系统与计算神经科学MATLAB作业_psychometric function

系统与计算神经科学MATLAB作业_psychometric function
系统与计算神经科学MATLAB作业_psychometric function

Systems and Computational Neuroscience --- Homework #1

Experiment 1

Matlab Code 1 (See Appendix A) is written according to the demands of the homework instruction, by running which a total of 100 click sequences are generated. The 100 click sequences are supposed to be divided into 10 groups, and each group is characterized by a specific ICI ranging from 10 msec to 100 msec in 10 logarithmic steps (that is 10, 12, 16, 21, 27, 35, 46, 59, 77, 100 msec).

When the experiment begins, the first click sequence will be released automatically and followed by a pause during which the number 0 or 1 is expected to be input to the computer, and not until then will the second click sequence be released. The computer is programmed to record the number that the subject has input. After the subject hear all the 100 click sequences and input 100 numbers, a 2×100 matrix is given. Every column of the matrix contains two elements: one is the exact ICI of every click sequence and the other is the number that the subject input correspondingly. Then re-arrange the matrix and classify the 100 columns into 10 groups based on the specific ICI. Eventually, the probability that the subject hears click sequences at every ICI as being continuous is obtained.

1) The probability that the subject hears click sequences at every ICI as being continuous:

ICI (msec) Number of ‘1’Number of ‘0’Probability

10 10 0 100%

12 10 0 100%

16 10 0 100%

21 9 1 90%

27 6 4 60%

35 1 9 10%

46 0 10 0%

59 0 10 0%

77 0 10 0%

100 0 10 0%

Table (1)

2) Psychometric function

Run Matlab Code 2 (See Appendix B) to present the psychometric function in a chart. The dots in red represent the probability in Table (1). The curve in blue represents the result of cubic interpolation.

Chart (1) Psychometric function for Exp. 1

3) Find the boundary ICI.

As is displayed in Chart (1), the threshold is approximately 28.5 msec. It is feasible to tell the demanding ICI with accuracy to 1 decimal place when Matlab Code 2 is applied. Part of the result of the interpolation is displayed in the following table.

Result of interpolation:

As you can see from Table (2), the boundary ICI must be between 28.54 and 28.55 msec.

So, the boundary ICI can be determined to be 28.5 msec.

Experiment 2

In experiment 2, we are demanded to obtain psychometric functions for the perception of periodicity and to calculate “boundary jitter” values in three conditions where the mean ICI varies.

Matlab Code 3 (See Appendix C) is written for Experiment 2. First in the program, 60 jitter values which can be divided into 6 groups (that is 0%, 5%, 10%, 15%, 20%, 25%, and each group has 10 elements) are generated in a random order. Next, 60 click sequences are generated based on the corresponding jitter value. In every click sequence, ICIs are drawn from a uniform distribution with a deliberately-set mean (10, 30 or 100 msec) and a jitter. After the subject hear a click sequence, a number is asked to be input to the computer and is recorded automatically by the program. Then, psychometric functions and “boundary jitter”values can be achieved in the same way as we do in Experiment 1.

(a) Mean ICI: 10 msec

The probability that the subject hears click sequences with different jitter values as being periodic:

Jitter value Number of ‘1’Number of ‘0’Probability

0% 10 0 100%

5% 10 0 100%

10% 4 6 40%

15% 1 9 10%

20% 0 10 0%

25% 0 10 0%

Table (3)

The psychometric function: (Use Matlab Code 4 which is enclosed as Appendix D)

Chart (2) Psychometric function for Exp. 2(a)

Result of interpolation:

The “boundary jitter” value: 9.1%

(b) Mean ICI: 30 msec

The probability that the subject hears click sequences with different jitter values as being periodic:

Jitter value Number of ‘1’Number of ‘0’Probability

0% 10 0 100%

5% 10 0 100%

10% 8 2 80%

15% 7 3 70%

20% 3 7 30%

25% 2 8 20%

Table (5)

The psychometric function:

Chart (3) Psychometric function for Exp. 2(b) Result of interpolation:

The “boundary jitter” value: 17.5%

(c) Mean ICI: 100 msec

The probability that the subject hears click sequences with different jitter values as being periodic:

Jitter value Number of ‘1’Number of ‘0’Probability

0% 10 0 100%

5% 9 1 90%

10% 6 4 60%

15% 4 6 40%

20% 3 7 30%

25% 2 8 20%

Table (7)

The psychometric function:

Chart (4) Psychometric function for Exp. 2(c) Result of interpolation:

The “boundary jitter” value: 12.2%

Appendix

B. Matlab Code 2

C. Matlab Code 3

(*) For different ICIs in Exp.2, the particular ICI shall be given to the variable ICIo here.

D. Matlab Code 4

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ?? = ??? , 010n ≤≤,并画出其波形图。 n=0:10; x=sin(pi/4*n).*0.8.^n; stem(n,x);xlabel( 'n' );ylabel( 'x(n)' ); 用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。观察并分析a 和0t 的变化对波形的影响。 t=linspace(-4,7); a=1;

t0=2; y=sinc(a*t-t0); plot(t,y); t=linspace(-4,7); a=2; t0=2; y=sinc(a*t-t0); plot(t,y);

t=linspace(-4,7); a=1; t0=2; y=sinc(a*t-t0); plot(t,y);

三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移 某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1 s f T = 表示抽样频率,即单位时间内抽取样值的个数。抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。可能用到的函数为plot, stem, hold on 。 fs = 40; t = 0 : 1/fs : 1 ; % ?μ?ê·?±e?a5Hz,10Hz,20Hz,30Hz f1=5; xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;

数值计算方法实验指导(Matlab版)

《数值计算方法》实验指导 (Matlab 版) 肇庆学院数学与统计学学院 计算方法课程组

1. 实验名称 实验1 算法设计原则验证(之相近数相减、大数吃小数和简化计算步骤) 2. 实验题目 有效数字的损失. 123 )与1000个较小的数(3 10 15)的和,验证 大数吃小数的现象. (3)分别用直接法和秦九韶算法计算多项式 P(x) a 0x n a 1x n 1 在x =1.00037 处的值?验证简化计算步骤能减少运算时间. n 1 对于第(3)题中的多项式P (x ),直接逐项计算需要n (n 1) 2 1 次乘法 和n 次加法,使用秦九韶算法 P(x) (((a °x ajx a 2)x a . 则只需要n 次乘法和n 次加法. 3. 实验目的 验证数值算法需遵循的若干规则. 4. 基础理论 设计数值算法时,应避免两个相近的数相减、防止大数吃小数、简化计算步骤减少运算 次数以减少运算时间并降低舍入误差的积累. 两相近的数相减会损失有效数字的个数, 用一 《数值计算方法》实验 1报告 班级: 20xx 级 XXXXx 班 学号: 20xx2409xxxx 姓名: XXX 成绩: ⑴取 z 1016,计算z 1 Z 和 1/(、z 1 Z),验证两个相近的数相减会造成 (2)按不同顺序求一个较大的数( a n 1 X a n

个大数依次加小数,小数会被大数吃掉,乘法运算次数太多会增加运算时间. 5.实验环境 操作系统:Win dows xp ;程序设计语言:Matlab 6.实验过程 (1)直接计算并比较; (2)法1 :大数逐个加1000个小数,法2 :先把1000个小数相加再与大数加; (3)将由高次项到低次项的系数保存到数组A[n]中,其中n为多项式次数. 7.结果与分析 (1)计算的~1V Z = _______________________________ ,1/( ~1 < z) ____________________ . 分析: (2)123逐次加1000个3 10 6的和是_________________________ ,先将1000个3 10 6相 加,再用这个和与123相加得_______________________ . 分析: (3)计算__________ 次的多项式: 直接计算的结果是___________________ ,用时___________________ ; 用秦九韶算法计算的结果是____________________ ,用时 ___________________ 分析:

信号与系统——MATLAB基本实验

《信号与系统MATLAB实践》第一次上机作业 实验一、熟悉MATLAB基本操作 三、基本序列运算 1.数组的加减乘除和乘方运算 A=[1 2 3]; B=[4 5 6]; C=A+B; D=A-B; E=A.*B; F=A./B; G=A.^B; subplot(2,4,1);stem(A) subplot(2,4,2);stem(B) subplot(2,4,3);stem(C) subplot(2,4,4);stem(D) subplot(2,4,5);stem(E) subplot(2,4,6);stem(F) subplot(2,4,7);stem(G) 2.绘制函数波形 (1)t=0:0.001:10

x=3-exp(-t); plot(t,x) ylabel('f(t)'); xlabel('t'); title('(1)'); (2)t=0:0.001:10 x=5*exp(-t)+3*exp(-2*t); plot(t,x) ylabel('f(t)'); xlabel('t'); title('(2)');

(3)t=0:0.001:3 x=exp(-t).*sin(2*pi*t); plot(t,x) ylabel('f(t)'); xlabel('t'); title('(3)'); (4)t=0:0.001:3 x=sin(3*t)./(3*t);

plot(t,x) ylabel('f(t)'); xlabel('t'); title('(4)'); (5)k=1:1:6 x=(-2).^(-k); stem(k) xlabel('k'); ylabel('f(k)'); title('(5)');

计算方法_全主元消去法_matlab程序

%求四阶线性方程组的MA TLAB程序 clear Ab=[0.001 2 1 5 1; 3 - 4 0.1 -2 2; 2 -1 2 0.01 3; 1.1 6 2.3 9 4];%增广矩阵 num=[1 2 3 4];%未知量x的对应序号 for i=1:3 A=abs(Ab(i:4,i:4));%系数矩阵取绝对值 [r,c]=find(A==max(A(:))); r=r+i-1;%最大值对应行号 c=c+i-1;%最大值对应列号 q=Ab(r,:),Ab(r,:)=Ab(i,:),Ab(i,:)=q;%行变换 w=Ab(:,c),Ab(:,c)=Ab(:,i),Ab(:,i)=w;%列变换 n=num(i),num(i)=num(c),num(c)=n;%列变换引起未知量x次序变化for j=i:3 Ab(j+1,:)=-Ab(j+1,i)*Ab(i,:)/Ab(i,i)+Ab(j+1,:);%消去过程 end end %最后得到系数矩阵为上三角矩阵 %回代算法求解上三角形方程组 x(4)=Ab(4,5)/Ab(4,4); x(3)=(Ab(3,5)-Ab(3,4)*x(4))/Ab(3,3); x(2)=(Ab(2,5)-Ab(2,3)*x(3)-Ab(2,4)*x(4))/Ab(2,2); x(1)=(Ab(1,5)-Ab(1,2)*x(2)-Ab(1,3)*x(3)-Ab(1,4)*x(4))/Ab(1,1); for s=1:4 fprintf('未知量x%g =%g\n',num(s),x(s)) end %验证如下 %A=[0.001 2 1 5 1; 3 -4 0.1 -2 2;2 -1 2 0.01 3; 1.1 6 2.3 9 4]; %b=[1 2 3 4]'; %x=A\b; %x1= 1.0308 %x2= 0.3144 %x3= 0.6267 %x4= -0.0513

数值分析Matlab作业

数值分析编程作业

2012年12月 第二章 14.考虑梯形电阻电路的设计,电路如下: 电路中的各个电流{i1,i2,…,i8}须满足下列线性方程组: 12 123 234 345 456 567 678 78 22/ 2520 2520 2520 2520 2520 2520 250 i i V R i i i i i i i i i i i i i i i i i i i i -= -+-= -+-= -+-= -+-= -+-= -+-= -+= 这是一个三对角方程组。设V=220V,R=27Ω,运用追赶法,求各段电路的电流量。Matlab程序如下: function chase () %追赶法求梯形电路中各段的电流量 a=input('请输入下主对角线向量a='); b=input('请输入主对角线向量b='); c=input('请输入上主对角线向量c='); d=input('请输入右端向量d='); n=input('请输入系数矩阵维数n='); u(1)=b(1); for i=2:n l(i)=a(i)/u(i-1); u(i)=b(i)-c(i-1)*l(i); end y(1)=d(1); for i=2:n y(i)=d(i)-l(i)*y(i-1); end x(n)=y(n)/u(n); i=n-1; while i>0 x(i)=(y(i)-c(i)*x(i+1))/u(i); i=i-1; end x 输入如下:

请输入下主对角线向量a=[0,-2,-2,-2,-2,-2,-2,-2]; 请输入主对角线向量b=[2,5,5,5,5,5,5,5]; 请输入上主对角线向量c=[-2,-2,-2,-2,-2,-2,-2,0]; 请输入方程组右端向量d=[220/27,0,0,0,0,0,0,0]; 请输入系数矩阵阶数n=8 运行结果如下: x = 8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477 第三章 14.试分别用(1)Jacobi 迭代法;(2)Gauss-Seidel 迭代法解线性方程组 1234510123412191232721735143231211743511512x x x x x ?????? ??????---????????????=--?????? --?????? ??????---?????? 迭代初始向量 (0)(0,0,0,0,0)T x =。 (1)雅可比迭代法程序如下: function jacobi() %Jacobi 迭代法 a=input('请输入系数矩阵a='); b=input('请输入右端向量b='); x0=input('请输入初始向量x0='); n=input('请输入系数矩阵阶数n='); er=input('请输入允许误差er='); N=input('请输入最大迭代次数N='); for i=1:n for j=1:n if i==j d(i,j)=a(i,j); else d(i,j)=0; end end end m=eye(5)-d\a; %迭代矩阵 g=d\b; x=m*x0+g; k=1; while k<=N %进行迭代 for i=1:5 if max(abs(x(i)-x0(i))) >er x=m*x+g; k=k+1;

信号与系统 matlab答案

M2-3 (1) function yt=x(t) yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5); (2)function yt=x (t) yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5); t=0:0.001:6; subplot(3,1,1) plot(t,x2_3(t)) title('x(t)') axis([0,6,-2,3]) subplot(3,1,2) plot(t,x2_3(0.5*t)) title('x(0.5t)') axis([0,11,-2,3]) subplot(3,1,3) plot(t,x2_3(2-0.5*t)) title('x(2-0.5t)') axis([-6,5,-2,3]) 图像为:

M2-5 (3) function y=un(k) y=(k>=0) untiled3.m k=[-2:10] xk=10*(0.5).^k.*un(k); stem(k,xk) title('x[k]') axis([-3,12,0,11])

M2-5 (6) k=[-10:10] xk=5*(0.8).^k.*cos((0.9)*pi*k) stem(k,xk) title('x[k]') grid on M2-7 A=1; t=-5:0.001:5; w0=6*pi; xt=A*cos(w0*t); plot(t,xt) hold on A=1; k=-5:5; w0=6*pi; xk=A*cos(w0*0.1*k); stem(k,xk) axis([-5.5,5.5,-1.2,1.2]) title('x1=cos(6*pi*t)&x1[k]')

数值分析的matlab实现

第2章牛顿插值法实现 参考文献:[1]岑宝俊. 牛顿插值法在凸轮曲线修正设计中的应用[J]. 机械工程师,2009,10:54-55. 求牛顿插值多项式和差商的MA TLAB 主程序: function[A,C,L,wcgs,Cw]=newpoly(X,Y) n=length(X);A=zeros(n,n);A(:,1) =Y'; s=0.0;p=1.0;q=1.0;c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)-A(i-1,j-1))/(X(i)-X(i-j+1)); end b=poly(X(j-1));q1=conv(q,b);c1=c1*j;q=q1; end C=A(n,n);b=poly(X(n));q1=conv(q1,b); for k=(n-1):-1:1 C=conv(C,poly(X(k)));d=length(C);C(d)=C(d)+A(k,k); end L(k,:)=poly2sym(C);Q=poly2sym(q1); syms M wcgs=M*Q/c1;Cw=q1/c1; (1)保存名为newpoly.m 的M 文件 (2)输入MA TLAB 程序 >> X=[242,243,249,250]; >> Y=[13.681,13.526,13.098,13.095]; >> [A,C,L,wcgs,Cw]=newpoly(X,Y) 输出3阶牛顿插值多项式L 及其系数向量C 差商的矩阵A ,插值余项wcgs 及其 ) ()()1(ξ+n n f x R 的系数向量Cw 。 A = 13.6810 0 0 0 13.5260 -0.1550 0 0 13.0980 -0.0713 0.0120 0 13.0950 -0.0030 0.0098 -0.0003 C = 1.0e+003 *

matlab信号与系统代码整理

连续时间系统 (1) 离散时间系统 (2) 拉普拉斯变换 (4) Z变换 (5) 傅里叶 (7) 连续时间系统 %%%%%%%%%%向量法%%%%%%%%%%%%%%%% t1=-2:0.01:5; f1=4*sin(2*pi*t1-pi/4); figure(1) subplot(2,2,1),plot(t1,f1),grid on %%%%%%%%%符号运算法%%%%%%%%%%%% syms t f1=sym('4*sin(2*pi*t-pi/4)'); figure(2) subplot(2,2,1),ezplot(f1,[-2 5])跟plot相比,ezplot不用指定t,自动生成。axis([-5,5,-0.1,1])控制坐标轴的范围xx,yy; 求一个函数的各种响应 Y’’(t)+4y’(t)+2y(t)=f”(t)+3f(t) %P187 第一题 %(2) clear all; a1=[1 4 2]; b1=[1 0 3]; [A1,B1,C1,D1]=tf2ss(b1,a1); t1=0:0.01:10; x1=exp(-t1).*Heaviside(t1); rc1=[2 1];(起始条件) figure(1) subplot(3,1,1),initial(A1,B1,C1,D1,rc1,t1);title('零输入响应') subplot(3,1,2),lsim(A1,B1,C1,D1,x1,t1);title('零状态响应') subplot(3,1,3),lsim(A1,B1,C1,D1,x1,t1,rc1);title('全响应') Y=lsim(A1,B1,C1,D1,x1,t1,rc1);title('全响应')则是输出数值解 subplot(2,1,1),impulse(b1,a1,t1:t:t2可加),grid on,title('冲激响应') subplot(2,1,2),step(b1,a1,t1:t:t2可加),grid on,title('阶跃响应') 卷积 %第九题 P189 clear all; %(1) t1=-1:0.01:3;

第2讲 matlab的数值分析

第二讲MATLAB的数值分析 2-1矩阵运算与数组运算 矩阵运算和数组运算是MATLAB数值运算的两大类型,矩阵运算是按矩阵的运算规则进行的,而数组运算则是按数组元素逐一进行的。因此,在进行某些运算(如乘、除)时,矩阵运算和数组运算有着较大的差别。在MATLAB中,可以对矩阵进行数组运算,这时是把矩阵视为数组,运算按数组的运算规则。也可以对数组进行矩阵运算,这时是把数组视为矩阵,运算按矩阵的运算规则进行。 1、矩阵加减与数组加减 矩阵加减与数组加减运算效果一致,运算符也相同,可分为两种情况: (1)若参与运算的两矩阵(数组)的维数相同,则加减运算的结果是将两矩阵的对应元素进行加减,如 A=[1 1 1;2 2 2;3 3 3]; B=A; A+B ans= 2 2 2 4 4 4 6 6 6 (2)若参与运算的两矩阵之一为标量(1*1的矩阵),则加减运算的结果是将矩阵(数组)的每一元素与该标量逐一相加减,如 A=[1 1 1;2 2 2;3 3 3]; A+2 ans= 3 3 3 4 4 4 5 5 5 2、矩阵乘与数组乘 (1)矩阵乘 矩阵乘与数组乘有着较大差别,运算结果也完全不同。矩阵乘的运算符为“*”,运算是按矩阵的乘法规则进行,即参与乘运算的两矩阵的内维必须相同。设A、B为参与乘运算的 =A m×k B k×n。因此,参与运两矩阵,C为A和B的矩阵乘的结果,则它们必须满足关系C m ×n 算的两矩阵的顺序不能任意调换,因为A*B和B*A计算结果很可能是完全不一样的。如:A=[1 1 1;2 2 2;3 3 3]; B=A;

A*B ans= 6 6 6 12 12 12 18 18 18 F=ones(1,3); G=ones(3,1); F*G ans 3 G*F ans= 1 1 1 1 1 1 1 1 1 (2)数组乘 数组乘的运算符为“.*”,运算符中的点号不能遗漏,也不能随意加空格符。参加数组乘运算的两数组的大小必须相等(即同维数组)。数组乘的结果是将两同维数组(矩阵)的对应元素逐一相乘,因此,A.*B和B.*A的计算结果是完全相同的,如: A=[1 1 1 1 1;2 2 2 2 2;3 3 3 3 3]; B=A; A.*B ans= 1 1 1 1 1 4 4 4 4 4 9 9 9 9 9 B.*A ans= 1 1 1 1 1 4 4 4 4 4 9 9 9 9 9 由于矩阵运算和数组运算的差异,能进行数组乘运算的两矩阵,不一定能进行矩阵乘运算。如 A=ones(1,3); B=A; A.*B ans= 1 1 1 A*A ???Error using= =>

信号与系统MATLAB实验

《信号与系统及MATLAB实现》实验指导书

前言 长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MATLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MATLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MATLAB 再多了解一些。 MATLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MATLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MATLAB实现》指导书,内容包括信号的MATLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MATLAB的基本应用,学会应用MATLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、

难点及部分习题用MATLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MATLAB的有关知识,以便更好地完成实验,同时实验中也可利用MATLAB的help命令了解具体语句以及指令的使用方法。 实验一基本信号在MATLAB中的表示和运算 一、实验目的 1.学会用MATLAB表示常用连续信号的方法; 2.学会用MATLAB进行信号基本运算的方法; 二、实验原理 1.连续信号的MATLAB表示 MATLAB提供了大量的生成基本信号的函数,例如指数信号、正余弦信号。 表示连续时间信号有两种方法,一是数值法,二是符号法。数值法是定义某一时间范围和取样时间间隔,然后调用该函数计算这些点的函数值,得到两组数值矢量,可用绘图语句画出其波形;符号法是利用MATLAB的符号运算功能,需定义符号变量和符号函数,运算结果是符号表达的解析式,也可用绘图语句画出其波形图。 例1-1指数信号指数信号在MATLAB中用exp函数表示。 如at )(,调用格式为ft=A*exp(a*t) 程序是 f t Ae

数值分析的MATLAB程序

列主元法 function lianzhuyuan(A,b) n=input('请输入n:') %选择阶数A=zeros(n,n); %系数矩阵A b=zeros(n,1); %矩阵b X=zeros(n,1); %解X for i=1:n for j=1:n A(i,j)=(1/(i+j-1)); %生成hilbert矩阵A end b(i,1)=sum(A(i,:)); %生成矩阵b end for i=1:n-1 j=i; top=max(abs(A(i:n,j))); %列主元 k=j; while abs(A(k,j))~=top %列主元所在行 k=k+1; end for z=1:n %交换主元所在行a1=A(i,z); A(i,z)=A(k,z); A(k,z)=a1; end a2=b(i,1); b(i,1)=b(k,1); b(k,1)=a2; for s=i+1:n %消去算法开始m=A(s,j)/A(i,j); %化简为上三角矩阵 A(s,j)=0; for p=i+1:n A(s,p)=A(s,p)-m*A(i,p); end b(s,1)=b(s,1)-m*b(i,1); end end X(n,1)=b(n,1)/A(n,n); %回代开始 for i=n-1:-1:1 s=0; %初始化s for j=i+1:n s=s+A(i,j)*X(j,1);

end X(i,1)=(b(i,1)-s)/A(i,i); end X 欧拉法 clc clear % 欧拉法 p=10; %贝塔的取值 T=10; %t取值的上限 y1=1; %y1的初值 r1=1; %y2的初值 %输入步长h的值 h=input('欧拉法please input number(h=1 0.5 0.25 0.125 0.0625):h=') ; if h>1 or h<0 break end S1=0:T/h; S2=0:T/h; S3=0:T/h; S4=0:T/h; i=1; % 迭代过程 for t=0:h:T Y=(exp(-t)); R=(1/(p-1))*exp(-t)+((p-2)/(p-1))*exp(-p*t); y=y1+h*(-y1); y1=y; r=r1+h*(y1-p*r1); r1=r; S1(i)=Y; S2(i)=R; S3(i)=y; S4(i)=r; i=i+1; end t=[0:h:T]; % 红线为解析解,'x'为数值解 plot(t,S1,'r',t,S3,'x')

信号与系统MATLAB实验报告

实验报告 实验课程:信号与系统—Matlab综合实验学生姓名: 学号: 专业班级: 2012年5月20日

基本编程与simulink仿真实验 1—1编写函数(function)∑=m n k n 1并调用地址求和∑∑∑===++100 11-8015012 n n n n n n 。实验程序: Function sum=qiuhe(m,k)Sum=0For i=1:m Sum=sum+i^k End 实验结果; qiuhe(50,2)+qiuhe(80,1)+qiuhe(100,-1) ans=4.6170e+004。 1-2试利用两种方式求解微分方程响应 (1)用simulink对下列微分方程进行系统仿真并得到输出波形。(2)编程求解(转移函数tf)利用plot函数画图,比较simulink图和plot图。)()(4)(6)(5)(d 22t e t e d d t r t r d d t r d t t t +=++在e(t)分别取u(t)、S(t)和sin(20пt)时的情况! 试验过程 (1)

(2) a=[1,5,6]; b=[4,1]; sys=tf(b,a); t=[0:0.1:10]; step(sys)

连续时间系统的时域分析3-1、已知某系统的微分方程:)()()()()(d 2t e t e d t r t r d t r t t t +=++分别用两种方法计算其冲激响应和阶跃响应,对比理论结果进行验证。 实验程序: a=[1,1,1];b=[1,1];sys=tf(b,a);t=[0:0.01:10];figure;subplot(2,2,1);step(sys);subplot(2,2,2);x_step=zeros(size(t));x_step(t>0)=1;x_step(t==0)=1/2;lsim(sys,x_step,t);subplot(2,2,3);impulse(sys,t);title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');subplot(2,2,4);x_delta=zeros(size(t));x_delta(t==0)=100;[y1,t]=lsim(sys,x_delta,t);y2=y1;plot(t,y2);title('Impulse Response');

信号与系统作业

实验一常用连续时间信号的实现 一、实验目的 (1)了解连续时间信号的特点; (2)掌握连续时间信号表示的向量法和符号法; (3)熟悉MA TLABPlot函数等的应用。 二、涉及的MATLAB函数 1.plot函数 功能:在X轴和Y轴方向都按线性比例绘制成二维图形。 2.ezplot函数 功能:绘制符号函数在一定范围内的二维图形,简易绘制函数曲线。 3.Sym函数 功能:定义信号为符号变量。 4.subplot函数 功能:产生多个绘图区间。 三、实验内容与方法 1.正弦交流信号f(t)=sin(ωt+φ) (1)符号推理法生成正弦交流信号。 MATLAB程序:. t=-0:0.001:1; f=sym('sin(2*pi*t)'); ezplot(f,[0,1]); xlabel('时间(t)'); ylabei('幅值(f)'); title(‘正弦交流信号'); 用符号法生成的正弦交流信号如图所示:

(2)数值法生成正弦交流信号。 MATLAB程序:. t=-0:0.001:1; y=sin(2*pi*t); plot(t,y,'k'); xlabel('时间(t)'); ylabei('幅值(f)'); title('正弦交流信号'); 用数值法生成的正弦交流信号如图所示: 2.单边衰减指数信号. MATLAB程序: t1=-1;t2=10;dt=0.1; t=t1:dt:t2; A1=1; %斜率 a1=0.5; %斜率 n=A1*exp(-a1*t); plot(t,n); axis([t1,t2,0,1]); xlabel('时间(t)'); ylabel('幅值(f)'); title('单边衰减指数信号'); 用数值法生成的单边衰减指数信号如图所示:

(整理)matlab16常用计算方法.

常用计算方法 1.超越方程的求解 一超越方程为 x (2ln x – 3) -100 = 0 求超越方程的解。 [算法]方法一:用迭代算法。将方程改为 01002ln()3 x x =- 其中x 0是一个初始值,由此计算终值x 。取最大误差为e = 10-4,当| x - x 0| > e 时,就用x 的值换成x 0的值,重新进行计算;否则| x - x 0| < e 为止。 [程序]P1_1abs.m 如下。 %超越方程的迭代算法 clear %清除变量 x0=30; %初始值 xx=[]; %空向量 while 1 %无限循环 x=100/(2*log(x0)-3); %迭代运算 xx=[xx,x]; %连接结果 if length(xx)>1000,break ,end %如果项数太多则退出循环(暗示发散) if abs(x0-x)<1e-4,break ,end %当精度足够高时退出循环 x0=x; %替换初值 end %结束循环 figure %创建图形窗口 plot(xx,'.-','LineWidth',2,'MarkerSize',12)%画迭代线'.-'表示每个点用.来表示,再用线连接 grid on %加网格 fs=16; %字体大小 title('超越方程的迭代折线','fontsize',fs)%标题 xlabel('\itn','fontsize',fs) %x 标签 ylabel('\itx','fontsize',fs) %y 标签 text(length(xx),xx(end),num2str(xx(end)),'fontsize',fs)%显示结果 [图示]用下标作为自变量画迭代的折线。如P0_20_1图所示,当最大误差为10-4时,需要迭代19次才能达到精度,超越方程的解为27.539。 [算法]方法二:用求零函数和求解函数。将方程改为函数 100()2ln()3f x x x =-- MATLAB 求零函数为fzero ,fzero 函数的格式之一是 x = fzero(f,x0) 其中,f 表示求解的函数文件,x0是估计值。fzero 函数的格式之二是 x = fzero(f,[x1,x2])

同济大学数值分析matlab编程题汇编

MATLAB 编程题库 1.下面的数据表近似地满足函数2 1cx b ax y ++=,请适当变换成为线性最小二乘问题,编程求最好的系数c b a ,,,并在同一个图上画出所有数据和函数图像. 625 .0718.0801.0823.0802.0687.0606.0356.0995 .0628.0544.0008.0213.0362.0586.0931.0i i y x ---- 解: x=[-0.931 -0.586 -0.362 -0.213 0.008 0.544 0.628 0.995]'; y=[0.356 0.606 0.687 0.802 0.823 0.801 0.718 0.625]'; A=[x ones(8,1) -x.^2.*y]; z=A\y; a=z(1); b=z(2); c=z(3); xh=-1:0.1:1; yh=(a.*xh+b)./(1+c.*xh.^2); plot(x,y,'r+',xh,yh,'b*')

2.若在Matlab工作目录下已经有如下两个函数文件,写一个割线法程序,求出这两个函数 10 的近似根,并写出调用方式: 精度为10 解: >> edit gexianfa.m function [x iter]=gexianfa(f,x0,x1,tol) iter=0; while(norm(x1-x0)>tol) iter=iter+1; x=x1-feval(f,x1).*(x1-x0)./(feval(f,x1)-feval(f,x0)); x0=x1;x1=x; end >> edit f.m function v=f(x) v=x.*log(x)-1; >> edit g.m function z=g(y) z=y.^5+y-1; >> [x1 iter1]=gexianfa('f',1,3,1e-10) x1 = 1.7632 iter1 = 6 >> [x2 iter2]=gexianfa('g',0,1,1e-10) x2 = 0.7549 iter2 = 8

实验项目五:表示信号与系统的MATLAB函数、工具箱

电子科技大学 实 验 报 告 学生姓名: 学号: 指导老师: 日期:2016年 12月25 日

一、实验室名称: 科研楼a306 二、实验项目名称: 实验项目五:表示信号与系统的MATLAB 函数、工具箱 三、实验原理: 利用MATLAB 强大的数值处理工具来实现信号的分析和处理,首先就是要学会应用MATLAB 函数来构成信号。常见的基本信号可以简要归纳如下: 1、单位抽样序列 ???=01 )(n δ 00≠=n n 在MATLAB 中可以利用zeros()函数实现。 ; 1)1();,1(==x N zeros x 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: ???=-01)(k n δ 0≠=n k n 2、单位阶跃序列 ???0 1)(n u 00<≥n n 在MATLAB 中可以利用ones()函数实现。 );,1(N ones x = 3、正弦序列 )/2sin()(?π+=Fs fn A n x 采用MATLAB 实现 )/***2sin(*1:0fai Fs n f pi A x N n +=-= 4、复正弦序列

n j e n x ?=)( 采用MATLAB 实现 )**exp(1 :0n w j x N n =-= 5、指数序列 n a n x =)( 采用MATLAB 实现 n a x N n .^1 :0=-= 四、实验目的: 目的:1、加深对常用离散信号的理解; 2、熟悉表示信号的基本MATLAB 函数。 任务:基本MATLAB 函数产生离散信号;基本信号之间的简单运算;判断信 号周期。 五、实验内容: MATLAB 仿真 实验步骤: 1、编制程序产生上述5种信号(长度可输入确定),并绘出其图形。 2、在310≤≤n 内画出下面每一个信号: 1223[]sin()cos() 44[]cos ()4 []sin()cos()48n n x n n x n n n x n πππππ=== 六、实验器材: 计算机、matlab 软件、C++软件等。 七、实验数据及结果分析: 实验1: 单位抽样序列

信号与系统课后matlab作业.

(1) t=-2:0.001:4; T=2; xt=rectpuls(t-1,T); plot(t,xt) axis([-2,4,-0.5,1.5]) 图象为: (2) t=sym('t'); y=Heaviside(t); ezplot(y,[-1,1]); grid on axis([-1 1 -0.1 1.1]) 图象为:

A=10;a=-1;B=5;b=-2; t=0:0.001:10; xt=A*exp(a*t)-B*exp(b*t); plot(t,xt) 图象为: (4) t=sym('t'); y=t*Heaviside(t); ezplot(y,[-1,3]); grid on axis([-1 3 -0.1 3.1]) 图象为:

A=2;w0=10*pi;phi=pi/6; t=0:0.001:0.5; xt=abs(A*sin(w0*t+phi)); plot(t,xt) 图象为: (6) A=1;w0=1;B=1;w1=2*pi; t=0:0.001:20; xt=A*cos(w0*t)+B*sin(w1*t); plot(t,xt) 图象为:

A=4;a=-0.5;w0=2*pi; t=0:0.001:10; xt=A*exp(a*t).*cos(w0*t); plot(t,xt) 图象为: (8) w0=30; t=-15:0.001:15; xt=cos(w0*t).*sinc(t/pi); plot(t,xt) axis([-15,15,-1.1,1.1]) 图象为:

(1)function yt=x2_3(t) yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5); (2)function yt=x2_3(t) yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5); t=0:0.001:6; subplot(3,1,1) plot(t,x2_3(t)) title('x(t)') axis([0,6,-2,3]) subplot(3,1,2) plot(t,x2_3(0.5*t)) title('x(0.5t)') axis([0,11,-2,3]) subplot(3,1,3) plot(t,x2_3(2-0.5*t)) title('x(2-0.5t)') axis([-6,5,-2,3]) 图像为:

matlab用于计算方法的源程序

1、Newdon迭代法求解非线性方程 function [x k t]=NewdonToEquation(f,df,x0,eps) %牛顿迭代法解线性方程 %[x k t]=NewdonToEquation(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:原函数,定义为内联函数 ?:函数的倒数,定义为内联函数 %x0:初始值 %eps:误差限 % %应用举例: %f=inline('x^3+4*x^2-10'); ?=inline('3*x^2+8*x'); %x=NewdonToEquation(f,df,1,0.5e-6) %[x k]=NewdonToEquation(f,df,1,0.5e-6) %[x k t]=NewdonToEquation(f,df,1,0.5e-6) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquation(f,df,1) if nargin==3 eps="0".5e-6; end tic; k=0; while 1 x="x0-f"(x0)./df(x0); k="k"+1; if abs(x-x0) < eps || k >30 break; end x0=x; end t=toc; if k >= 30 disp('迭代次数太多。'); x="0"; t="0"; end

2、Newdon迭代法求解非线性方程组 function y="NewdonF"(x) %牛顿迭代法解非线性方程组的测试函数 %定义是必须定义为列向量 y(1,1)=x(1).^2-10*x(1)+x(2).^2+8; y(2,1)=x(1).*x(2).^2+x(1)-10*x(2)+8; return; function y="NewdonDF"(x) %牛顿迭代法解非线性方程组的测试函数的导数 y(1,1)=2*x(1)-10; y(1,2)=2*x(2); y(2,1)=x(2).^+1; y(2,2)=2*x(1).*x(2)-10; return; 以上两个函数仅供下面程序的测试 function [x k t]=NewdonToEquations(f,df,x0,eps) %牛顿迭代法解非线性方程组 %[x k t]=NewdonToEquations(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:方程组(事先定义) ?:方程组的导数(事先定义) %x0:初始值 %eps:误差限 % %说明:由于虚参f和df的类型都是函数,使用前需要事先在当前目录下采用函数M文件定义% 另外在使用此函数求解非线性方程组时,需要在函数名前加符号“@”,如下所示 % %应用举例: %x0=[0,0];eps=0.5e-6; %x=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps)

数值计算方法与Matlab样卷答案

腹有诗书气自华 《数值计算方法与Matlab 》 样卷答案 一.填空题:(每空3分,共42分) 1. 8,6105.0-? 。 2.)(3)1(2)1(1)(3)1(2)1(1)(3)1(3)(3)(2)1(1)(3)(2)1(1)(2)1(2)(3)(2)(1)(3)(2)(1)(1)1(1)1(22)22()1()1(222)1()222(k k k k k k k k k k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x x x x x x x x x x ωωωωωωωωωω ωωωω-+--=---?+=+--+-=---?+=++--=+--?+=+++++++++, )2,1(∈ω。 3.],[1b a C S m -∈。4. 1e 2e ---x ,???==-=?--? ,3,2,1,0;0,e 1d )(e 110k k x x g k x ,正交投影。 5. 2阶,6阶。 6.10.6658,10.9521,10.9501。 7. 4002.2)00.1(=ε,4030.2)01.1(=ε。 二.解下列各题:(每题9分,共36分) 1.解:令)1(2 3+=t x , (2分) 则??-+++=+1123 02 dt )1(25.21)1(49d 1t t x x x ???++++???++-+-≈22)6.01(25.21)6.01(9525.219 8)6.01(25.21)6.01(9549 (8分) 210631.10≈ (9分) 2.解:记系数矩阵为A, 对增广矩阵[]b A |作初等行运算, ??????????--401533933112??????????--==5.55.115 .35.405.75.401125.1,5.11,31,2l l ??????????---=45.114005.75.4011212,3l , 所以13-=x ,2)5.75.1(5.4112=-=x x ,1)1(2 1321=-+-=x x x ,即方程组的解为 [1,2,-1]T . (4分) 故系数矩阵A 的LU 分解为???? ??????--???????????---=4005.75.40112115.1015.1001A 。 (6分)

相关文档
最新文档