第7章 经典微积分和线性代数

第7章 经典微积分和线性代数
第7章 经典微积分和线性代数

(完整版)第7章多元函数微积分测试题讲义

第7章 多元函数微积分 测试题 一、单项选择题。 1.设23)12(++=y x z ,则 =??y z ( D )。 A .13)12)(23(+++y x y B .13)12)(23(2+++y x y C .)12ln()12(23+++x x y D .)12ln()12(323+++x x y 2.设)ln(y x z +=,则=) 0,1(d z ( B ) 。 A .y x d d +- B .y x d d + C .y x d d - D .y x d d -- 3.下列说法正确的是( A )。 A .可微函数),(y x f 在),(00y x 处达到极值,则必有),(00y x f x 0),(00==y x f y ; B .函数),(y x f 在),(00y x 处达到极值,则必有),(00y x f x 0),(00==y x f y ; C .若),(00y x f x 0),(00==y x f y ,则函数),(y x f 在点),(00y x 处达到极值。 D .若),(00y x f x 或),(00y x f y 有一个不存在,则函数),(y x f 在点),(00y x 处一定没有极值。 4.设uv z =,v u x +=,v u y -=,若把z 看作y x ,的函数,则 =??x z ( A ) 。 A .x 21 B .)(21 y x - C .x 2 D .x 5.下列各点中( B )不是函数x y x y x z 9332233-++-=的驻点。 A .)0,1( B .)1,0( C .)2,1( D .)0,3(- 6.二元函数?????=≠+=)0,0(),( 0)0,0(),( ),(2 2y x y x y x xy y x f 在点)0,0(处( C )。 A .连续,偏导数存在 B .连续,偏导数不存在 C .不连续,偏导数存在 D .不连续,偏导数不存在 7.函数xy y x z ++=22的极值点为( A )。 A .)0,0( B .)1,0( C .)0,1( D .不存在

物理中的微积分思想

高中物理中微积分思想 浙江省湖州中学物理组 潘建峰 伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。 微积分(Calculus )是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。 微积分学是微分学和积分学的总称。 它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分堪称是人类智慧最伟大的成就之一。在高中物理中,微积分思想多次发挥了作用。 1、解决变速直线运动位移问题 匀速直线运动,位移和速度之间的关系x=vt ;但变速直线运动,那么物体的位移如何求解呢? 例1、汽车以10m/s 的速度行驶,到某处需要减速停车,设汽车以等减速2m/s 2刹车,问从开始刹车到停车,汽车走了多少公里? 【解析】 现在我们知道,根据匀减速直线运动速度位移公式at v v +=0 2021at t v x +=就可以求得汽车走了0.025公里。 但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即202 1at t v x +=。 【微积分解】汽车在减速运动这段时间内速度随时间变化的关系t at v v 2100-=+=,从开始刹车到停车的时间t=5s , 所以汽车由刹车到停车行驶的位移 km t t t a t v dt at v dt t v x 025.0)10()2()()(5025 02050050=-=+=+==?? 小结:此题是一个简单的匀变速直线运动求位移问题。对一般的变速直线运动,只要结合物理知识求速度关于时间的函数,画出v -t 图像,找“面积”就可以。或者,利用定积分就可解决. 2、解决变力做功问题 恒力做功,我们可以利用公式直接求出Fs W =;但对于变力做功,我 们如何求解呢? 例2:如图所示,质量为m 的物体以恒定速率v 沿半径为R 的竖直圆轨道运 动,已知物体与竖直圆轨道间的摩擦因数为μ,求物体从轨道最低点运动到

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

第7章 多元函数微分学

§7.1 空间解析几何基本知识 教学内容提要 1. 空间直角坐标系; 2. 空间两点间的距离公式与两点连线的中点坐标公式; 3. 简单的曲面方程。 教学目的与要求 1. 了解空间直角坐标系和空间两点间的距离公式及两点连线的中点公式; 2. 了解常用二次曲面的方程及其图形。 教学重点与难点 常用二次曲面的方程及其图形的简单描绘. 教学时数 4 教学过程: 一、空间直角坐标系 1.空间直角坐标系的建立 过空间定点0,作三条互相垂直的数轴,他们都以0为原点 且一般具有相同的长度单位。这三条轴分别称为x 轴,y 轴, z 轴,统称坐标轴。通常把x 轴和y 轴配置在水平面上,z 轴 z 在铅垂方向,他们的指向符合右手法则. 2、空间两点间的距离公式 空间任意两点),,(1111z y x M 和),,(2222z y x M 21221221221)()()(z z y y x x M M -+-+-= 特殊地,点),,(z y x M 与坐标原点)0,0,0(O 的距离为222z y x OM ++= 。 例1 在z 轴求与两点)7,1,4(-A 和)25,3(-B 等距离的点的坐标。 二、曲面及其方程的概念 1.曲面方程 在空间解析几何中,任何曲面都可以看作满足一定条件的点的几何轨迹 ,如果曲面S 上任一点的坐标都满足方程0),,(=z y x F ,不在曲面S 上的点的坐标都不满足该方程,则称此方程0),,(=z y x F 为曲面的方程,而曲面S 就叫做方程的图形。 例2 动点),,(z y x P 与两定点)1,3,2(),0,2,1(21-P P 的距离相等,求此动点P 的轨迹。 三、几种常见的曲面及其方程 1、平面的一般方程 任一平面都可以用三元一次方程来表示 .任一三元一次方程Ax +By +Cz +D =0的图形总是一个平面. 例3 求通过x 轴和点(4, -3, -1)的平面的方程. 解 平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为

多元函数微积分复习题

多元函数微积分复习题 一、单项选择题 1.函数()y x f ,在点()00,y x 处连续是函数在该点可微分的 ( B ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ). (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( ). C A. 若0 lim x x y y A →→=, 则必有0lim (,)x x f x y A →=且有0 lim (,)y y f x y A →=; B. 若在00(,)x y 处 z x ??和z y ??都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处 z x ??和z y ??存在且连续, 则在点00(,)x y 处(,)z f x y =可微; D. 若22z x ??和22z y ??都存在, 则. 22z x ??=22 z y ??. 5.二元函数(,)z f x y =在点00(,)x y 处满足关系( ). C A. 可微(指全微分存在)?可导(指偏导数存在)?连续; B. 可微?可导?连续; C. 可微?可导, 或可微?连续, 但可导不一定连续; D. 可导?连续, 但可导不一定可微. 6.向量()()3,1,2,1,2,1a b =--=-,则a b = ( A ) (A) 3 (B) 3- (C) 2- (D) 2

微积分在物理 中的简单应用

求解在立体斜面上滑动的物体的速度 一物体放在斜面上,物体与斜面间的摩擦因数μ恰好满足αμtg =,α为斜面的倾角。今使物体获得一水平速度 0V 而滑动,如图一,求: 物体在轨道上任意一点的速度V 与φ的关系,设φ为速度与水平线的夹角。 解:物体在某一位置所受的力有:重力G , 弹力N 以及摩擦力f 。摩擦力f 总是与运动速度V 的方向相反,其数值 ααααμμsin cos cos mg mg tg mg N f ==== 重力在斜面上的分力为1G ,如图二,将1 G 分解为两个分力:1G ''是1G 沿轨迹切线方向的分 力,φαφsin sin sin 11 mg G G =='' ;1G '是沿轨 迹 法 向 的 分 力 , φαφcos sin cos 11 mg G G ==',如图三。 根据牛顿运动定律,得运动方程为 τma f G =-''1 (1) n ma G ='1 (2) 由(1), )1(sin sin )sin sin sin (1 -=-= φααφατg mg mg m a 而 ,dt dV a = τ得到 ,)1(sin sin dt g dV -=φα (3)

式中φ是t 的函数,但是这个函数是个未知函数,因此还不能对上式积分,要设法在φ与t 中消去一个变量,才能积分,注意到 φφ d d ds V V dS dt 1== (4) 而φ d ds 表示曲线在该点的曲率半径ρ,根据(2)式, ρ φα2 cos sin V m mg = (5) 由式(3)(4)(5),可得到 ,)sec (φφφd tg V dV -= φφφφ d tg V dV V V ??-=00)sec (, 积分,得到 )sin 1ln()ln(sec cos ln ln φφφφ+-=+--=tg V V , .sin 10 φ += V V 运用积分法求解链条的速度及其时间 一条匀质的金属链条,质量为m ,挂在一个光滑的钉子上,一边长度为1L ,另一边长度为,2L 而且120L L <<,如图一。试求: 链条从静止开始滑离钉子时的速度和所需要的时间。 解:设金属链条的线密度为.2 1L L m += λ当一边长度为 x L +1,另一边长度为x L -2时受力如图二所示,则根据牛 顿运动定律,得出运动方程 ,)()(11a x L T g x L λλ+=-+

《微积分(下)》第7章 多元函数微积分学--练习题

第七章 多元函数微积分学 第一部分:多元函数微分学 一、二元函数的极限专题练习: 1.求下列二元函数的极限: (1) ()2 1 1(,)2,2lim 2;y xy x y xy +? ? →- ? ? ?+ (2) () ()2222 (,),3 lim sin ;x y x y x y →∞∞++ (3) ()(,)0,1sin lim ;x y xy x → (4) ( (,)0,0lim x y → 2.证明:当()(,)0,0x y →时,() 44 3 4 4(,)x y f x y x y =+的极限不存在。 二、填空题 3. 若22),(y x y y x f -=+,则=),(y x f ; 4. 函数22(,)ln(1)f x y x y =+-的定义域是D = ; 5. 已知2 (,)x y f x y e = ,则 '(,)x f x y = ; 6. 当23(,)5f x y x y =,则 '(0,1)x f = ; 7. 若2yx e z xy +=,则=??y z ; 8. 设)2ln(),(x y x y x f + =,则'(1,0)y f =; 9. 二元函数xy xe z =的全微分=dz ;

10.arctan()Z xy =设,则dz= . 三、选择题 11.设函数 ln()Z xy =,则 Z x ?=? ( ) A 1y B x y C 1x D y x 12.设2sin(),Z xy = 则 Z x ?=? ( ) A 2cos()xy xy B 2cos()xy xy - C 22cos()y xy - D 22cos()y xy 13.设 3xy Z =,则 Z x ?=? ( ) A 3xy y B 3ln 3xy C 13xy xy - D 3ln 3xy y

多元函数微分学练习题

多元函数微分学练习题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第五章(多元函数微分学) 练习题 一、填空题 1. (,)(0,0)sin()lim x y xy y →= . 2. 22 (,)(0,0)1lim ()sin x y x y x y →+=+ . 3. 1 (,)(0,0)lim [1sin()]xy x y xy →+= . 4. 设21sin(), 0,(,)0, 0x y xy xy f x y xy ?≠?=??=? 则(0,1)x f = . 5. 设+1(0,1)y z x x x =>≠,则d z = . 6. 设22ln(1)z x y =++,则(1,2)d z = . 7. 设u =d u = . 8. 若(,)f a a x ?=? ,则x a →= . 9. 设函数u =0(1,1,1)M -处的方向导数的最大值为 . 10. 设函数23u x y z =++,则它在点0(1,1,1)M 处沿方向(2,2,1)l =-的方向导数为 . 11. 设2z xy =,3l i j =+,则21x y z l ==?=? . 12. 曲线cos ,sin ,tan 2 t x t y t z ===在点(0,1,1)处的切线方程是 . 13. 函数z xy =在闭域{(,)0,0,1}D x y x y x y =≥≥+≤上的最大值是 . 14. 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 . 15. 曲面2:0x z y e -∑-=上点(1,1,2)处的法线方程是 . 16. 曲面22z x y =+与平面240x y z +-=平行的切平面方程是 .

高中物理竞赛辅导讲义-微积分初步

微积分初步 一、微积分的基本概念 1、极限 极限指无限趋近于一个固定的数值 两个常见的极限公式 0sin lim 1x x x →= *1lim 11x x x →∞??+= ??? 2、导数 当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限叫做导数。 0'lim x dy y y dx x ?→?==? 导数含义,简单来说就是y 随x 变化的变化率。 导数的几何意义是该点切线的斜率。 3、原函数和导函数 对原函数上每点都求出导数,作为新函数的函数值,这个新的函数就是导函数。 00()()'()lim lim x x y y x x y x y x x x ?→?→?+?-==?? 4、微分和积分 由原函数求导函数:微分 由导函数求原函数:积分 微分和积分互为逆运算。 例1、根据导函数的定义,推导下列函数的导函数 (1)2y x = (2) (0)n y x n =≠ (3)sin y x = 二、微分 1、基本的求导公式 (1)()'0 ()C C =为常数 (2)()1' (0)n n x nx n -=≠ (3)()'x x e e = *(4)()'ln x x a a a = (5)()1ln 'x x = *(6)()1log 'ln a x x a =

(7)()sin 'cos x x = (8)()cos 'sin x x =- (9)()21tan 'cos x x = (10)()21cot 'sin x x = **(11)() arcsin 'x = **(12)()arccos 'x = **(13)()21arctan '1x x =+ **(14)()2 1arccot '1x x =-+ 2、函数四则运算的求导法则 设u =u (x ),v =v (x ) (1)()'''u v u v ±=± (2)()'''uv u v uv =+ (3)2'''u u v uv v v -??= ??? 例2、求y=tan x 的导数 3、复合函数求导 对于函数y =f (x ),可以用复合函数的观点看成y =f [g (x)],即y=f (u ),u =g (x ) 'dy dy du y dx du dx == 即:'''u x y y u = 例3、求28(12)y x =+的导数 例4、求ln tan y x =的导数 三、积分 1、基本的不定积分公式 下列各式中C 为积分常数 (1) ()kdx kx C k =+?为常数 (2)1 (1)1n n x x dx C n n +=+≠-+?

物理中的微积分思想

物理中的微积分思想 你们不要老提我,我算什么超人,是大家同心协力的结果。我身边有300员虎将,其中100人是外国人,200人是年富力强的香港人。 高中物理中微积分思想 浙江省湖州中学物理组潘建峰 伟大的科学家牛顿 有很多伟大的成就 建立了经典物理理论 比如:牛顿三大定律 万有引力定律等;另外 在数学上也有伟大的成就 创立了微积分 微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支 微积分是建立在实数、函数和极限的基础上的 微积分最重要的思想就是用"微元"与"无限逼近"

好像一个事物始终在变化你很难研究 但通过微元分割成一小块一小块 那就可以认为是常量处理 最终加起来就行 微积分学是微分学和积分学的总称 它是一种数学思想 '无限细分'就是微分 '无限求和'就是积分 无限就是极限 极限的思想是微积分的基础 它是用一种运动的思想看待问题 微积分堪称是人类智慧最伟大的成就之一 在高中物理中 微积分思想多次发挥了作用 1、解决变速直线运动位移问题 匀速直线运动 位移和速度之间的关系x=vt;但变速直线运动那么物体的位移如何求解呢? 例1、汽车以10m/s的速度行驶

到某处需要减速停车 设汽车以等减速2m/s2刹车 问从开始刹车到停车 汽车走了多少公里? 【解析】现在我们知道 根据匀减速直线运动速度位移公式就可以求得汽车走了0.025公里 但是 高中所谓的的匀变速直线运动的位移公式是怎么来的 其实就是应用了微积分思想:把物体运动的时间无限细分 在每一份时间微元内 速度的变化量很小 可以忽略这种微小变化 认为物体在做匀速直线运动 因此根据已有知识位移可求;接下来把所有时间内的位移相加 即"无限求和" 则总的位移就可以知道 现在我们明白 物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的"面积" 即

微积分知识在高考物理中应用例析.doc

微积分初步知识在今年物理高考中的应用例析 江苏省常州高级中学 丁岳林 物理学是一门精确科学,与数学有密切关系,在应用物理知识解决实际问题时,一般或多或少总要进行数学运算、进行数学推理,而且处理的问题愈是高深,应用的数学一般也愈多.“应用数学处理物理问题的能力”是物理科高考考试说明中的五条能力要求之一,说明中指出,“能够根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论……”.物理解题中运用的数学方法,通常包括方程(组)法、比例法、函数法、几何(图形辅助)法、图象法、数列与不等式及微积分初步等。其中,微积分初步是新编数学教材(本届高三学生是全国面上使用新教材的第一届)中增加的内容,因此往届高考物理试题中并未出现,但通观今年的高考物理试题,对微积分初步知识还是有一定要求的,本文就以今年的两道高考物理试题为例对这一要求来做一解读。 例1.如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r 0=0.10Ω/m ,导轨的端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20m 。有随时间变化的匀强磁场垂直于桌面,已知磁感强度B 与时间t 的关系为B =kt ,比例系数k =0.020T/s ,一电阻不计的金属杆可在导轨上无摩擦地滑动, 在滑动过程中保持与导轨垂直,在t =0时刻,金属杆紧靠 在P 、Q 端,在外力作用下,杆以恒定的加速度从静止开 始向导轨的另一端滑动,求在t =6.0s 时金属杆所受的安培 力。(2003年江苏省高考物理试题) 解析:求解本题的关键是正确计算回路中总感应电动势,从高考阅卷抽样统计来看该题的正确率极低,98%以上的考生都是错误地应用公式Blv =ε或t B S ??=ε计算电动势,原因是对公式的适用条件模糊不清,从而是乱代公式。 以a 表示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离22 1at x = 此时杆的速度at v =。这时穿过回路的磁通量为BS =Φ,其中xl S =,kt B =,因此, 32t kla =Φ,根据法拉第电磁感应定律223t kla dt d =Φ=ε 回路的总电阻02Lr R = 回路中的感应电流R i ε = 作用于杆的安培力Bli F = 解得 t r l k F 0 2 223=,代入数据为31044.1-?=F N 本题中的电动势第二种计算方法是,根据法拉第电磁感应定律运用数学上的极限工

高中物理中微积分思想

高中物理中微积分思想 伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。 微积分(Calculus )是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。 微积分学是微分学和积分学的总称。 它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分堪称是人类智慧最伟大的成就之一。在高中物理中,微积分思想多次发挥了作用。 1、解决变速直线运动位移问题 匀速直线运动,位移和速度之间的关系x=vt ;但变速直线运动,那么物体的位移如何求解呢? 例1、汽车以10m/s 的速度行驶,到某处需要减速停车,设汽车以等减速2m/s 2刹车,问从开始刹车到停车,汽车走了多少公里? 【解析】 现在我们知道,根据匀减速直线运动速度位移公式at v v +=0 2 02 1at t v x + =就可以求得汽车走了0.025公里。 但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即 2 02 1at t v x + =。 【微积分解】汽车在减速运动这段时间内速度随时间变化的关系t at v v 2100-=+=,从开始刹车到停车的时间t=5s , 所以汽车由刹车到停车行驶的位移 km t t t a t v dt at v dt t v x 025.0)10()2()()(5025 205 005 0=-=+=+==?? 小结:此题是一个简单的匀变速直线运动求位移问题。对一般的变速直线运动,只要结合物理知识求速度关于 时间的函数,画出v -t 图像,找“面积”就可以。或者,利用定积分就可解决. 2、解决变力做功问题 恒力做功,我们可以利用公式直接求出Fs W =;但对于变力做功,我们如何求解呢? 例2:如图所示,质量为m 的物体以恒定速率v 沿半径为R 的竖直圆轨道运动,已知物体 中,摩擦力做与竖直圆轨道间的摩擦因数为μ,求物体从轨道最低点运动到最高点的过程了多少功。 【解析】物体沿竖直圆轨道从最低点匀速率运动到最高点的过程中,在不同位置与圆环间的正压力不同,故而摩擦力为一変力,本题不能简单的用s F W ?=来求。

《数学分析》第十七章 多元函数微分学

第十七章 多元函数微分学 ( 1 6 时 ) §1 可微性 ( 4 时 ) 一. 可微性与全微分: 1. 可微性:由一元函数引入. ))()((22y x ?+?ο亦可写为y x ?+?βα, →??) , (y x ) 0 , 0 (时→) , (βα) 0 , 0 (. 2. 全微分: 例1 考查函数xy y x f =),(在点) , (00y x 处的可微性. [1]P 105 E1 二. 偏导数: 1. 偏导数的定义、记法: 2. 偏导数的几何意义: [1]P 109 图案17—1. 3. 求偏导数: 例2 , 3 , 4 . [1]P 142—143 E2 , 3 , 4 . 例5 设 . 0 , 0, 0 ,),(222222 2 3? ????=+≠+++=y x y x y x y x y x f 证明函数),(y x f 在点) 0 , 0 (连续 , 并求) 0 , 0 (x f 和) 0 , 0 (y f . 证 ρ θθρρρθ ρθρ) sin cos (lim ),(lim 2320sin ,cos ) 0,0(),(+===========→==→y x y x y x f =)0,0(0)sin cos (lim 2 30 f ==+→θθρρρ. ),(y x f 在点) 0 , 0 (连续 . ) 0 , 0 (x f =0||lim )0,0()0,(lim 300==-→→x x x x f x f x x , ) 0 , 0 (y f ||lim )0,0(),0(lim 2 00y y y y f y f y y →→=-= 不存在 . Ex [1]P 116—117 1⑴—⑼,2 — 4 . 三. 可微条件:

第七章 多元函数微分【高等数学】

第七章 多元函数微分学 一、内容分析与教学建议 (一) 本章主要是把一元函数微分学中一些主要概念、理论和方法推广到多元函数,一方 面充实微分学,另一方面也给工程技术及自然科学提供一些处理问题的方法和工具。 在教学方法上,在一元函数微分学基础上,通过类比方法引入新的问题、概念、理论和方法,并注意比较它们的异同。 (二) 多元函数、极限、连续 先通过介绍平面点集的几个基础概念,引入二元函数由点函数再过渡到多元函数,并引入多元函数极限,讲清它的概念,并指出二元函数与一元函数极限点0P P →方式的异同,可补充一些简单例题给出二元函数求极限的一些常用方法,如换元化为一元函数两边夹准则,运用连续性等。在理解极限概念之基础上,不难得到求一个二元函数极限不存在之方法,最后可介绍累次极限与重极限之关系。 (三) 偏导数与全微分 1、可先介绍偏增量概念,类比一元函数,引入偏导数,通过例题说明,偏导与连续之关系,在偏导数的计算中,注意讲清分段函数分界点处的偏导数。 2、可由测量矩形相邻边长计算面积实例,类比一元函数的微分,引入全微分的定义,并指出用定义判断),(y x f z =可微,即求极限[] ρ y y x z x y x z z y x y x ?+?-?→?→?),(),(lim 0 是 否为0。 3、讲清教材中全微分存在的必要条件和充分条件,重点指出可微与偏导之关系,让学生理解关系式dy y z dx x z dz ??+??= 之意义,最后可通过列表给出多元函数连续、偏导存在、可微之相互关系。 (四) 复合函数求偏导 1、可先证明简单情形的全导数公式,画出函数关系图,通过关系图中“分线相加,连线相乘”法则推广至偏导数或全微分的各种情形),(v u f z =,)(x u ?=,)(x v ?=从中让学生理解口诀的含义。

微积分第2版-朱文莉第7章 多元函数微分学习题祥解

习题7.1(A) 1、求点(2,1,3)A -关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标。 解 (1)(2,1,3)--,(2,1,3)--, (2,1,3); (2)x 轴:(2,1,3)-,y 轴:(2,1,3)---,z 轴:(2,1,3)-; (3) (2,1,3)--。 2、在空间直角坐标系中,指出下列各点在哪个卦限? (4,3,5)A -,(2,3,4)B -,(2,3,4)C --,(2,3,1)D -- 并求点(4,3,5)A -分别到(1)坐标原点;(2)各坐标轴;(3)各坐标面的距离。 解 A 点在第4卦限; B 点在第5卦限; C 点在第8卦限; D 点在第3卦限。 (1) A =(4,3,5)- (2) A 到x = A 到y = A 到z 5=; (3) A 到坐标面xy 5=; A 到坐标面yz 4=; A 到坐标面xz 3=。 3、在z 轴上求一点M ,使该点与点(4,1,7)A 和(3,5,2)B 的距离相等。 解 因为所求点在z 轴上, 所以设该点为(0,0,)M z , 由题意有MA MB , 即 22 222 2(4)1(7 )35(2 )z z 两边平方, 解得149z , 于是所求点为14(0,0,)9 M . 4、写出球心在点(1,3,2)--处,且通过点(1,1,1)-的球面方程。 解 由2 2 2 2000()()()x x y y z z R ,得 2 222(1())(113())(12)R

则3R ,从而球面方程为 2 2 2 2(1)(3)(2)3x y z 5、下列各题中方程组各表示什么曲线? (1) 2248, 8; x y z z (2) 22 25, 3;x y z x (3) 22 2 4936, 1; x y z y (4) 2244, 2. x y z y 解 (1) 双曲线;(2) 圆;(3) 椭圆;(4) 抛物线。 6、描绘下列各组曲面在第一卦限内所围成的立体的图形。 (1) 0,0,0,1x y z x y z ===++=; (2) 2 2 2 2 2 2 0,0,0,,x y z x y R y z R ===+=+=。 解 (1)、(2)题的图如下: (1)题图 (2)题图 7、由上半球面 224 z x y 和圆锥面223()z x y 围成一个立体,求它在xy 面上 的投影区域。 解 将上半球面和圆锥面的方程联立得到方程组 2 22 2 43() z x y z x y 在该方程组中, 消去z , 得到2 2 1x y . 这是准线为 221 x y z , 母线平行于z 轴 的柱面, 且它在xy 面上的投影是xOy 坐标平面上的一个圆. 故题设中两个已知曲面所围成立体在xy 面上的投影区域为: 2 21x y . 习题7.1(B) 1、指出下列各题中平面位置的特点,并画出各平面。 (1) 0y =; (2) 1z =; (3) 23x y +=; (4) 20x y +=;

微积分在物理学中的应用

大学物理 课题名称:微积分在物理学中的应用 专业:数学与应用数学 班级: 学号: 姓名: 指导老师: 摘要 在大学物理学当中,许多问题都会用到微积分来解决。微积分是研究函数的的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极

限的基础上的。微积分最重要的思想就是用“微元”与“无限逼近”,好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行,这就是微积分在各个领域中应用的优点。微积分作为一种分析连续过程累积的方法已经成为解决问题的基本方法。物理学更是接近于生活,因此微积分也经常应用于物理学当中。 关键词:微积分物理学微元 以前听过这样一句话“学好数理化,走遍天下都不怕”,可以知道,数理是不分家的。我们知道从物理到数学其实就是一个建模抽象的过程,同时也是一个化归的过程,也就是说,物理中的任何一个领域都必然地涉及数学,不存在与数学毫无关联的物理分支。所以,在物理学当中是处处用到数学知识的,在这里要说的就是微积分在物理学当中的应用。 微积分的方法是一种辨证的思想方法,它包含了有限与无限的对立统一,近似与精确的对立统一。它把复杂的物理问题进行时间、空间上的有限次分割,在有限小的范围内进行近似处理,然后让分割无限的进行下去,局部范围无限变小,那么近似处理也就越来越精确,这样在理论上得到精确的结果。微分就是在理论分析时,把分割过程无限进行下去,局部范围便无限小下去。积分就是把无限小个微分元求和。这就是微积分的方法。物理学就是要抓住主要方面而忽略次要方面,从而使得复杂问题简单化,因此在大学物理中应用微积分的方法,能够把看似复杂的问题近似成简单基本可研究的问题。 物理现象及其规律的研究都是以最简单的现象和规律为基础的,例如质点运动学是从匀速、匀变速直线运动开始,带电体产生的电场是以点电荷为基础。实际中的复杂问题,则可以化整为零,把它分割成在小时间、小空间范围内的局部问题,只要局部范围被分割到无限小,小到这些局部问题可近似处理为简单的可研究的问题,把局部范围内的结果累加起来,就是问题的结果。

物理微积分

微积分的运用 ——雨雾整理试用稿。(所有信息来自互联网。) 微积分知识自从2001年引入高中数学教材,并把它作为高考数学必考内容 以来,一直到今天,高中物理教材编纂者、高考物理命题者、高中物理知识传授者对微积分知识采取的不是把它作为一种处理物理问题的方法传授给学生,而采取的是回避态度。这一方面说明了高中物理编纂者、高考物理命题者、高中物理知识传授者思想的严重滞后,另一方面也不能真正体现数学这一学科的工具性。 一. 教材编写者不要回避微积分: 在现行高中物理教材中,教材编写者在解释某些概念和推导某些公式时,为了避开微积分,致使概念含混不清,给高中学生的正常学习带来了误解。 例如:在人民教育出版社物理室编著的全日制普通高级中学教科书(必修加选修)2002年审查通过的版本中,关于变压器原、副线圈电压关系的推导过程是这样的: 推导:设原线圈的匝数为1n ,副线圈的匝数为2n ,穿过闭合铁心的磁通量为Φ,原、副线圈中产生的感应电动势分别为21E E 、(如图1所示)。 t n E ??Φ =11………………………⑴ t n E ??Φ =2 2………………………⑵ 由于是理想变压器,原、副线圈的电阻可忽略不计,故: 11E U =……………………………⑶ 22E U =……………………………⑷ 由以上四式得 2 1 21n n U U = ,此即为理想变压器原副线圈的电压与线圈匝数的关系式。 这种方法的推导,笔者认为存在不足:由⑴⑵两式求得的感应电动势是平均值,变压器的输入、输出电压是交流电的有效值,平均值等于有效值存在知识性错误。笔者认为正确的方法应引入微积分,推导如下: 推导:如上图所示,因为变压器输入的是正弦交流电,所以穿过原、副线圈的磁通量随时间按下列规律变化: t BS ωsin =Φ………………⑸ 对⑸求导得t BS t ωωcos =??Φ ……………………⑹ 由⑴⑵⑹得:t BS n E ωωcos 11=…………………⑺ t BS n E ωωcos 22=…………………⑻ 图1

微积分与物理

物理中的微积分 (成都信息工程学院光电技术学院蒲智勇 610225) 摘要:用微积分的方法分析,解决物理学有关问题,已经成为学习大学物理的 基本方法,微积分是用一种运动的思想考虑问题、分析问题的数学方法在大学物理中有着广泛而重要的应用.本文通过文件检索、对比等方法,整理微积分在物理中运用的问题,为读者学习掌握物理中微积分的运用起到决定性的帮助. 关键词:物理学、微积分、物理现象、文件检索 Physics of the Calculus Abstract:Analysis using the method of differential and integral calculus to solve physics problems, has become the basic ways of learning college physics, the calculus is considered with a movement of thought problems and mathematical methods to analyze the problems in university physics has extensive and important applications. In this paper, through methods of document retrieval and comparing, finishing in calculus in physical problems, for readers to learn to master the use of calculus in physical play a decisive help. Keywords: physics, calculus, physics, document retrieval 1引言:物理是研究自然现象的一门学科,有关物理现象,就在身边.学好物理 有助于我们更加深入的认识世界,为人类造福.自古以来万事万物都息息相关,物理正是这样的科学.在物理中,许多公式都需要来自数学的推导,这些推导在物理中有着不同的意义.(举例)微积分在牛顿时代,就引入物理学的研究中,解决了物理学世界的难题,微积分在物理中占有重要的地位.但在初学者中,微积分竟成了他们头痛的事情.不知道从何去运用微积分,更不知道为什么去运用微积分.欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分是变量数学,是数学中的大革命.微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩. 2微积分在物理上运用的缘由

经济数学基础讲义-第7章-多元函数微分学(新)

第4章 多元函数微分学 4.2.1 二元函数的概念 多元函数与一元函数类似,学习时应注意比较. 一元函数是含有一个自变量的函数:)(x f y =。多元函数是含有多个自变量的函数,例如: 二元函数:),(y x f z =,三元函数:),,(z y x f u =等等. 例1 如果圆锥体底半径为r ,高为h ,则其体积v 它是二元函数.其中,r 和h 是自变量,v 是因变量(函数).定义域: {} 0,0),(>>=h r h r D . 例2黑白电视:在t 时刻屏幕上坐标为),(y x 处的灰度z 为:),,(t y x z z =,它是三元函数. 例3在一个有火炉的房间里,在t 时刻,点),,(z y x 处的温度u 是t z y x ,,,的函数: ),,,(t z y x u u =,称为温度分布函数,它是四元函数. 例4 求函数222y x a z --= 的定义域. 解:02 22≥--y x a ,定义域为{ } 2 22),(a y x y x D ≤+= 例5 求y y x z ) ln(+= 的定义域. 解:由所给函数,对数真数为正,又分母根式为正,有 ? ? ?>+>00 y x y {}0,0),(>+>=y x y y x D 4.3 ——4.4偏导数 二元函数),(y x f z =在点),(00y x 处关于x 的偏导数 x y x f y x x f x ?-?+→?) ,(),(lim 00000 (注意到:y 取值不变,恒为0y ) 记作: ) ,(00y x x z ??或),(00y x f x '.类似地,关于y 的偏导数: y y x f y y x f y ?-?+→?) ,(),(lim 00000 例如:y x z 3sin 2 =

相关文档
最新文档