x~2+x+l) is a Finite Fields. 这一方法实质上是从Z_2岀发,以Z_2上的一个不可约多项式x~2+x+l 为生成元做一个主理想(x~2+x+l),然后由近世代数的理论知Z_2[x]/(x~2+x+l)是一个有限域,从而得到了GF⑷。

不可约多项式外文文献加翻译

不可约多项式外文文献加翻译

不可约多项式外文文献加翻译irreducible polynomial Let f(x) = f1(x)l1…fk(x)lk be the standard factorization of f(x) in the polynomial ring F[x], where fi(x) is an irreducible polynomial with leading coefficient 1 and degree ni. f(x)=f_1(x)~l1…f_k(x)~lk是f(x)在多项式环F[x]中的标准分解式,f_i(x)是最高系数为1、次数为n_i的不可约多项式. In this note, we suppose n is a composite, Z_n is a residue class ring mod n, r(x)∈Z_n[x] and r(x) is a monic irreducible polynomial of degree k (k>0) over Z_n. 设n是一个合数,Z_n表示模n的剩余类环,r(x)∈Z_n[x]是一个首一的k(>0)次不可约多项式。 From these, the cyclic Zq? code with the generator hm(x) whichis primitive basic irreducible polynomial over Zq can be mapped for nonlinearcode with big distance over Zp. 由此将Zq上的一类由本原基本不可约多项式hm(x)生成的循环码映射成Zp上具有较大距离的非线性码,其中本原基本不可约多项式hm(x)是指 hm(x)在模p映射下的象hm(x)是Zp[x]中的本原多项式. As a matter of fact, the method starts from Z_2, and there is an irreducible polynomial x~2+x+l over Z_2. As a generating element, which may be regarded as a Princpal Ideal (x~2+x+1). Therefore, as are know from the thory of Modern Algebra, Z_2[x]/(x~2+x+1) is a Finite Fields. 这一方法实质上是从Z_2出发,以Z_2上的一个不可约多项式 x~2+x+1为生成元做一个主理想(x~2+x+1),然后由近世代数的理论知 Z_2[x]/(x~2+x+1)是一个有限域,从而得到了GF(4)。 Irreducible Polynomial of Integral Coefficient 关于整系数不可约多项式 prime polynomial This paper directly proves that a prime polynomial has the radical solutionsover a finite field. 直接证明了有限域上的不可约多项式有根号解 “不可约多项式”译为未确定词的双语例句 We give a definition for n is Generalized Carmichael Number of order k modulo r(x) and denote this by n∈C_(k,r(x)). So we give another definition: C_k={UC_(k,r(x))|r(x) are all monic irreducible polynomials of degree k (k>0) over Z_n}. 本文引入n是k阶摸r(x)的Carmichael数的定义,全体这样的数记为集C_(k,r)(x),由此给出k阶Carmichael数集:C_k={∪C_(k,r)(x)|r(x)过

可交换矩阵的几个充要条件及其性质

可交换矩阵的几个充要条件及其性质 在高等代数中,矩阵是一个重要的内容.由矩阵的理论可知,矩阵的乘法不同于数的乘法,矩阵的乘法不满足交换律,即当矩AB有意义时,矩阵BA未必有意义,即使AB,BA都有意义时它们也不一定相等.但是当A,B满足一定条件是,就有BA AB=,此时也称A与B是可交换的,可交换矩阵有许多良好的性质,本文主要研究矩阵可交换的几个条件及其常见的性质.本文矩阵均指n阶实方阵. §1 矩阵可交换成立的几个充分条件 定理1.1(1)设A,B至少有一个为零矩阵,则A,B可交换; (2)设A,B至少有一个为单位矩阵,则A,B可交换; (3)设A,B至少有一个为数量矩阵,则A,B可交换; (4)设A,B均为对角矩阵,则A,B可交换; (5)设A,B均为准对角矩阵,则A,B可交换; (6)设*A是A的伴随矩阵,则A与*A可交换; (7)设A可逆,则A与1-A可交换; (8)设E AB=,则A,B可交换. AO=,O表示零距阵,所以A,B至少有一个为零矩阵证 (1)对任意矩阵A,均有OA 时,A,B可交换; (2)对任意矩阵A,均有EA AE=,E表示单位矩阵,所以A,B至少有一个为单位矩阵时,A,B可交换; (3)对任意矩阵A,均有A (kE为数量矩阵,所以A,B (=,k为任意实数,则) ) kE ( kE A) 至少有一个为数量矩阵时,A,B可交换; (4),(5)显然成立;

(6)A A E A AA **==,所以矩阵A 与其伴随矩阵可交换; (7)A A E AA 11--==,所以矩阵A 与其逆矩阵可交换; (8)当E AB =时,A ,B 均可逆,且互为逆矩阵,所以根据(7)可知A ,B 可交换. 定理1.2(1)设B A AB βα+=,其中α,β为非零实数, 则A ,B 可交换, (2)设E AB A m =+α,其中m 为正整数,α为非零实数,则A ,B 可交换. 证 (1)由B A AB βα+=可得E E B E A αβαβ=--))((,即 E E B E A =--))((1αβαβ,故依定理 1.1(8)得E E A E B =--))((1βααβ,于是E E B A BA αβαββα=+--,所以 AB B A BA =+=βα; (2)由E AB A m =+α得E B A A m =+-)(1α,故依定理1.1(8)得E A B A m =+-)(1α,于是E BA A m =+α,所以可得BA AB =. 定理1.3(1)设A 可逆,若O AB =或AB A =或BA A =,则A ,B 可交换; (2)设A ,B 均可逆,若对任意实数k ,均有B kE A A )(-=,则A ,B 可交换. 证 (1)若O AB =,由A 可逆得O AB A B A A B ===--)()(11,从而O BA =,故BA AB =; 若AB A =,同理可得E AB A B A A B ===--)()(11,故BA AB =; 若BA A =,则E A BA AA B B ===--11)()(,故BA AB =. (2)因A ,B 均可逆,故由B kE A A )(-=得kE A -可逆,且A kE A B 1)(--=,则 ,))(())((])[()(])[(])[(''1 ''''1'''''1 '''''1'''A B kE A kE A A B kE A kA A A B kE A A kE A B A kE A B kE A B A =--=--=--=--=---- 两边取转置可得BA AB =.或由 ,) (])[()()() ()(])[(])[(111112*********--------------=--=--=--=--=A B kE A A kE A B kE A kA A B kE A A kE A B A kE A B kE A B A 两边取逆可得BA AB =.

不可约矩阵与几乎可约矩阵的一些组合性质.

不可约矩阵与几乎可约矩阵的一些组合性质 摘要非负矩阵是指元素为非负实数的矩阵,同计算数学,经济数学,概率论,物理,化学等有着密切关系。本论文主要研究非负矩阵的那些仅依赖 于矩阵的0元素的位置,而与元素本身数值无关的性质。本论文从非负矩阵的 基础理论出发,结合图论的有关性质,利用图论与矩阵的关系,来研究不可约矩阵与几乎可约矩阵的1些性质。本论文分为3部分,第1 章是引言部分,第2章阐述了不可约矩阵,不可约矩阵的谱半径,完全不可分 矩阵,几乎可约矩阵,几乎可分矩阵的概念,第3章阐述了不可约矩阵,不可 约矩阵的谱半径,完全不可分矩阵,几乎可约矩阵,几乎可分矩阵的重要定 理,性质以及其证明。关键字不可约矩阵;完全不可分矩阵;几乎可约矩阵;几乎可分矩阵;极小强连通图 Abstract Nonnegative Matrices is the matrices whose elements are nonnegative real numbers, and it has close relationship with computer science, economic mathematics, the theorem of probability, physical. This paper mainly research the matrices’ quality with only depends on zero in matrices, but not its own values. This paper main research Combinational quality of Irreducible Matrices and Nearly Reducible Matrices by basic theory of Nonnegative Matrices , quality of graph theory ,and the relationship between graph theory and matrices. This paper includes three parts, the first part is introduction, the second one expounds the concept of irreducible matrices, spectral radius of irreducible, fully indecomposable matrices, nearly reducible matrices, and nearly decomposable matrices. The last one expounds important theories, qualities and proof of irreducible matrices, spectral radius of irreducible, fully indecomposable matrices, nearly reducible matrices, and nearly decomposable matrices. KeywordIrreducible matrices; Fully indecomposable matrices; Nearly Reducible matrices; Nearly decomposable matrices; Minimally strong diagraph.

2016考研数学矩阵正定判定的五个充要条件

2016考研数学矩阵正定判定的五个充要 条件 考研数学如何取得高分?以下老师为各位同学整理了提高考研数学成绩的三个技巧,供大家参考,希望能对大家复习备考有帮助! 考研数学复习是建立在对基本的东西很深刻的理解的基础上的,单纯多做题可能会多见识一些题型,但对于一些很灵活有新意的题目就可能无法应对,这和点石成金的故事是一样的道理。而这种能力的培养却来自于老老实实地将基础打牢,这一点上要摒弃那种急功近利的想法,不论是考研还是成就一番事业,要想成功,首先要沉得住气,有一个长远的打算,而不是做一天算一天,同时要善于控制事情发展的节奏,不论太快抑或太慢都不好,你都得去考虑为什么会这样,怎样去解决。一个人不论处于顺风还是逆风,都要学会不断的去跟自己出难题,不断地去反省自己,自己主动把握自己的命运,他才能最后成功。在忙碌的考研复习中,或许你正在忙于大量的复习知识,或许你已投入无尽的题海,或许你还在为一道道题而苦恼,或许你还在因为复习不见成效而沮丧。但是,不知忙于埋头复习的你有没有发现,不是你的能力不够强,而是你对如何复习还不熟练。我们的最终目的是提高复习效果,提高复习效果的途径大致可以分为两种:一是调整数学整体的素质和能力,更好的驾驭考研;二是理解复习的每一个环节,掌握复习方法,将自己已有的潜能和水平发挥到极致。 矩阵正定是针对对称矩阵而言的,在数一、数二、数三的考试中,主要是实对称矩阵。矩阵的正定与对应的二次型正定是等价。下面就从矩阵对应的二次型正定和矩阵自身正定两个角度进行讨论。

把握良好的进取心态,将长久以来复习的知识融会贯通,力争在最后的战场上保持做题的最佳能力,合理利用时间调整自己,切忌心烦气躁,忧心忡忡,让自己在最后的拼搏中赢得最后的胜利。 最后祝愿大家考研取得好成绩!

不同域上的不可约多项式

论文题目

目录 1、前言................................................................................................... 错误!未定义书签。 2、因式分解定理及唯一性定理 ..................................................... 错误!未定义书签。 3、复系数多项式................................................................................. 错误!未定义书签。 4、实系数多项式................................................................................. 错误!未定义书签。 5、有理系数多项式 ............................................................................ 错误!未定义书签。 艾森斯坦(Eisenstein)判别法 .................................. 错误!未定义书签。 艾森斯坦因(Eisenstein)判别法的变式..................... 错误!未定义书签。 艾森斯坦因(Eisenstein)判别法的等价定理............. 错误!未定义书签。 多项式的复根与其不可约性......................................... 错误!未定义书签。 n次整系数多项式在有理数域上的不可约的又一充分性错误!未定义书签。 6、有限域上的不可约多项式.......................................................... 错误!未定义书签。 判断有限域上一元多项式是否可约进而得到分解式的方法错误!未定义书签。 q阶有限域上的不可约多项式.................................... 错误!未定义书签。致谢.......................................................................................................... 错误!未定义书签。参考文献 ................................................................................................ 错误!未定义书签。

可逆矩阵

哈尔滨师范大学 学年论文 题目浅谈可逆矩阵的判定、求法 学生赵怀志 指导教师高鹤讲师 年级2010级 专业数学与应用数学 系别数学与应用数学系 学院数学科学学院 哈尔滨师范大学 2012年11月

论文提要 在高等代数中矩阵占有很重要的部分,而可逆矩阵又是矩阵比较重要的一类,在多项式理论、线性方程组理论、向量空间、线性变换、二次型理论等相关理论中具有极其重要的地位,为此本文从最基本的矩阵出发阐述了可逆的定义、性质及相关的应用,体现了数学的逻辑性及严密性的特点,从整体把握可逆矩阵的思想方法,希望对大家有所帮助。

浅谈可逆矩阵的判定、求法 赵怀志 摘 要:本文主要介绍了有关可逆矩阵的定义、判定、性质、求法,。对可逆矩阵相关知识做了一个较为详尽的总结。 关键词:可逆 单位矩阵 初等变换。 1 预备知识: 定义1 由 n m ?个实数ij a 排成的一个 m 行n 列的矩形数表 A =11 1212122212 mn n n m m a a a a a a a a a ?? ? ? ? ? ?? ? 称之为 n m ? 矩阵,位置( i ,j )上的元素,一般用ij a 表示(强调两个足标的意义)。 矩阵可简记为n m A ?或}{ij a A =或n m ij a A ?=}{ . 特殊矩阵: 方矩阵 若 n m =,称A 为n 阶(方)矩阵,也可记作 n A . (强调矩阵的(主)对角线,) 而nn a a a ,,,2211 称之为对角元素;(反主对角线)。 当 1==n m 时,即 ()11a A =, 此时矩阵退化为一个数11a . 矩阵相等 若同型矩阵n m ij a A ?=}{和n m ij b B ?=}{在对应位置上的元素都相等 即,,,1;,,1, n j m i b a ij ij === 零矩阵 所有元素都为零的矩阵,称之为零矩阵。一般记作O ;或 n m O ? . 注意,不同型的零矩阵是不相等的。 负矩阵 设 n m ij a A ?=}{,称矩阵 }{ij a A -=- 为矩阵A 的负矩阵。 三角矩阵 设}{ij a A =是 n 阶矩阵。 1)若A 的元素满足 j i a ij >?=,0,称A 是上三角矩阵; 2)若A 的元素满足 j i a ij

相关文档
最新文档