如何提高加热炉的运行热效率

如何提高加热炉的运行热效率
如何提高加热炉的运行热效率

如何提高加热炉的运行热效率

【摘要】我国“三北”地区的油田以及全国的稠油油田,加热炉是应用最为普遍的重要热工设备。由于数量巨大,每年都要消耗掉数亿立方米的天然气。加热炉运行状况如何,不仅直接影响原油生产成本中能耗费用的份额,而且还关系到原油集输生产的安全。

【关键词】提高;加热炉;热效率

加热炉的运行热效率是衡量加热炉技术、经济性能的最主要的指标。目前,我国此类加热炉的设计热效率已达到90%左右,就此而言,可以说已达到国际领先水平。但多数加热炉的运行热效率却比设计值低,低5~10个百分点的甚为普遍,低10~20个百分点的也并不少见。不言而喻,这势必显著降低加热炉运行的经济性和安全性,这不能不引起我们的注意。我们就如何提高加热炉的运行热效率,从技术的角度以及运行方式等几个方面加以探讨。

1.运行中存在的问题

加热炉运行中存在的主要问题有以下几点:

1.1运行热效率普遍低

加热炉的设计热效率一般为80%~85%,而实际运行中的热效率要远远底于设计热效率。

1.2负荷率普遍低

普通加热炉负荷率在50%至20%之间,有的甚至底于20%。这是加热炉运行中极为突出的问题。

1.3排烟损失普遍高

加热炉正常情况下排烟损失为10%左右,实际中排烟损失则高于次数值,这也是运行中相当严重的问题。

1.4散热损失较高

设计的散热损失一般为2%~3%,实际运行中的散热损失要高于次数值。

2.运行效率低的原因分析

2.1两个基本概念

提高火筒式加热炉热效率的措施

* 裴召华,男,工程师。2002年毕业于中国石油大学(华东)机械制造工艺与装备专业和法学专业,获得双学士学位,现在中油辽河工程有限公司机械工程所从事压力容器及非标设备的设计工作。通信地址:辽宁省盘锦市兴隆台区石油大街93号中油辽河工程有限公司机械工程所,124010 裴召华* (中油辽河工程有限公司) 裴召华. 提高火筒式加热炉热效率的措施. 石油规划设计,2009,20(5):46~47 摘要 火筒式加热炉是油气田生产中应用非常广泛的设备,提高火筒式加热炉的热效率对于节能降耗意义重大。影响火筒式加热炉热效率的主要因素是过剩空气系数、不完全燃烧、排烟温度等。降低排烟温度对于热效率的提高影响最大,然而排烟温度的降低又引发了露点腐蚀问题。本文对提高火筒式加热炉的热效率和控制露点腐蚀的措施进行了论述。 关键词 火筒式加热炉 过剩空气系数 露点腐蚀 不完全燃烧 排烟温度 控制措施 火筒式加热炉是油田生产上应用广泛的设备,是在金属圆筒内设置火筒传热,通过火筒对物料加热,以满足工艺所需的温度。该设备对燃料的消耗非常大,提高火筒式加热炉的热效率,减少燃料消耗,对于节能降耗意义重大。本文重点对提高火筒式加热炉热效率的措施进行讨论。 1 提高空气进入炉膛的温度 空气预热温度与热效率提高值的关系见图1。 图1中曲线表明,空气温度每提高20℃,加热炉的热效率就提高一个百分点;当空气预热温度达到110℃时,加热炉的热效率可提高5%。空气预热通常是利用排出的高温烟气通过换热对空气进行加热,提高空气进入炉膛的温度。这种方式非常简便,不会改变工艺流程,便于操作控制,既可提高空气 进入炉膛的温度,又可降低排烟温度,提高加热炉的热效率。 空气预热可提高加热炉的热效率,但不能无限制地提高空气温度。其原因有二:一是随着空气温度的提高,燃烧产物中的NOx 会增加,如果没有适当的措施,对环保非常不利;二是空气温度过高还可能引起燃油喷嘴结焦和燃烧器变形过大。因此,预热空气温度不宜超过300℃。 2 控制过剩空气系数 燃料不可能在理论空气量条件下完全燃烧,必须要在一定过剩空气量的条件下才能完全燃烧。燃烧所用的实际空气量与理论空气量之比称为过剩空 气系数α。燃料为气时,合理的过剩空气系数 α=1.05~1.15;燃料为油时,合理的过剩空气系数α=1.15~1.25。如果过剩空气系数过大,那么大量的热量被烟气带走。热效率与过剩空气系数的关系曲线见图2。 图2曲线表明:当过剩空气系数α>1.16时,随着过剩空气系数的增大,排烟热损失不断增大,热效率也随之降低;当过剩空气系数α<1.16时,虽然排烟热损失也随过剩空气系数的降低而降低,但不完全燃烧热损失随过剩空气系数的下降而增 图1 空气预热温度与热效率提高值的关系 热效率提高值/% 空气预热温度/℃ 提高火筒式加热炉热效率的措施

影响加热炉热效率的因素及对策

影响加热炉热效率的因素及对策 摘要:21世纪随着石油开采工程的不断深入,全国的各大油田也得到了不断的发展。由于新疆冬季的特殊气候条件,气温低,持续时间长,在原油的输送过程中需要进行中间加热,这就需要大量的加热炉。笔者通过分析加热炉在运行中存在的一系列问题和影响加热炉热效率的因素,提出了提高加热炉运行热效率的技术对策,并介绍了几种提高运行热效率的途径和具体措施,指出了影响热效率的关键因素以及提高热效率的可行性,并在此基础上就进一步提高加热炉热效率提出了建议和改进措施。 关键词:加热炉热效率对策 引言:众所周知,原油在运输和加工过程中,必须要使用加热炉加工。因此,加热炉成为了石油领域中无法取代的重要能源机器,但是由于加热炉在加热原油的过程中很大一部分的热能都散发了出去,并没有应用于加热原油上。所以,找到提高加热炉热效率的方法成为了整个热能领域亟待解决的问题,考虑到加热炉是将原油运输中不可或缺的一道工序,也是至关重要的一项设备,找到影响加热炉热效率的因素,提出解决问题的方法,是整个石油行业需要解决的问题。 一、影响加热炉效率的主要因素 1.加热炉受热面积灰结垢一直是困扰加热炉运行的主要因素,受热面积灰结垢一旦形成,它所造成的负面影响将是持久的及递增的。同时应保证燃料燃烧充分。因为,排烟热损失主要由排烟温度和烟气量决定,烟气量取决于加热炉的过剩空气系数,提高热效率的途径主要是通过降低过剩空气系数或排烟温度来实现。所以,在过剩空气系数和排烟温度增高时,加热炉热效率都将降低。 2.加热炉运行控制中由于多种原因致使运行工况控制不好,包括风门调节不当,供风过大;运行负荷低于设计值;燃料品质不好造成腐蚀和积灰;供风系统操作不当;燃烧器选型问题等,这些问题导致的直接结果是加热炉排烟气氧含量和过剩空气系数普遍偏高。通过调查发现,企业中加热炉烟气中的平均氧含量普遍都高于标准的指标,平均排烟温度也高于标准温度。过高的烟气氧含量导致炉内的过剩空气较多,这样会造成排烟温度偏高,烟气带走的热量越多,对热效率的影响也就越大。过大的过量空气系数还会加速炉管的氧化,促使氮氧化物增加,给环境造成不利的影响,影响炉管使用寿命 3.余热回收系统设备状况的好坏也会影响加热炉的热效率。时刻了解设备的腐蚀状况,加以预防。余热回收系统设备腐蚀主要是硫酸露点腐蚀造成,在该系统低温烟气段普遍存在,系统中的蒸馏装置前置空气预热器因为腐蚀容易泄漏,造成热损失。 4.炉壁散热损失超标仍然是一个不可忽视的因素。通过观察炉膛内部发现,部分炉子炉膛衬里脱落严重,炉壁表面温度普遍高于规定的标准温度,造成这种

锅炉热效率的计算与分析

薛正举 (河北金牛旭阳热电车间) 摘要:锅炉的热效率表明锅炉设备的完善程度和运行管理的水平。通过计算公司1#锅炉“煤改气”后的热效率,来分析了影响其热效率的主要因素,并讨论了提高锅炉热效率的方法。 关键词:燃气锅炉、热效率 锅炉的热效率是指燃料送入的热量中锅炉有效利用的热量所占的百分数。它是锅炉的重要技术经济指标,它表明锅炉设备的完善程度和运行管理的水平。通过计算本公司1#锅炉的热效率,来分析了影响其热效率的主要因素,并讨论了提高锅炉热效率的方法,同时,也简单论述了其他减少热损失的措施。 一、燃气锅炉热效率的计算 在燃气锅炉相对燃煤锅炉,燃料燃烧程度要高很多,热损失相对比较少,燃气锅炉比燃煤锅炉的热效率要高。以下取公司1#燃气锅炉(煤改气锅炉)在2011年9月15日至17日的运行数据。通过正平衡法来计算1#锅炉的热效率。 正平衡法用被锅炉利用的热量与燃料所能放出的全部热量之比来计算热效率的方法叫正平衡法,又叫直接测量法。正平衡热效率的计算公式可用下式表示:热效率 = 锅炉蒸发量X(蒸汽焓-给水焓) 燃料消耗量X燃料低位发热量 吨蒸汽耗气量 33 注明:煤气量是由生产部提供,蒸汽产量是锅炉统计。 煤气热值计算

注明:煤气成分明细是由质管部气象色谱仪分析得出,每天分析6次,取平均值。焦炉煤气热值计算公式如下: Qd(KJ/m3) = (Q 1×A 1 + Q 2 ×A 2 + Q 3 ×A 3 + Q 4 ×A 4 )/100 式中: Q 1、Q 2 、Q 3 、Q 4 ——各可燃成份的发热值,千焦/米3。 即,H 2 = 12797, CH 4 = 36533, CO = 12640, CmHn = 71180 A 1、A 2 、A 3 、A 4 ——各可燃成分在煤气中的百分数。 过热蒸汽热值计算 过热蒸汽热值从熵焓图上查出。 锅炉给水的热值 现在锅炉用除盐水水温平均44℃,是由锅炉自备蒸汽加热除氧。自备蒸汽未统计在锅炉产气量内。 水44℃时的热值是 kJ/kg 锅炉效率 锅炉效率={蒸汽热值(kJ/kg)-给水的热值(kJ/kg)}X1000 煤气热值(kJ/m3)X吨蒸汽耗气量(m3/t)

加热炉热效率

加热炉热效率 加热炉是炼油厂消耗燃料的主要设备,其能耗约占炼油厂能 耗的一半以上。因此,提高加热炉的热效率,对降低炼油厂总能 耗具有重要的意义。 提高加热炉热效率的手段较多, 涉及的因素也较广泛。这里 仅简单地介绍一下热效率的一些影响因素和提高措施。 (1) 提高热效率与节约燃料的关系 提高加热炉热效率可以减少燃料用量,但加热炉热效率提高 的百分比与节约燃料的百分比并不成等值关系。 节约燃料的百分 比的定义如下: 可见,加热炉原来的热效率越低, 燃料的用量B 就愈多,提 高热效率后节约燃料的收效就越大。 (2) 降低加热炉热负荷与热效率关系 减少加热炉的热负荷是通过装置换热系统优化,提高入炉油 温和改进工艺流程等措施来实现的。 热负荷减少后的加热炉,即 使热效率较低,仍可能比热负荷大,热效率高的加热炉所消耗的 燃料还要少。而且如加热炉热效率越高,相应地减少热负荷后原 来炉子的热效率提高值将越大。 所以,当加热炉热效率比较高时,节能措施应以降低热负荷 为主;反之,应以提高加热炉热效率为主。在减少炉子热负荷的 基础上,进一步提高炉子的热效率是最理想,最有收效的方法。 B 原来- B 改造 后 100%

(3)提高燃烧空气温度 燃料与空气的混合物只有被加热到着火温度时,才能在没有外热提供的条件下继续燃烧,即未经预热的燃烧空气与燃料混合后要先吸收足够的热量,后再着火放热。因此,利用烟气余热来预热燃烧空气,可以进一步提高加热炉的热效率。但是,燃烧空气的温度也不能提得太高,一般以预热至300 C左右为宜。因为这个温度还要考虑到燃烧器的结构和材质问题。另外,空气温度太高,会引起油枪端部结焦或引起预混式瓦斯火嘴回火,也可能使因雾化不良,流淌至风道内的燃料油着火。 (4)集中回收烟气余热 热负荷太小的加热炉,单独采用余热回收系统有困难或不够经济,可以将几个炉子的烟气集中回收余热,以提高热效率。这样做还有一个优点是集中的烟气可以通过一个高烟囱排出,从而减少对地面环境的污染。 (5)合理选用过剩空气系数 过剩空气系数如果小,会使燃料燃烧不完全,但如果过大,大量过剩空气又会将热量带走排入大气,使炉子热损失增多,热 效率下降。 过剩空气系数取之过大,还会引起燃烧温度下降,露点温度升高,加剧炉管氧化,促使氮氧化物NO x增加,从而产生极不 利的影响。 (6)改进燃烧器

锅炉效率计算

单位时间内锅炉有效利用热量占锅炉输入热量的百分比,或相应于每千克燃料(固体和液体燃料),或每标准立方米(气体燃料)所对应的输入热量中有效利用热量所占百分比为锅炉热效率,是锅炉的重要技术经济指标,它表明锅炉设备的完善程度和运行管理水平。锅炉的热效率的测定和计算通常有以下两种方法: 1.正平衡法 用被锅炉利用的热量与燃料所能放出的全部热量之比来计算热效率的方法叫正平衡法,又叫直接测量法。正平衡热效率的计算公式可用下式表示: 热效率=有效利用热量/燃料所能放出的全部热量*100% =锅炉蒸发量*(蒸汽焓-给水焓)/燃料消耗量*燃料低位发热量*100% 式中锅炉蒸发量——实际测定,kg/h; 蒸汽焓——由表焓熵图查得,kJ/kg; 给水焓——由焓熵图查得,kJ/kg; 燃料消耗量——实际测出,kg/h; 燃料低位发热量——实际测出,kJ/kg。 上述热效率公式没有考虑蒸汽湿度、排污量及耗汽量的影响,适用于小型蒸汽锅炉热效率的粗略计算。 从上述热效率计算公式可以看出,正平衡试验只能求出锅炉的热效率,而不能得出各项热损失。因此,通过正平衡试验只能了解锅炉的蒸发量大小和热效率的高低,不能找出原因,无法提出改进的措施。 2.反平衡法 通过测定和计算锅炉各项热量损失,以求得热效率的方法叫反平衡法,又叫间接测量法。此法有利于对锅炉进行全面的分析,找出影响热效率的各种因素,提出提高热效率的途径。反平衡热效率可用下列公式计算。 热效率=100%-各项热损失的百分比之和 =100%-q2-q3-q4-q5-q6 式中q2——排烟热损失,%; q3——气体未完全燃烧热损失,%; q4——固体未完全燃烧热损失,%; q5——散热损失,%; q6——灰渣物理热损失,%。 大多时候采用反平衡计算,找出影响热效率的主因,予以解决。

浅谈提高加热炉热效率的方法

浅谈提高加热炉热效率的方法 发表时间:2019-08-15T09:10:50.233Z 来源:《基层建设》2019年第11期作者:孙汉峰1 李建泰2 周玉强3 张莉4 [导读] 1长庆油田分公司第二输油处;2.3.4.庆阳石化公司 改造加热炉的目的就是增加热负荷,提高热效率。在实际操作过程中,为了提高管式炉的处理量,通过增强燃烧的办法,可提高热负荷10%左右。但因受辐射管壁温度过高、火焰舔炉管和炉膛产生正压等条件限制,其处理能力难以管式加热炉是炼油厂和化工厂重要的供热设备。 因此,在改造之前,应收集分析和现场标定加热炉的性能指标,包括设计数据和操作时炉内各部位烟气温度和压力;燃烧空气温度、压力降及过剩空气系数;介质的进、出口温度和压力等。 经综合分析,可从以下6个方面对管式加热炉进行改造。 1.增加对流管表面积 增加对流管表面积能增大对流段的热负荷。对流段位于辐射室上部,增加对流室高度比增加辐射室高度容易。在常减压装置、焦化装置中通常可采用这种改造方法。对流段排烟温度与介质进口温度之差,国外要求低于30℃,国内多为100~150℃。可从以下三个方面进行改造。 其一,增加对流管数量。管式加热炉对流段上部一般留有高度不小于800mm的检修空间,小型加热炉高度不小于600mm,可在此空间加装对流管。若空间不够,可加高对流段,以增加对流管的换热面积。 其二,用扩大表面管替代光管。旧式加热炉对流段有的用光管,可以用翅片管或钉头管代替。钉头管表面积是光管的2~3倍,翅片管表面积是光管的8~11倍。代替后原来的管板不能再用,需重新制作管板。如果燃烧器烧油,需增设吹灰器吹灰。建议采用声波吹灰器,吹灰介质为压缩空气,吹灰效果好,可提高对流传热系数,降低排烟温度,同样可提高加热炉的热负荷。 其三,用翅片管替代钉头管。旧式管式炉对流管若烧气体燃料,可用传热面积更大的翅片管代替钉头管,但要保证外部安装尺寸与钉头管的相同,以便仍使用原来的管板。 2.增加辐射管换热面积 很多情况下,可通过增加辐射室的高度(即辐射管的高度)来增加圆筒形立式炉辐射管的换热面积。对水平管箱式炉,在炉管上部或接近炉底的下部有可利用的空间用来增加炉管数量,从而增加辐射管的换热面积。辐射管的根数与炉管直径、管心距有关,辐射段尺寸受加热炉地基础、钢结构、燃烧器布置等影响。 3.修正烟囱高度 烟囱的主要用途是安全有效地排放烟气。如果结构不合理,炉膛便产生正压而限制加热炉的操作。烟囱可通过增加高度或直径加以修正,但烟囱所受的风载荷会增加,故加热炉基础和钢结构的强度及稳定性须重新核算,以保证满足风载荷增加后烟囱的力学性能要求。 4.换用新型燃烧器或变自然通风为强制供风 燃烧器是加热炉的关键设备,自然通风的燃烧器需要更多的过剩空气,火焰长,通过燃烧器的空气压降为7.6~15.2mmH2O,燃烧空气被低速导入,很难与燃油充分混合。燃油的过剩空气系数为0.30~0.40;气体燃料为0.15~0.20。 强制供风的燃烧器压力降为50.8~152.4mm H2O,空气高速进入,湍流激烈,火焰短小有力,炉膛内炉管受热均匀,空气压力使燃料和空气充分混合,燃料油的过剩空气系数为0.10~0.15,燃料气的为0.05~0.10,燃烧充分,放射烟尘粒子减少,火焰形状和刚度易于控制,工作噪声低。 减小过剩空气系数一般能节省燃料2%~3%。但对低氮燃烧器而言,其火焰很长,若过剩空气系数减小到设计值,则操作较困难。 5.增设空气预热系统 这是加热炉常见的改造方式。烟气出口温度每下降35℃,热效率提高1%。如果烟气温度高于340℃,热负荷大于9.3MW,应在对流段和烟囱之间增设空气预热器预热燃烧空气,余热可以利用。同时要安装强制供风燃烧器、鼓风机或引风机、冷风道、热风道和烟道等。预热器用于中小型加热炉时,应尽量顶置,以简化结构,降低改造费用。一般靠炉子原来的烟囱自然排烟,应避免排烟温度接近露点温度,排烟温度以200~250℃为宜。 燃料中有6%~10%的硫燃烧后转化成SO3,继而生成硫酸。烟气内SO3含量越高,露点温度越高。管壁温度至少要高于烟气露点温度25℃。若燃料中硫含量小于1%,管壁温度最低为135℃;若燃料中硫含量为4%~5%,管壁温度最低为149℃。 避免烟气露点腐蚀的措施有:用低压蒸汽或热油预热空气;用预热器出口高温空气循环预热进口空气,以保持较高的空气进口温度;采用低合金耐腐蚀钢或非金属材料。 6.应用高温辐射涂料增强换热效果 近几年来,在管式炉炉膛内表面喷涂高温辐射涂料,以增强辐射传热量。炉内壁常用的耐火材料(耐火砖、耐火混凝土和耐火纤维毡三大类)辐射系数小,而高温辐射涂料的幅射系数大,涂抹后会增加热源对炉壁的辐射传热量,使炉壁表面温度上升,达到增大炉管的传热量和加热炉的热负荷之目的。 文中简述的几种提高加热炉效率的措施,在实际生产中需结合装置的特点、工艺要求、设备腐蚀、操作的安全等因素具体而定。这也就是说,加热炉的优化技术,随着科学技术的不断进步,加热炉的技术将不断优化,提高加热炉效率的措施也将不断完善。 参考文献: 1、钱家麟,于遵宏,王兰田等.管式加热炉.北京:烃加工出版社,1987:148~157 2、罗弘.管式炉的节能改造.石油化工设备技术,1996,17(3):21~22

锅炉热效率计算

1兆帕(MPa)=10巴(bar)=9.8大气压(atm)约等于十个大气压,1标准大气压=76cm汞柱=1.01325×10^5Pa=10.336m水柱约等于十米水柱,所以1MPa大约等于100米水柱,一公斤相当于10米水柱 水的汽化热为40.8千焦/摩尔,相当于2260千焦/千克.一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量. 一吨水=1000千克每千克水2260千焦 1000千克就是2260 000千焦 1吨蒸汽相当于60万千卡/1吨蒸汽相当于64锅炉马力/1锅炉马力相当于8440千卡热。 用量是70万大卡/H 相当于1.17吨的锅炉 以表压力为零的蒸汽为例,每小时产一吨蒸汽所具有的热能,在锅内是分两步吸热获得的,第一步是把20度的一吨给水加热到100度的饱和水所吸收的热能,通常这部分热能为显热,其热能即为1000×(100-20)=8万/千卡时。 第二步则是将已处于饱和状态的热水一吨加热成饱和蒸汽所需要吸收的热能,这部分热为潜热,其热能即为1000×539=53.9万/千卡时。 把显热和潜热加起来,即是一吨蒸汽(其表压力为零时)在锅内所获得的热能, 即:53.9+8=61.9万/千卡时。这就是我们通常所说的蒸汽锅炉每小时一吨蒸发量所具有的热能,相当于热水锅炉每小时60万/大卡的容量。 天然气热值 天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ 产地、成分不同热值不同,大致在36000~40000kJ/Nm3,即每一标准立方米天然气热值约为36000至40000千焦耳,即36~40百万焦耳。 天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ。而1度=1kW*h=3.6*10^6J=3.6*10^3KJ。即每立方燃烧热值相当于9.3—9.88度电产生的热能, 3.83<1.07*9.3 OR 9.88 天然气价格: 天然气的主要成分是甲烷,分子式是CH4,分子量是12+4*1=16. 在1标准大气压下,1mol气体的体积是22.4升,1立方米的气体有

燃气加热炉热效率计算方法的改进及应用

燃气加热炉热效率计算方法的改进及应用 发表时间:2019-06-24T16:02:44.060Z 来源:《基层建设》2019年第7期作者:王志春 [导读] 摘要:目前,加热炉热效率计算通常采用正平衡方法,通过直接测量加热炉输入热量和输出热量计算得到热效率。 中国石油化工股份有限公司天津分公司天津 300270 摘要:目前,加热炉热效率计算通常采用正平衡方法,通过直接测量加热炉输入热量和输出热量计算得到热效率。而对于反平衡计算方法,则是通过测试和计算加热炉各项热损失(包括化学不完全燃烧热损失、排烟热损失、机械不完全燃烧热损失、散热损失)以求得热效率,有利于对加热炉进行全面分析,得到影响热效率的各种因素,找出提高加热炉热效率的有效途径。 关键词:加热炉;热效率;反平衡;计算软件;现场应用; 加热炉热效率计算普遍采用正平衡计算方法,该方法通过直接测量加热炉输入热量和输出热量而计算得到。为了研究燃气加热炉热效率与燃气气质参数、排烟温度、过量空气系数等可控参数的关系,对热效率的正平衡计算方法进行改进,采用反平衡热效率计算方法,通过对加热炉排烟损失、散热损失、气体未完全燃烧热损失的计算从而求得热效率。根据热效率计算方法编制计算软件,并在软件计算界面保留过程参数,可以为分析热效率影响因素、制定节能措施、评估节能效果提供基础数据。 一、概述 燃气加热炉作为石油化工企业最常见的设备之一,主要设置于井口、计量站、接转站等处,用以提高被输送介质温度至其工艺要求的温度,以便于进行运输、分离、粗加工等工艺。燃气加热炉通过喷嘴将燃气与空气充分混合,使得燃烧更加彻底,降低了不完全燃烧所带来的热损失和对环境的污染。并且在操作方面比燃油容易控制,其节能效果也比固体和液体燃料更加理想。通过对燃气加热炉的热平衡效率进行测试,可以找出燃气加热炉在设计、操作等方面的不合理之处,从而提出可行的改造方案,为燃气加热炉的节能降耗指明方向。 二、天然气加热炉工作原理 天然气加热炉主要用于井口、计量站及接转站等处,其作用是作为天然气的升温防冻设备将天然气加热至工艺所要求的温度,以便于进行运输、分离及粗加工等工艺。天然气加热炉的结构.火筒是火管和烟管的总称,一般火管布置在壳体的下部空间,烟管布置在火管的另一侧,火管与烟管相连通,加热盘管布置在壳体的上部空间,壳体内充满中间传热介质。天然气加热炉工作时燃料在炉体内下部的火管内燃烧,热量通过火管和烟管壁面传递给中间传热介质,传热介质再加热在盘管内流动的被加热介质天然气。火管具有燃烧室的功能,主要传递辐射热;烟管主要传递对流热。中间介质以自然对流的方式将热量从火筒传递至加热盘管。根据加热介质温度的不同,中间传热介质可以采用水、蒸汽、乙二醇一水溶液等进行传热,但通常采用常压水浴传热方式。 三、热效率计算方法对比 加热炉热效率的正平衡计算法是用燃气加热炉有效利用热量与外界供给加热炉的热量之比来计算加热炉热效率1的方法,其计算式为: 式中:D为被加热介质流量,kg/h;h out、h in分别为被加热介质出、入口质量焓,kJ/kg;B为加热炉燃料消耗量,kg/h;Qin为输入热量,kJ/kg;QYDW为燃料低位发热值,kJ/kg;Q Win为用外来热量加热燃料或空气时,相应于每千克或每立方米燃料所给的热量(该计算方法无外来热源加热空气和燃料气,因此为零),kJ/kg;Hrx为燃料的物理显热,kJ/kg;QY DWi为i组分燃料低位发热值,kJ/kg;yi为i组分的质量分数,%;Cpi为燃料中i组分定压比热容,kJ/(kg·K);ΔT为燃料温度与计算参考温度之差,K。对于燃气加热炉而言,燃烧天然气实现能量转换,其大部分能量提供给被加热介质,还有一部分能量在各环节中损失。燃气加热炉热损耗包括排烟损失、气体不完全燃烧热损失及散热损失。排烟损失是由于加热炉排烟带走了一部分热量造成的热损失,其大小与烟气量、排烟温度、基准温度及烟气中蒸汽的显热有关;气体不完全燃烧热损失是由于烟气中含有未燃尽的CO和烷烃等可燃气体未燃烧所造成的热损失,主要受到燃料气性质、过量空气系数及炉内温度等影响;散热损失是指在加热炉范围内炉墙和管道向四周环境散失的热量占总输入热量的百分比。一般情况下,排烟热损失最大,其次为散热损失,而不完全燃烧热损失最小。根据上述燃气加热炉热损耗组成,建立反平衡计算方法,得到燃气加热炉反平衡效率2计算式: 式中:q 2为排烟损失,%;q 3为燃料化学不完全燃烧损失,%;q 5为散热损失,%;Kq 4为固体未完全燃烧热损失修正系数,Kq 4=1;Hpy为排烟处烟气焓,kJ/kg;Hlk为入炉冷空气焓,kJ/kg;Vgy为排烟处干气体积,m3/kg;126.3为CO容积发热量,kJ/m3;358.18为CmHn容积发热量,kJ/m3;CO、CmHn为烟气中各组分百分数,%;q5为理论散热损失(表1),%;Tb为炉面温度,℃;T为入炉冷空气温度,℃。由上述正、反平衡方法对比可知,正平衡方法通过实测参数进行计算,被测参数的测试难度大;在反平衡方法计算中,关于排烟损失、散热损失、气体未完全燃烧热损失的计算包含更多与加热炉运行性能相关的参数,如排烟温度、空燃比等。因此,相对于正平衡方法而言,反平衡计算方法能更直观地反映影响加热炉热效率的各种因素。 三、现场应用及结果分析 新编制计算软件已在某油田现场进行了大量应用,完成了不同型号燃气加热炉热效率的计算。下面以3个计转站的6台加热炉为例,分别运用正、反平衡方法进行计算,结果表明两种方法的相对差值小于5%。现场应用结果表明,利用反平衡方法进行燃气加热炉热效率计算,所需计算参数现场测试的可操作性强。相对于正平衡计算方法中通过焓值计算热效率而言,反平衡方法可通过热损耗组成关系,直接利用测试参数计算各环节的热损耗,并最终得到加热炉的热效率。在对生产现场的加热炉进行操作时,为了保证燃料的完全燃烧和操作的安全性,进入加热炉的空气量要比理论所需的空气量多。当空气量不足时,废气中的CO含量便会急剧上升,同时,原料气为油田伴生气时

锅炉热效率计算

一、锅炉热效率计算 10.1 正平衡效率计算 10.1.1输入热量计算公式: Qr=Qnet,v,ar+Qwl+Qrx+Qzy 式中: Qr__——输入热量; Qnet,v,ar ——燃料收到基低位发热量; Qwl ——加热燃料或外热量; Qrx——燃料物理热; Qzy——自用蒸汽带入热量。 在计算时,一般以燃料收到基低位发热量作为输入热量。如有外来热量、自用蒸汽或燃料经过加热(例: 重油)等,此时应加上另外几个热量。 10.1.2饱和蒸汽锅炉正平衡效率计算公式: 式中:η1——锅炉正平衡效率; Dgs——给水流量; hbq——饱和蒸汽焓; hgs——给水焓; γ——汽化潜热; ω——蒸汽湿度; Gs——锅水取样量(排污量); B——燃料消耗量; Qr_——输入热量。 10.1.3过热蒸汽锅炉正平衡效率计算公式: a. 测量给水流量时: 式中:η1——锅炉正平衡效率; Dgs——给水流量; hgq——过热蒸汽焓; hg——给水焓; γ——汽化潜热; Gs——锅水取样量(排污量); B——燃料消耗量; Qr——输入热量。 b. 测量过热蒸汽流量时: 式中:η1——锅炉正平衡效率; Dsc——输出蒸汽量; Gq——蒸汽取样量; hgq——过热蒸汽焓; hgs——给水焓; Dzy——自用蒸汽量;

hzy——自用蒸汽焓; hbq——饱和蒸汽焓; γ——汽化潜热; ω——蒸汽湿度; hbq——饱和蒸汽焓; Gs——锅水取样量(排污量); B——燃料消耗量; Qr——输入热量。 10.1.4 热水锅炉和热油载体锅炉正平衡效率计算公式 式中:η1——锅炉正平衡效率; G——循环水(油)量; hcs——出水(油)焓; hjs——进水(油)焓; B——燃料消耗量; Qr——输入热量。 10.1.5电加热锅炉正平衡效率计算公式 10.1.5.1电加热锅炉输-出饱和蒸汽时公式为: 式中:η1——锅炉正平衡效率; Dgs——给水流量; hbq——饱和蒸汽焓; hgs——给水焓; γ——汽化潜热; ω——蒸汽湿度; Gs——锅水取样量(排污量); N——耗电量。 10.1.5.2电加热锅炉输-出热水(油)时公式为: 式中:η1——锅炉正平衡效率; G——循环水(油)量; hcs——出水(油)焓; hjs——进水(油)焓; B——燃料消耗量; Qr_——输入热量 二、锅炉结焦的危害、原因及预防方法是什么? 在炉子的燃烧中心,火焰温度高达1450~1600℃,因此煤灰基本上处于溶化状态。当与受热面碰撞后,溶渣就会粘附在管道或炉墙上,这就叫结焦。 如果炉内结了焦,炉膛部分的吸热量就要减少,到过热器部分的烟温就会增高,而造成个别管子的外壁温度超过它的允许范围,引起爆管,同时还会使主汽温度超温。结焦严重时,会使吸热量的减少而减负荷,甚至停炉。结焦还会使排烟热损失q2和机械热损失q4及风机耗电增加。

提高加热炉热效率的措施探讨

提高加热炉热效率的措施探讨 发表时间:2018-08-16T10:58:40.457Z 来源:《基层建设》2018年第19期作者:殷宏鹏 [导读] 摘要:加热炉是石油化工行业提供热量的主要设备,乌石化芳烃车间有24台加热炉,数量较多,其技术水平、热效率的高低直接影响装置运行的技术水平、节能减排与经济效益。 乌鲁木齐石化公司炼油厂芳烃车间新疆乌鲁木齐 830000 摘要:加热炉是石油化工行业提供热量的主要设备,乌石化芳烃车间有24台加热炉,数量较多,其技术水平、热效率的高低直接影响装置运行的技术水平、节能减排与经济效益。本文概述了加热炉热效率,对影响加热炉热效率提高的主要因素以及提高加热炉热效率的措施进行了探讨分析,旨在提高加热炉运行效率。 关键词:加热炉;热效率;影响因素;措施 1加热炉热效率的概述 加热炉的热效率是指生产运行中加热炉参与热交换过程的热量利用程度,热效率是衡量加热炉优劣的一个重要参数。加热炉燃料消耗指标用全炉热效率表示,即全炉有效热负荷与燃料总发热量之比,热效率越高说明燃料的有效利用率越高,燃料消耗就低。空气不够,燃烧不完全,部分燃料尚未燃烧就离开炉膛和过剩空气系数太大有关(就是空气量太大),从烟气带出来的热就多,炉子的热效率就低。 2影响加热炉热效率提高的主要因素 影响加热炉热效率提高的因素主要有:(1)过剩空气系数过大的因素。过剩空气系数的控制主要与加热炉运行的热负荷、燃烧器的性能参数及技术检测手段等有关,过剩空气系数过大,加热炉内烟气含氧量过多,排烟时过量空气将热能带走排入大气,热损失增大,热效率下降。(2)气体未完全燃烧。气体不完全燃烧热损失的大小主要取决于燃烧成分、炉膛过剩空气系数、所用燃烧器、燃烧器与炉膛匹配是否适当以及运行操作是否合理。有部分加热炉存在缺氧燃烧现象,烟气中存在大量可燃气体,这一现象的存在,不仅造成了较大的气体不完全燃烧热损失,也为加热炉的安全运行、操作人员的安全生产留下了隐患。(3)负荷率低、保温状况使散热损失加大。散热损失与保温情况及散热表面积的大小、形状等有关,同时还与加热炉的额定容量和运行负荷的大小有关,在非额定工况下,散热损失与加热炉的负荷成反比。加热炉长期处于低负荷状态下运行,尽管排烟温度不是很高,但散热损失较大,运行热效率较低,当负荷率低于50%时,加热炉散热损失就达到设计值得2倍。另部分加热炉保温层老化、脱落现象,增大了加热炉的散热损失。(4)加热炉监控计量仪表缺损因素。加热炉监控仪表不全现象普遍存在。缺少单台加热炉燃料量的计量仪表和烟温监控仪表。由于仪表的缺乏,使加热炉的运行调节缺失了必要的依据,也使加热炉的节能管理缺乏必要的手段。 3提高加热炉热效率的措施分析 3.1提高空气进入炉膛的温度,降低排烟温度。可以利用加热炉的高温烟气余热加热入炉空气,分成高温段和低温段空气预热器对空气逐步加热,以提高入炉空气温度,可以把入炉空气温度提高到120℃以上。或者利用芳烃装置内的蒸汽凝结水余热,加热增设在加热炉燃烧器上的空气预热器,使进入炉膛的空气被加热,从而节约了燃料气消耗而达到一次节能,因此达到了双向节能的目的。目前有新型的玻璃管式空气预热器,利用烟气对空气加热,其换热效果好,腐蚀率低,可以将排烟温度降低到100℃运行,可以将加热炉热效率提高1%-2%的水平,已在很多装置进行使用。 3.2加强过剩空气系数的控制。燃料气不可能在理论空气量下燃烧,而需要在一定过剩空气量的条件下才能完全燃烧。燃烧所用实际空气量与理论空气量之比为过剩空气系数。如果过剩空气系数过大,大量的过剩空气热量将会被烟气带走。影响过剩空气系数的因素有燃料性质、燃烧的控制、炉体密封性、加热炉的测控水平、炉体负压水平等[1]。(1)燃料性质。气体燃料易与空气均匀混合,但也需要精细化操作,不易过大,同时也不应过小。否则,也会造成燃烧不完全。或者火焰发飘,飘舔炉管,影响装置的安全生产。(2)炉体密封性能。加热炉在负压下操作时,如果炉体密封性能不好,空气进入炉内,会造成影响燃烧器的正常燃烧,使辐射段的烟气氧含量过高。炉体密封性能不好,由炉壁各处的门、孔、缝漏入空气形成。有时虽然辐射顶的烟气含氧量很高,燃烧器入口处氧含量却仍然不足,就是由生产操作中没有及时关闭或关好看火孔,炉外空气进入造成。因此要求必须按照操作规程,看火孔使用后,及时关闭。(3)负压控制。炉顶负压高,相对来说炉体漏入的空气量会增加,同时烟气排出速度会增加,高温烟气在炉膛内的停留时间会相对缩短,辐射传热时间缩短,排烟温度上升。(4)加热炉的测控水平。加热炉的运行中,随着天气温度的变化,在同样的烟囱挡板的开度下,炉顶负压及氧含量是不一样的,通过中控室DCS在线氧化锆的氧含量显示,可以证明这一点。因而有必要适时加强烟囱挡板的精细化调节,以促进加热炉热效率的最大化。 3.3减少不完全燃烧损失。不完全燃烧不但造成热损失,降低加热炉热效率,而且还会造成大气污染。减少不完全燃烧损失的方法,首先是要选择性能良好的燃烧器,并及时进行维护;其次是在操作中精心调节“三门一板”,以确保适当的过剩空气量。 3.4减少散热损失。加热炉外壁主要以辐射和对流方式向大气散热,新建加热炉的散热量不大,一般仅占加热炉总供热量的1.5%~3.0%。因此,减少散热损失对提高加热炉的热效率不是很大。但是,在生产运行中,在用加热炉或多或少由于热烟气的冲刷会造成对炉体耐火衬里的损坏,在停车检修时,有必要对损坏的衬里进行修复或更换,另外及时清除辐射段炉管翅片上的积灰,以减少热能的损失[2]。 3.5加强加热炉的日常维护保养。加热炉在生产运行中,设备运行管理人员加强了加热炉的现场维护保养工作。因为加热炉的现场维护保养工作的质量,将直接关系到加热炉是否能够实行长周期的安稳运行。为此,加大了对生产装置加热炉的定期岗检,对加热炉实施全方位的维护保养工作。及时检查燃烧器的燃烧情况,定期清洗长明灯。另外,在加热炉“三门一板”的转动件部位,定期做好加脂防锈保养,努力提高加热炉设备的完好性。同时,认真做好烟囱挡板,风道碟阀、空气预热器的检查维护,为加热炉的高效运行提供可靠保证。 3.6强化加热炉在线控制仪表的检查维修。装置对在线控制仪表的使用质量坚持常查常改,发现在线控制仪表有失准问题,及时安排仪表维护人员检修或更换,保证在线仪表的正确性,为加热炉的安全生产提供了坚实的基础[3]。还要求仪表维护保养部门,加强对在线控制仪表的定期检验,保证加热炉在线控制仪表的完好投用。 4结束语 综上所述,加热炉是化工生产装置的关键设备,也是主要耗能设备,加热炉的运行状况的好坏直接影响到安全生产和经济效益,为此必须加强现场安全生产的管理,积极开展技术改造,努力提高加热炉的设备技术状况。在加热炉的管理工作中,要积极应用新技术、新材料、不断提升加热炉的管理水平,不断降低热能损耗,从而提高加热炉热效率。本文结合加热炉生产运行的状况,对影响加热炉热效率的

影响加热炉热效率的因素分析及优化措施_牟崴

36 加热炉转化效率的高低直接决定着设备所提供的热有效率,而且在一定程度上还能为企业节省一定的开支。在实际运行中,由于设备排烟热的损失、加热炉内部的损耗使得加热炉的转化效率受到了不同程度的影响。本文通过对影响加热炉热效率的几种因素的分析,提出有效的节能减排方案,为安全生产提供一定的借鉴。 1 轻烃预分馏装置原理及运行中存在的问题 轻烃预分馏装置主是通过混合物中气相及液相的回流,让液、气两相能够形成逆向,并完成多级接触,在相平衡关系及热能驱动的约束下,能使得易挥发组分(轻组分)不断从液相往气相中转移,而难挥发组分却由气相向液相中迁移,这样也能让混合物能够不断的进行分离,这也是轻烃预分馏装置的精馏原理。 轻烃预分馏装置在实际运行中所存在的问题有几点,首先,在轻烃预分馏的过程中有许多的干扰因素存在,尤其是能量和物物料等不同方面对其的干扰尤为频繁和明显。特别是在精馏过程中,分馏装置所塔顶和塔底温度的变化、物料组成的改变等都会让其平稳性受到直接的影响。其次,由于轻烃预分馏装置是由多精馏塔进行串联后运行的一种工艺过程,精馏塔之间很自然的就形成一种上下游的工艺关系,其下游的精馏工艺会直接受到上游工艺的影响,让其精馏效率难以提高。因此需对工业加热炉设备进行改进,以在降低能耗的基础上提高效率。 2 影响加热炉效率因素分析2.1 排烟温度 排烟温度是影响加热炉效率的一大因素,排烟热损失主要表现在两方面:一是排烟温度不能得到有效控制所致,若排烟温度过高,则加热炉所产生的热量被烟气带走的就较多,进而使热效率偏低,严重的话会造成炉管炸裂,烟道被损坏等不良现象,给正常的生产带来一定的影响,而排烟温度过低的话从经济层面来考虑也是不科学的;二是排烟容积超过许可范围。 2.2 炉膛温度 炉膛温度主要指的是烟气离开辐射室的温度,也就是 炉膛内的烟气温度,它是确保加热炉得以安全运行的重要指标。为了能准确测出炉膛内的实际温度,通常在加热炉炉膛部位安装有多个热电偶,已实现对炉膛温度的实时测量。在工作中可通过改变燃料在炉膛内的燃烧状况等方式,来使炉膛温度处于可控范围内。 2.3 炉出口温度 由于一段炉所采取的是二段转化工艺,使得其出口温度为687.5℃,低于正常水平,因此转化反应主要集中在二段炉内,在一段炉内只进行催化转化即可。通过相关数据显示,主装置运行负荷在90%以下时,如果将一段炉的出口温度设置在680℃,二段炉出口温度设置在958℃,则会造成天然气的消耗量增大,不仅会造成资源的浪费,而且也会对环境造成一定的影响。所以,主装置在此负荷状态运行时操作人员应对一段炉的出口温度进行必要的调整,以增加氧气的加入量。 2.4 炉膛负压 操作人员通过对炉膛负压实行监管与控制可确保炉内燃料的充分燃烧,提高运行效率,减低不安全隐患的发生。如若炉膛内负压超过正常范围时,则不仅会使燃料不能彻底燃烧,进而造成加热炉熄火等不良现象,而且也会造成排烟热损失加剧现象的发生,而炉膛负压过低的haunted,又会发生回火现象,给工作人员的生命安全造成严重的威胁。因此在实际工作中应按照加热炉的特征,并结合排烟温度等要素,合理调节烟道挡板开度,将炉膛负压控制在合适范围内,确保设备的安全运行。 2.5 烟气氧含量 烟气氧含量的高低与加热炉的热效率有着密不可分的联系。烟气氧含量低,则燃料不能得以全部燃烧,造成资源的浪费加剧,而烟气氧含量高,则热转化效率低。过剩空气系数大则入炉的空气量会急剧增加,造成炉膛温度不能满足实际所需,再加之炉膛温度的传热效能受阻,烟道部位会带走大量的热量。此外,加热炉的进料速度以及炉体密实性等因素也会对加热炉的转化效率造成应的影响。 影响加热炉热效率的因素分析及优化措施 牟崴 新疆华澳能源化工股份有限公司 新疆 克拉玛依 834000 摘要:加热炉是轻烃预分馏装置使用过程中非常重要的设备之一,加热炉转化效率的高低直接关系着设备的热有效率。影响加热炉转化效率的因素是多方面的,其中设备排烟热的损失、加热炉本身热量的损耗等都会对其造成不同程度的影响。通过对加热炉进行优化设计,可以提高加热炉的转化率,为节能生产提供可靠的保障。 关键词:加热炉 热效应 影响因素 优化 Influential factors and optimization of heating efficiency of furnace Mou Wei Xinjiang Cathay Energy Chemical Co., Ltd.,Karamay 834000,China Abstract:Heating furnace is the key equipment of the hydrocarbon pre-fractionation unit,whose conversion efficiency affects the heat efficiency of the equipment.Many factors contribute to the conversion of the furnace,which involve heat loss of smoke and heat furnace itself.The optimization of the furnace can improve the conversion of furnace and provide guarantee for energy-saving production. Key words:furnace;thermal effect;influential factor;optimization (下转第57页)

轧钢加热炉

轧钢加热炉 国内轧钢加热炉吨钢燃耗高、效率低,造成了能源的极大浪费,在国家节能减排的政策下,要搞好加热炉节能工作,提高炉子热效率,以降低轧钢生产成本。 能源的竞争是钢铁工业正在面临的挑战,降低能源消耗、建立环境友好的钢铁企业已经成为钢铁工业可持续发展的一个重要方面,也是钢铁工业利润增长的一个重要的基础工作。中共中央关于制定国民经济和社会发展第十一个五年规划的建议中也提出,“十一五”期间单位国内生产总值能源消耗要比“十五”期末降低20%左右,重点抓好冶金、建材、化工、电力等行业的节能降耗工作。 轧钢加热炉的能源消耗约占冶金行业能源消耗的10%左右,其中轧钢加热炉又占了75至80%。中国冶金行业的轧钢加热炉在产量、炉型结构、机械化、自动化水平及理论操作上与国外还存在一定的差距,炉子吨钢燃耗高、效率低,造成了能源的极大浪费因此提高加热炉效率、搞好加热炉节能工作,是降低轧钢生产成本,实现钢铁企业可持续发展的有效方法之一。 合理的炉型结构 炉型结构是加热炉节能与否的先天性条件,因此在加热炉新建时应该尽量考虑到加热炉节能的需要。炉型结构的新建或改造,要使燃料燃烧尽可能多的在炉膛内发生,减少出炉膛的烟气热损失;要尽可能多的江烟气余热回收到炉膛中来,提高炉子的燃料利用系数;尽量的减少炉膛各项固定热损失,提高炉子热效率。 (1)采用步进式炉型。步进式加热炉的实践表明,它与传统推钢式加热炉相比有很多优点:由于钢坯之间留有间隙,因此钢坯四面受热,加热质量好、钢材加热温度均匀;加热速度快,钢坯在炉内停留时间短,有利于降低钢坯的氧化烧损,有利于易脱碳钢种对脱碳层深度的控制;操作灵活,可前进、后退或踏步,可改变装料间距,控制炉子产量;生产能力大,炉子不受钢坯厚度和形状控制,不会拱炉;便于连铸坯热装料的生产协调。 (2)适当增加炉体长度。炉体长度是由总加热能力决定的,但是为了降低燃耗。提高炉子热利用率,可以适当增加炉体长度。炉体短,高温的烟气将不能得到充分的利用,废气就要带走大量的热能从烟道跑掉。因此适当延长露体可以使炉底强度降低,提高热效率。在一定的加热条件下,炉床负荷越高,热效率越低,燃料单耗越高。反之,随炉床负荷降低,废气带走的热损失将显著减少。如其它条件不变时适当延长炉体,虽然因炉底水管及炉体砌体的增加会使这部分热损失有所增加,但远远小于节约的燃料量。 一般而言,炉子每延长1米,可使钢坯温度上升25至30摄氏度,排烟温度下降约30摄氏度,单位热耗减少1.5至1.8。增加炉体长度主要是延长预热段的长度,降低排烟温度。国内一些企业按照预热段长度为全炉有效长度的45至50%,适当调整了预热段。取得了明显的节能效果。 (3)减少炉膛空间。炉膛各段高度与长度对炉内的传热有很大的影响,直接影响着炉子的加热和燃料的利用,在考虑炉膛高度时,既要保证燃料的充分燃烧,又要使炉气充满炉膛。 (4)炉内隔墙。炉内隔墙可以起到稳定炉压、控制炉气流动、控制炉温、减少烟气外溢、降低排烟温度和减少炉头吸冷等作用。因此,根据实际情况在炉头、炉尾及各段之间增加隔墙,对炉子节能降耗有明显的效果。 减少炉膛热损失 炉膛热损失主要包括水冷、炉门辐射、逸气、炉衬散热等热量损失。减少这部分热量可以大幅度降低单耗。 1.减少炉底管的热损失 (1)炉底管的绝热包扎。为消除加热炉水管黑印。减少热损失,提高加热质量及产品质量,降低燃料消耗,加热炉普遍采用了炉底管绝热包扎技术。水冷热损失一般占加热炉总热收入的10%左右,这部分热量损失主要是由炉底纵横水管及炉用水冷部件造成的。为了减少这部分热量损失就要加强冷却水管的隔热,可将原炉底纵横水管的单层绝热包扎改为两种材料的双层包扎,可显著降低水冷带走的热量损失。国内轧钢加热炉的炉底管及水冷滑轨绝热包扎方法有耐火塑料包扎,陶瓷纤维包扎、硅铝耐火纤维毡包扎及其它一些不定型耐火纤维预制件和耐火浇注料包扎等。 (2)最低管底比。中国轧钢加热炉的管底比普遍较大,为尽量降低管底比,现在所采用的方法主要有:增大横水管间距,在纵水管强度允许范围内,减少横水管根数,增大间距;改变纵横水管支

相关文档
最新文档