0-15V、0-5V转1-5V、0-10V、4-20MA电量转换模块芯片

0-15V、0-5V转1-5V、0-10V、4-20MA电量转换模块芯片
0-15V、0-5V转1-5V、0-10V、4-20MA电量转换模块芯片

压电效应:

压电应是可逆的,当外力沿特定晶向作用在晶体上产生形时,在相应的晶面上会产生电荷,而且去掉该外力后又能自动重回到不带电的平衡状态。像这种靠晶体一形变、不靠电场作用而产生极化的现象,称为“正压电效应”;同样,在特定晶向施加电场后,不仅有极化现象,还会产生形变,去掉电场,则形变和应力消失,这称为“逆压电效应”。正、逆压电效应统称为压电材料的正压电效应。陶瓷绝缘体及某些印制电路板材料具有一定的压电效应,当些材料振动时,附着在其上的导体之前会产生噪声电压。通过防振动安装来减少检测电路的振动国,或都通过选用压电效应小的绝缘材料,能够有效减小压电噪声。

任何被绝缘体分隔的两个导体都可形成一个电容,电容的大小取决于导体的面积,几何形状、相互方向及绝缘体的介电常数。如果由机械原因导致两个导体的相互位置发生变化,则电容C发生变化,电容两端的电压也会相应变化.

深圳市斯瑞特科技产品最大绝对额定值:

Continuous Isolation Voltage(持续隔离电压):3000VDC

Lead Temperature (焊接温度):+300℃(10秒)

Junction Temperature(工作温度):+85℃

Storage Temperature (存贮温度):+150℃

电源电压范围:±10%Vin

注意:如果超出上述范围,产品可能会引起永久性损坏。

主要特性:

>>精度等级:0.1级、0.2级、0.5级。产品出厂前已检验校正,用户可以直接使用

>>辅助电源:5V/12V/15V/24VDC 或者220VAC(范围±10%)

>>国际标准一路信号输入:0-5V/0-10V/1-5V,0-10mA/0-20mA/4-20mA等

>>二路输出标准信号:0-5V/0-10V/1-5V,0-10mA/0-20mA/4-20mA等,具有高负载能力

>>全量程范围内极高的线性度(非线性度<0.2%)

>>标准DIN35 导轨式安装(尺寸:106.7x79.0x25.0mm)

>>具有较强的抗电磁干扰和高频信号干扰能力

产品选型表:

DIN12-IRT - U(A)□- P□- O□

选型举例:

例1:输入信号:0-10V 供电电源:24V 输出两路信号:4-20ma 型号:DIN12-IRT-U2-P1-O1

应用:

>>模拟信号数据隔离、采集和变换,信号分配器

>>隔离4-20mA或0-20mA信号传输

>>工业现场信号隔离及变换

>>信号长线无失真传输

>>仪器仪表信号收发

>>电力监控、医疗设备隔离

>>变频器信号隔离采集

>>PLC/FA 电机信号隔离控制

>>非电量信号变送

电路板中靠得很近的导体,以及电缆线的芯线和屏蔽层之间,电会存在这种效应,机械振动可能会使它们构成的电容发生变化,在这些导体上就产生了噪声电压.

1、工频电磁场

在由工频电力线供电的实验室、工厂车间和其他生产现场,工频电磁场几乎无处

不在,例如:在高电压、小电流的工频设备附近,存在着较强的工频电场;在低电压、

大电流的工频设备附近,存在着较强的工频磁场;即使在一般的电气设备和供电线

的相当距离之内,都会存在一定强度的电磁辐射波。工频电磁场会在现代电子信息

系统的导体和信号回路中感应出50HZ干扰噪声.

2、电网电压波动

工业电网电压的欠压或过压有时会达到额度定电压的正负15%以上,如果现代电子

信息系统的电源稳压电路性能不高,工频电压的波动就有可能串入信号回路中,随着

电力工业的发展和供电质量的不断提高,电网电压波动问题渐趋缓和。

低输出阻抗型。这类传感器的输也阻搞较低,输出信号形式多种多样。其信号调理电路的作用一般是将信号不失真地变换成较强的电压或电流信号,在其性能上对稳定性、抗干扰能力等方面考虑较多。

模数转换模块地位与作用

模数转换模块地位与作用 模数转换模块简介: DAM-6160是模数转换模块,可采集16路单端模拟信号;模块采用高性能12位AD芯片,通过电路处理及软件特殊算法,采集测量精度优于±0.2%。模块配置有RS232接口,方便与PC或PLC通信,模块配置有RS485接口,可单独与PC或PLC通信,也可以与多个485模块组网使用。DAM-6160采用逐次逼近型模数转换器,分辨率为12位,通过特殊软件处理,分辨率可达14位,测量精度优于0.2%(典型值)。用户可通过简单的命令对模块进行现场校准,提高现场测量精度。能满足大多数的工业现场及安防、智能楼宇、智能家居、电力监控、过程控制等场合。产品针对工业应用设计:通过DC-DC变换,实现测量电路和主控电路电源隔离;同时控制单元与信号采集单元采用高性能磁隔离技术实现电气隔离,与一般的光电隔离相比数据通信更快更可靠。采用485/CAN隔离电路,将通信与系统单独隔离开,消除通信设备之间共模干扰。模块配有瞬态抑制电路,能有效抑制各种浪涌脉冲,保护模块在恶劣的环境下可靠工作。 模数转换模块参数: 输入通道数:16路单端输入 输入范围:+20mA,+5V,+10V,+24V 转换速率:40次/秒(全通道) AD转换分辨率:优于12位 测量精度:±0.2%(典型值) 输入端过压保护,过流保护,并有低通滤波 常模抑制(NMR):60dB 隔离耐压:DC2500V

ESD保护:±15KV 供电范围:DC+8~+36V 地址/波特率/量程可由用户配置 支持MODBUS-RTU协议和ASCII 支持模块主动发送数据模式 支持RS485,RS232支持定制CAN RS485隔离通信 功耗:小于1W 工作温度:-40℃~+80℃ 工业级V0级防火塑料外壳保障产品应用各类环境安全 安装方式:标准DIN35导轨安装 型号输入类型通道数通讯接口 60同系列其他型号: DAM-6010模拟量1AI RS485和RS232 DAM-6020模拟量2AI RS485和RS232 DAM-6040模拟量4AI RS485和RS232 DAM-6080模拟量8AI RS485和RS232 DAM-6084模拟量、开关量8AI+4IO RS485或RS232 DAM-6044模拟量、开关量4AI+4IO RS485或RS232 DAM-6160模拟量16AI RS485和RS232 模数转换模块接线: 所谓模拟量信号是指连续的,任何时刻可为任意一个数值的信号,例如我们常见的温度、压

高精度数模转换器

选择和使用高精度数模转换器 时间:2011-05-10 23:17:40 来源:作者:叶子 很多应用 (包括精密仪器、工业自动化、医疗设备和自动测试设备) 都需要高准确度数模转换。在 16 位分辨率时要求准确度好于约±15ppm 或±1LSB 的电路中,设计师传统上一直被迫使用大量校准,以在所有情况下保持准确度。新型高精度 DAC 使得能够采用一个单片式 DAC 来实现±4ppm 准确度或±1LSB (在 18 位分辨率条件下),而无需校准。在本文中我们将对高精度数模转换器的选择和使用过程中所涉及的问题进行研究。 DAC 的架构对于 DAC 的技术规格及其对电路板设计师的要求均有影响。为了实现最佳性能,需要谨慎地考虑 DAC 上的电源、基准和输出放大器所产生的影响。 过采样或增量累加 DAC 过采样或ΔΣ ADC 采用一个低分辨率 DAC (通常仅 1 位),在其前后分别布设一个噪声整形数字调制器和一个模拟低通滤波器。最准确的商用增量累加 DAC 实现±15ppm 的准确度,但是需要 15ms 才能稳定,并要承受相对较高的 1μV/√Hz 噪声密度。其它可购得的过采样 DAC 在 80us 内稳定,但是INL 较差,大约为 240 ppm。 合成 DAC 通过结合两个较低分辨率的单片 DAC,有可能构成一个高分辨率的合成 DAC。请注意,粗略 DAC 的分辨率和精细 DAC 的范围需要重叠,以确保所有想要的输出电压都可实现。粗略 DAC 的准确度和漂移一般将限制合成 DAC 的最终准确度,因此要提高准确度,就需要对合成 DAC 转移函数的特性和软件进行校正。也可能需要频率校准,以校正随温度、时间、湿度和机械压力产生的变化导致的漂移。 电阻串 DAC 电阻串 DAC 采用具有 2N 个分接点的一系列电阻分压器,以实现 N 位分辨率。采用电阻串架构的单片 16 位 DAC 一般含有一个较低分辨率的电阻串 DAC 和一个范围较小的 DAC,范围较小的 DAC 用于插入串器件之间,以实现 16 位分辨率。这种串+内插器方法的一个优点是,DAC 输出具有固有的单调性,无需微调或校准。 这类 DAC 的基准输入阻抗一般很高 (50KΩ~ 300kΩ),而且不受输入代码的影响,从而有可能使用一个非缓冲型基准。因为电阻串的输出阻抗随输入代码变化,所以大多数电阻串 DAC 含有集成的输出缓冲器放大器,以驱动电阻性负载。 尽管电阻串 DAC 的 DNL 本身非常好,但是 INL 由串联电阻器件的匹配决定,而且可能由于含有大量的独立器件而难以控制。直到最近,这类 DAC 的准确度一直限制在约±180ppm。最近的进步已经使得准确度提高到了±60ppm。例如,LTC2656 在 4mm x 5mm 封装中集成了 8 个 DAC 通道,在 16 位分辨率时具有±4LSB 的最大 INL。 阻性梯形或 R-2R 型 DAC 阻性梯形或 R-2R DAC 采用一种类似于图 2 所示的三端子结构,电阻器在 A 端和 B 端之间切换。请注意,A 端和 B 端上的阻抗与代码的相关性很高,而 C 端则具有一个固定阻抗。电阻器与开关的匹配情况将会影响这种结构的单调性和准确度。此类 DAC 一般经过修整或在出厂时经过校准,而且,具±1LSB INL 和 DNL 的单调 16 位阻性梯形电路 DAC 上市已有很长时间了。 电压输出 R-2R DAC 一种常见类型的 R-2R DAC 将C 端用作 DAC 输出电压,而 A 端连接到基准,B 端连接到地。输出阻抗相对于输入代码是恒定的,从而有可能以非缓冲方式驱动电阻负载。例如,LTC2641 16 位 DAC 能以非缓冲方式驱动 60kΩ负载,同时保持±1LSB 的 INL 和 DNL,并消耗不到 200μA 的电源电流。 这种方法的一个缺点是,基准阻抗随着输入代码大幅变化。由于 R-2R 梯形电路的本质,甚至DAC 输出电压中很小的变化也可能在基准电流中引起 1mA 或更大的阶跃变化。为此,必须由一个高性能放

MSP430模数转换模块

MSP430模数转换模块--ADC12 MSP430单片机的ADC12模块是一个12位精度的A/D转换模块,他具有高速度,通用性等特点。大部分都内置了ADC模块.而有些不带ADC模块的片子,也可通过利用内置的模拟比较器来实现AD的转换。在系列产品中,我们可以通过以下列表来简单地认识他们的ADC功能实现。 系列型号ADC功能实现转换精度 MSP430X1XX2 比较器实现10位 MSP430F13X ADC模块12位 MSP430F14X ADC模块12位 MSP430F43X ADC模块12位 MSP430F44X ADC模块12位 MSP430X32X ADC模块14位 从以下ADC12结构图中可以看出,ADC12模块中是由以下部分组成:输入的16路模拟开关,ADC内部电压参考源,ADC12内核,ADC时钟源部分,采集与保持/触发源部分,ADC数据输出部分,ADC控制寄存器等组成。 输入的16路模拟开关 16路模拟开关分别是由IC外部的8路模拟信号输入和内部4路参考电源输入及1路内部温度传感器源及AVCC-AVSS/2电压源输入。外部8路从A0-A7输入,主要是外部测量时的模拟变量信号。内部4路分别是Veref+ ADC内部参考电源的输出正端,Vref-/Veref- ADC内部参考电源负端(内部/外部)。1路AVCC-A VSS/2电压源和1路内部温度传感器源。片内温度传感器可以用于测量芯片上的温度,可以在设计时做一些有用的控制;在实际应用时用得较多。而其他电源参考源输入可以用作ADC12的校验之用,在设计时可作自身校准。 ADC内部电压参考源 ADC电压参考源是用于给ADC12内核作为一个基准信号之用的,这是ADC必不可少的一部分。在ADC12模块中基准电压源可以通过软件来设置6种不同的组合。AVCC(Vr+),Vref+,Veref+,AVSS(Vr-),Vref-/Vere f-。

系统功能模块详细介绍

江苏省招标代理信用管理系统 操作使用手册

目录 第1章系统功能模块详细介绍 (3) 1.1 代理机构用户功能 (3) 1.1.1 代理机构登录 (3) 1.1.2 如何下载并安装加密狗驱动程序? (4) 1.1.3 新代理机构资质申请 (5) 1.2 代理机构信息变更 (9) 1.2.1 机构信息变更 (10) 1.2.2 法人变更 (11) 1.2.3 技术负责人变更 (12) 1.2.4 专职人员变更 (12) 1.3 信息查询 (13)

第1章系统功能模块详细介绍 省招标代理机构信用管理系统主要分为三大块: 1、招标代理机构用户功能模块 2、管理机构用户功能模块 3、系统管理员后台管理功能模块。 其中整个信用管理系统主要定义了以下角色名称:如下表格所示: 1.1代理机构用户功能 代理机构用户功能模块包括:新代理机构资格申请、代理机构信息变更、信息查阅、考试报名等。 1.1.1代理机构登录 代理机构用户领到管理机构授予的加密狗后,在电脑上插入加密狗,打开浏览器在地址栏输入本信用管理系统的网址后回车。便成功进入系统登录界面如下图所示:

参照上图:新代理机构进行资格申请时,要通过管理机构授予的加密狗(usb 接口设备)来登录进入系统。系统通过直接读取加密狗中的编码信息,从而替代再次输入“登录名、密码”的方式,直接进入系统。(前提条件是已安装加密狗驱动程序,系统并检索到插入的加密狗) 注意事项:在新代理机构进行资质申请第一次使用本系统时,首先要下载安装加密狗的驱动程序,只有成功安装了加密狗的驱动程序,计算机才能识别代理机构操作人员插入的加密狗设备,信用管理系统才能正确的读取其中的编码数据。从而确保新代理机构操作人员能顺利使用本系统进行资质申请。 1.1.2如何下载并安装加密狗驱动程序? 在信用管理系统登录界面的底部区域,系统给出的红色提示信息中,鼠标右 键点击的“下载”,系统弹出保存对话框,然后选择驱动程序保存到用户的本地计算机盘符中,选择完毕点击按钮,成功将加密狗驱动 程序保存到计算机对应的路径中,变完成了驱动程序的下载。如下图所示:

用普通单片机实现低成本高精度AD与DA转换

用普通单片机实现低成本高精度A/D与D/A转换(之一) 摘要:用普通单片机实现低成本的多路A/D与D/A转换,其转换结果为8bit或更高。 关键词:单片机A/D转换D/A转换PWM(脉冲宽度调制)比较器 目前单片机在电子产品中已得到广泛应用,许多类型的单片机内部已带有A/D转换电路,但此类单片机会比无A/D转换功能的单片机在价格上高几元甚至很多,本文给大家提供一种实用的用普通单片机实现的A/D转换电路,它只需要使用普通单片机的2个I/O脚与1个运算放大器即可实现,而且它可以很容易地扩展成带有4通道A/D转换功能,由于它占用资源很少,成本很低,其A/D转换精度可达到8位或更高,因此很具有实用价值。 其电路如图一所示: 500) {this.resized=true; this.width=500; this.alt='点击查看原图';}; this.style.cursor='hand'" onclick="if(!this.resized) {return true;} else {window.open('https://www.360docs.net/doc/f29180982.html,/blog/u/40/1144027076.jpg');}" border="0" width="500"> 图一 其工作原理说明如下: 1、硬件说明: 图一中“RA0”和“RA1”为单片机的两个I/O脚,分别将其设置为输出与输入状态,在进行A/D 转换时,在程序中通过软件产生PWM,由RA0脚送出预设占空比的PWM波形。RA1脚用于检测比较器输出端的状态。 R1、C1构成滤波电路,对RA0脚送出的PWM波形进行平滑滤波。RA0输出的PWM波形经过R1、C1滤波并延时后,在U1点产生稳定的电压值,其电压值U1=VDD*D1/(D1+D2),若单片机的工作电压为稳定的+5V,则U1=5V*D1/(D1+D2)。 图一中的LM324作为比较器使用,其输入负端的U1电压与输入正端的模拟量电压值进行比较,当U1大于模拟量输入电压时,比较器的输出端为低电平,反之为高电平。 2、A/D转换过程: 如果使RA0输出PWM波形,其占空比由小到大逐渐变化,则U1的电压会由小到大逐渐变化,当U1电压超过被测电压时,比较器的输出端由高电平变为低电平,因此可以认为在该变化

高精度数模转换器AD420及其与MSP430的接口技术

高精度数模转换器AD420及其与MSP430的接口技术 1 概述 AD420是ADI公司生产的高精度、低功耗全数字电流环输出转换器。AD420的输出信号可以是电流信号,也可以是电压信号。其中电流信号的输出范围为4mA~20mA,0mA~20mA或0mA~24mA,具体可通过引脚RANGE SELECTl,RANGE SELECT2进行配置。当需要输出电压信号时,它也能从一个隔离引脚提供电压输出,这时需外接一个缓冲放大器,可输出0V~5V,0V~10V,±5V或±10V电压。 AD420具有灵活的串行数字接口(最大速率可达3.3 Mb/s),使用方便、性价比高、抑制干扰能力强,非常适合用于高精度远程控制系统。AD420与单片机的接口方式有2种:3线制和异步制。单片机系统通过AD420可实现连续的模拟量输出。其主要特点如下: ?宽泛的电源电压范围为12 V~32 V,输出电压范围为0V~-2.5 V; ?带有3线模式的SPI或Microwire接口,可采集连续的模拟输入信号,采用异步模式时仅需少量的信号线; ?数据输出引脚可将多个AD420器件连接成菊链型; ?上电初始化时,其输出最小值为0 mA,4 mA或O V; ?具有异步清零引脚,可将输出复位至最小值(0mA、4 mA或0V); ?BOOST引脚可连接一个外部晶体管来吸收回路电流,降低功耗; ?只需外接少量的外部器件,就能达到较高的精度。 AD420采用24引脚SOIC和PDIP封装,表1是其引脚功能说明。

2 工作原理 在AD420中,二阶调节器用于保持最小死区。从调节器发出的单字节流控制开关电流源,两个连续的电阻电容装置进行过滤。电容为电流输出额外增加的器件。输出电流则简单显示为4 mA~20 mA,OmA~20mA或0mA~24mA。AD420采用BiCMOS工艺,能够适合高性能的低电压数字逻辑和高电压模拟电路。

用比较器进行高精度模数转换

一种高精度单斜率AD 及其单片机实现 摘要:介绍了一种利用MSP430 F1121单片机构成的采用类似于Σ-Δ技术的高精度的单斜率AD 。分析了工作原理和参数计算。提供了分辨率,精度,线性度,稳定性等性能的测试结果,并讨论了它们的影响因素和应用。 关键词:MSP430单片机 单斜率AD 一 引言 AD 转换最常用的方法是逐次逼近法(SAR ),转换时间固定且快速是其最大特点,但要明显提高分辩率有一定困难。积分型AD 有较强的抗干扰能力,但转换时间较长。而过采样Σ-ΔA/D 由于其高分辩率,高线性度及低成本的特点正得到越来越多的应用。TI 公司的MSP430F1121单片机内带有一个模拟比较器,因此,只须外接一只电阻和电容即可构成一个类似于Σ-Δ技术的高精度单斜率AD 。 二 测量电路及过程 MSP430于F1121是16位RISC 结构的FLASH 型单片机。有14个双向I/O 口并兼有中断功能。一个16位定时器,兼有计数和定时功能。一个模拟电压比较器。 测量电路如图2-1所示。 MSP430F1121工作电压为1.8-3.6V 。I/O 口输出高电平时电压接近Vcc ,低电平时接近Vss ,因此,一个I/O 口可以看作一位DAC ,具有PWM 功能。测量时P2.4引脚接被测电压。P2.0口输出一串占空比为50%,脉宽为Tp 的脉冲。当电容充电到Vout=Vin 时,比较器输出将翻转,这一过程称为预充电。此后为维持Vout=Vin ,P2.0继续输出脉冲。程序开始对总的输出脉冲数N 和输出为高的 脉冲数n 进行计数。P2.0口根据比较器的输出状态来决定是输出高还是低电平,如果比较器输出为低,表示Vout>Tp ,则在一定精度内可以认为充放电过程是线性的。其波形如图3-1。 图2-1 测量电路图

AD转换模块简介

A/D转换模块 1、A/D转换原理 A/D转换的过程是模拟信号依次通过取样、保持和量化、编码几个过程后转换为数字格式。 a)取样与保持 一般取样与保持过程是同时完成的,取样-保持电路的原理图如图16 所示,由输入放大器A 1、输出放大器A 2 、保持电容C H 和电子开关S组成, 要求 A V1 * A V2 = 1。原理是:当开关S闭合时,电路处于取样阶段,电容 器充电,由于 A V1 * A V2 = 1,所以输出等于输入;当开关S断开时,由于 A 2输入阻抗较大而且开关理想,可认为C H 没有放电回路,输出电压保持不 变。 图16 取样-保持电路 取样-保持以均匀间隔对模拟信号进行抽样,并且在每个抽样运算后在足够的时间内保持抽样值恒定,以保证输出值可以被A/D 转换器精确转换。 b)量化与编码 量化的方法,一般有舍尾取整法和四舍五入法,过程是先取顶量化单位Δ,量化单位取值越小,量化误差的绝对值就越小,具体过程在这里就不做介绍了。将量化后的结果用二进制码表示叫做编码。 2、A/D转换器的技术指标

a)分辨率 分辨率说明A/D转换器对输入信号的分辨能力,理论上,n位A/D转换器能区分的输入电压的最小值为满量程的 1/2n 。也就是说,在参考电压一定时,输出位数越多,量化单位就越小,分辨率就越高。S12的ATD模块中,若输出设置为8位的话,那么转换器能区分的输入信号最小电压为19.53mV。 b)转换时间 A/D转换器按其工作原理可以分为并联比较型(转换速度快ns级)、逐次逼近型(转换速度适中us级)、双积分型(速度慢抗干扰能力强)。 不同类型的转化的A/D转换器转换时间不尽相同,S12的ATD模块中,8位数字量转换时间仅有6us,10位数字量转换时间仅有7us。 S12内置了2组10位/8位的A/D模块:ATD0和ATD1,共有16个模拟量输入通道,属于逐次逼近型A/D转换器(这个转换过程与用天平称物的原理相似)。 1、功能结构图

医院管理系统功能模块说明

医院管理系统功能模块说明 门诊挂号系统 系统概述:主要完成病人的挂号、收费业务,以及医院内部及与院外单位结算;门诊挂号 普通挂号收费:进行挂号收费、退号退费、废票重打等业务的办理。支持磁 卡或IC卡挂号及相关操作,可预约挂号,选择医师就诊, 能打印明细单。 普通挂号退费:由于挂号登记错误或病人要求对挂号进行退号。 发票补打:由于系统出错,或打印机出错,或收费错误结原发票作费,重新产生一张发票 挂号查询 挂号信息查询:查询指定时间段,所有挂号信息与挂号费用查询。 挂号发票查询(按发票):按发票号查询所有挂号信息与费用 挂号发票查询(按时间):按时间段查询所有挂号信息与费用 退费信息查询:查询指定时间段所有退费信息与费用。 挂号员工作量统计:统计指定时间段挂号员所挂号次数与金额 门诊收费缴款单:门诊收费员对本次收费进行上缴 系统维护 更改密码 注销重新登录 关闭当前窗口 关闭系统 门诊医生工作站 系统概述:门诊医生工作站系统主要功能是下医嘱;电子处方输入、病历病案菜单输入、各种结果单据查询、临床数据(含图像)查询;处理、自动 计算费用并扣款;药品、药理特性查阅;保证药房能够看到价格,取 到药品,杜绝无效处方;可随时查询同病人相关的信息。 主要功能介绍: 医生工作台 门诊病历录入:录入门诊病人的信息,诊断情况进行录入 门诊处方录入:录入门诊病人的用药,检疗等费用 门诊病人查询:查询指定时间段门诊病人详细记录 门诊药品单打印:查询指定时间段门诊用药流水记录 门诊病人病历打印 门诊病人费用查询:查询指定时间段门诊病人费用明细记录 医生工作台查询 病人信息查询:通过输入时间段和病人唯一标识信息,查询该病人在这段时间内的就诊记录信息,其中包括处方信息、检查、检验申请单信 息以及门诊病历信息。

高精度Delta-Sigma AD转换器的原理及其应用

高精度Delta-Sigma A/D转换器的原理及其应用 本次在线座谈主要介绍TI的高精度Delta-Sigma A/D转换器的原理及其应用,Delta-Sigma转换器的特点是将绝大多数的噪声从动态转移到阻态,通常Delta-Sigma转换器被用于对成本与精度有要求的低频场合。本文首先将对TI的高精度Delta-Sigma A/D转换器进行综述性介绍,而后将介绍噪声的测量及芯片ADS1232等。 Delta-Sigma转换器综述 Delta-Sigma转换器是采用超采样的方法将模拟电压转换成数字量的1位转换器,它由1位ADC、1位DAC与一个积分器组成,见图1。Delta-Sigma转换器的优点表现在低成本与高分辨率,适合用于现在的低电压半导体工业的生产。 Delta-Sigma转换器组成 Delta-Sigma转换器由差分放大器、积分器、比较器与1位的DAC组成,输入信号减去来自1位DAC 的信号将结果作为积分器的输入,当系统得到稳定工作状态时,积分器的输出信号是全部误差电压之和,同时积分器可以看作是低通滤波器,对噪声有-6dB的抑制能力。积分器的输出用1位ADC来转换,而后比较器将输出数字1和0的位流。DAC将比较级的输出转换为数字波形,回馈给差分放大器。 Delta-Sigma转换器原理详述 积分器将量化噪声伸展到整个频带宽度,从而使噪声成型,而滤波器可以过滤掉绝大多数的成型噪声。有几个误差源会降低整个系统的效果,为了满足ADC的输入范围,很多信号要求一些放大电路和电平偏移电路,有时放大器在ADC的内部,有时使用外部放大器。无论是哪一种情况,放大器电压、电压漂移、输入偏置电流或采样噪声将引入误差信号。为了得到精确的ADC转换结果,放大器的误差应该通过调整来消除或减少。积分器对输入低频或直流信号内置一个低通滤波器,从而极大地降低了通道内的噪声。 典型的半导体放大器的噪声分为两个部分,1/F噪声和对地噪声,Delta-Sigma ADC的主要应用是在低频场合,因此1/F噪声的影响占主要地位。选择合适的放大器可以控制1/F噪声。由噪声频谱图可知(见图2),器件的噪声在高频主要是背景噪声,而在低频主要是1/F噪声,当越接近我们想要得到的直流信号时,1/F噪声越大。人们通常把1/F噪声想象成漂移,它是一个非常低频率的现象,常用的解决方法是采用窄波输入。

多通道高精度模数转换器AD7718 原理与应用

多通道高精度模数转换器AD7718原理与应用 解放军信息工程大学信息工程学院六系(450002)陈铖武安河 摘要:本文从外部引脚和内部可编程寄存器两方面讲解了多通道高精度模数转换器AD7718,并通过一个24bits分辨率的数据采集电路介绍了AD7718的应用。 关键词:模数转换器 AD7718 数据采集 The Principle And Application Of 10-Channel 24-Bit Resolution Σ-Δ ADCs AD7718 Institute of Information Engineering, Information Engineering University of PLA, Zhengzhou 450002,China Chen Cheng, Wu AnHe Abstract: The AD7718 is a 10-channel 24-bit resolution Σ-ΔAnalog To Digital Converter. This paper presents firstly its pin and consist, and then designs a data acquisition scheme. Key Words: ADC, AD7718, Data Acquisition 1 概述 在低频测量应用中,AD7718是一个单电源供电(+3V或+5V)的完整前端。其内部结构如图1所示。从图中可以看出片内有一个带PGA(Programmable Gain Amplifier,可编程增益放大器)的Σ-Δ型ADC(Analog to Digital Converter,模数转换器)。ADC的分辨率为24 bits ,PGA的范围为20~27,8档可编程。所以,AD7718能直接转换范围在20mV~2.56V之间的输入信号而无须信号调理电路。AD7718片内还有一个多路开关MUX,可以将模拟输入配置成4或5通道差分输入,也可以配置成8或10通道伪差分输入。AD7718需要外接32KHZ晶体,片内PLL通过它产生所需要的工作时钟。 图1 AD7718的内部功能框图

系统功能模块说明

?自拟Web系统,并确定系统名称 ?自拟系统的主界面(静态页面) –使用DIV+CSS或Table+CSS布局,要求有适合系统主题的相关图片和文字 ?系统功能文档 –各功能模块说明 –系统功能框图 ?数据库设计文档 –以小组为单位完成系统的数据库设计文档 组长将任务分配表和以上内容打包提交给老师 **系统功能模块说明书 **系统功能模块说明 1.背景 随着计算机网络的广泛应用,现在越来越多的人都开始习惯使用计算机对需要的东西进行查阅.本WEB系统是为了计算机用户能方便的对一些出名的新闻,资料,各类型的网络文化进行查阅,浏览. 2.功能描述 本WEB系统主要实现的功能有:用户功能,留言功能,上传功能,视频观看,图文共赏,音乐欣赏,评论区等功能. ①用户功能: 用户功能具体分为: a)用户权限 ⑴管理员 管理员拥有系统中的所有权限,可以对系统中所有的内容进行后台管理,如:添加/删除文件,修改界面,修改其他用户的权限 等. ⑵会员用户

会员用户是经过注册过后的用户.在普通用户权限的基础上增加了对各类视频,图文上传的功能,能浏览系统中的全部内容. ⑶普通用户 普通用户是未经过注册的用户,只能浏览网页中的部分内容.经注册过后能对相应的产品进行评价,能对管理员进行留言. b)用户注册 用户注册时需要填写账户,密码(密码将以“*”号显示),确认密码,性别,邮箱,验证码等.在用户填写完账户之后,确定数据 库中是否存在相同的账户,若有相同的账户存在,注册将失败,并 且清空注册中的所有内容. c)用户登录 用户登陆时将填写已注册的账户密码,在用户确认登陆时系统将进入数据库中验证账户密码是否正确,如正确将转入主 页,如错误将清空密码栏 ②留言功能 已登录的用户可以在留言版内对管理员留言,留言发表时将显示留言用户的账户与留言时间. ③视频观看 视频功能将以图片,文字解说,与链接的形式显示,相应的链接会连接到其他的网站中相应是视频. ④图文共赏 图文共赏功能会以单纯的图片,文章,的形式显示,在图片中将有

一种高精度逐次逼近模数转换器的研究与设计_(优选.)

第三章 高精度逐次逼近ADC 设计分析 第二章已经简单介绍了逐次逼近ADC 的原理,尽管其工作原理比较简单,但是具体的实现结构多种多样。其中按照内部DAC 的实现方式大概可以分为电压定标、电流定标和电荷定标三种结构。电压定标DAC 是指基于开关树电阻串分压结构,这种结构在实现较高精度时总的电阻阻值很大,会占用很大面积,所以通常很少用来实现高精度的数模转换。电流定标DAC 是指在Bipolar 工艺中比较常用的R-2R 结构,这种结构避免了电阻比值范围大的缺点。但由于CMOS 工艺中电阻占用面积较大,而且电阻的阻值精确性较双极性工艺低,电阻网络还存在较大的静态功耗,所以在高精度逐次逼近ADC 中也已经很少采用R-2R 结构。电荷定标DAC 是目前最常用的一种结构,它是基于电容阵列电荷再分配实现数模转换。由于CMOS 工艺中电容之间的匹配高于电阻匹配,所以这种结构可以实现较高的精度。另外,由于这种结构是基于开关电容方式,因此不存在静态功耗,所以已经成为目前SAR ADC 的主流结构。因此,本文从电荷再分配DAC 结构讲起,也分析了电阻电容混合结构DAC 结构,并重点介绍了带失调消除技术的高精度比较器的设计以及误差自动校准算法。最后,还对其它影响A/D 转换器的因素如噪声、开关非理想效应作了分析。 3.1 SAR ADC 中的高精度DAC 模块 1975年James L. McCREARY 首次提出将电荷再分配技术[23]应用到逐次逼近ADC 的设计当中,该技术是基于二进制加权电容阵列,利用电容的电荷再分配完成二进制搜索算法,由于该结构功耗小,而且不需要额外的采样保持电路,因而成为了目前逐次逼近ADC 中最常用的一种结构。然而由于在高精度应用中,最低位电容和最高位电容之间存在很大的比值,例如对于12位精度,最大电容和最小电容的比值2048:1,这必然将占用很大的芯片面积。解决这个问题的方法主要有两种,一种是采用分段电容阵列结构,另外一种是采用电阻电容混合结构。 3.1.1 分段电容阵列结构DAC 模块 文献[24]中提出了一种分段电容DAC 结构,该结构中由MSB 电容阵列和LSB 电容阵列通过一个耦合电容s C 级联,其中耦合电容s C 与MSB 电容阵列总电容MSB C 和

高精度模数转换器(ADC)

Σ-Δ转换器的特点是将绝大多数的噪声从动态转移到阻态,因而Σ-Δ转换器通常被用于对成本与精度有要求的低频场合。CS1232是芯海科技公司自主设计的一款高精度模数转换器(ADC),采用先进的3阶Σ-Δ 转换技术,可用于低电平、高精度测量,尤其适用于衡器领域,软件和硬件上不需要做任何修改,即可完全兼容于TI公司的ads1232。 CS1232的有效精度达到23.5位,可以在3.3V-5.5V的电压范围内正常工作,工作电压范围宽,并且内置4.9152M晶振,无需外部提供时钟信号,如果同时运行多个芯片,还可以使用外部时钟。通过控制PDWN引脚为低电平,可以使芯片进入掉电工作模式,功耗电流仅1μA。片内有两路差分通道,可用于多通道测量。片上内置低噪声的仪用放大器,最高128倍,可以直接测量幅度较小的微小信号。输出速度可以选择10Hz或80Hz,采用10Hz的数据速率时,可拟制50Hz和60Hz的干扰信号。CS1232的增益温漂约2pp/℃,并内置温度传感器,可以监测环境温度。 关键特性及结构 CS1232包括一个高性能Σ-ΔADC、低噪声放大器(PGA)、多路复用器、时钟、校准寄存器和串行外围接口,图1为CS1232的内部结构图。 CS1232内置一路Σ-Δ ADC,ADC采用三阶Σ-Δ调制器,通过低噪声仪用放大器结构实现PGA放大,PGA=1时,有效分辨率23.5位;PGA=128时,有效分辨率可达21位,内部放大器具有低噪声、低温漂等优点。CS1232的参数配置都通过外部引脚控制,无需寄存器编程。 图1: CS1232的内部结构图。 典型应用设计 传统的精密数据转换器解决方案不能兼备低噪声和低功耗的特性,而CS1232因为具有功耗低、噪声小、温漂系数小等特点,特别适合于衡器仪表、电子天平、数字传感器等小信号测量领域。图2给出了CS1232的仪表方案典型应用电路。 图2:采用CS1232的仪表方案典型应用电路。 图2中的传感器是电阻应变式传感器。根据电阻应变式传感器的原理,四片应变片构成全桥桥路,在电桥供电端施加恒定的直流电压,则电桥输出端的电压将与其上所承受的压力成正比,由此可根据输

V8TEM功能模块使用说明解析

V8 TEM功能模块使用说明 1、准备材料 将V8仪器自带的“SYSTEM https://www.360docs.net/doc/f29180982.html, FIRMWARE,SOFTWARE,AND MANUALS”CD上的“Windows Software”里面的软件安装到电脑上。其中包括“CMT Pro”,“TblEdit”,“TEM Pro”,“TIP Pro”,“V8Sim”,分别对应“CSAMT数据预处理”,“各种方法的填表”,“TEM数据预处理”,“TIP数据预处理”,“V8模拟”。 2、填表 安装好之后,在桌面出现一个“Phoenix Geophysics V8-RXU Host Software”图表,双击后,进入下面的页面 图1 V8 and RXU Startup.tbl Editor Version 2.0 双击“V8 and RXU Startup.tbl Editor Version 2.0”进入填表。 (1)选择如下图,进入“Acquisition parameters”页面 具体填表如下图 图2 Acquisition parameters填表

●Acquisition parameters说明 ○1需要修改的地方不多,“E Gain”,“H Gain”根据实际情况而定,如果信号小,则选大一些,反之,则小; ○2Line Frequency为工频陷波,我国为50Hz; ○3Time Zone选择Local ○4由于TEM只用线圈接收,没有Hx、Hy和Hz,故Hx、Hy和Hz的S/N不填。 (2)点击“site setup”进入“Input V8 and TMR box serial nember”填表,填表内容见图3。 图3 Input V8 and TMR box serial nember填表 ●Input V8 and TMR box serial nember说明 ○1填的都是S/N; ○2我们做TEM的时候,不用辅助盒子,故不填。

模数转换器综述_ADC

模数转换器ADC_综述 随着数字技术,特别是计算机技术的飞速发展普及,在现代控制、通讯及检测领域中,对信号的处理广泛采用了数字计算机技术。由于系统的实际处理对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别和处理这些信号,必须首先将这些模拟信号转换成数字信号。这样,就需要一种能将模拟信号转换为数字信号的电路,即模数转换电路(Analog to Digital Converter, ADC)。 模数转换过程 模数转换包括采样、保持、量化和编码四个过程。采样就是将一个连续变化的信号x(t)转换成时间上离散的采样信号x(n)。根据Nyquist-Shannon theorem采样定理,采样频率至少要大于或等于模拟信号最高频率的两倍,才可以无失真地重建恢复原始信号x(t)。通常采样脉冲的宽度是很短的,故采样输出是截断的窄脉冲。要将一个采样输出信号数字化,需要将采样输出所得的瞬时模拟信号保持一段时间,这就是保持过程。图1即为采样过程。 图1采样过程 量化是将连续幅度的抽样信号转换成离散时间、离散幅度的数字信号,数字信号最低有效位中的1表示的数量大小,就等于量化单位Q,如图2所示。把量化的数值用二进制代码表示,称为编码,见图3。这个二进制代码就是ADC转换的输出信号。 量化的主要问题就是量化误差。既然模拟电压是连续的,那么它就不一定能被Q整除,因而不可避免的会引入误差,我们把这种误差称为量化误差。在把模拟信号划分为不同的量化等级时,用不同的划分方法可以得到不同的量化误差。 图2采样过程

图3编码过程 要提高ADC的精度,可以通过提高采样间隔Ts和分辨率Q来实现。实际中,输入模拟信号的频率由于存在无限次谐波,因此要在采样前加入抗混叠滤波器,该滤波器与采样频率的关系一般为:f s≈ (3…5)*f filter。图4描述了这一过程。 图4加入抗混叠滤波器 模数转换技术是现实各种模拟信号通向数字世界的桥梁,作为将模拟信号转换成数字信号的模数转换技术主要有以下几种。 分级型和流水线型ADC主要应用于高速情况下的瞬态信号处理、快速波形存储与记录、高速数据采集、视频信号量化及高速数字通讯技术等领域。逐次逼近型、积分型、压频变换型等,主要应用于中速或较低速、中等精度的数据采集和智能仪器中。∑-Δ型ADC主应用于高精度数据采集特别是数字音响系统、多媒体、地震勘探仪器、声纳等电子测量领域。此外,采用脉动型和折叠型等结构的高速ADC,可应用于广播卫星中的基带解调等方面。下面对各种类型的ADC作简要介绍。 并行比较型 并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash型。由于转换速率极高,转换需要很多个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。其原理如图5所示。

党建平台功能模块说明书.docx

开发区党建平台功能模块说明 一、系统基础框架 1、基于.NET Framework4.6 + SqlSever2014的开发框架; 2、前端采用BootStrap,Jquery,Html5等技术。 3、使用Log4Net日志记录模块; 4、实时的异常追踪功能。 二、党员档案 1、后台管理党员的人员信息,支持单条信息的添加、修改、删除等功能; 2、管理员查询所有党员的信息,并根据实际需求进行统计和导出; 3、支持对党员的奖惩信息录入和编辑; 4、后台支持党员积分的查询和明细统计功能; 5、微信端支持本支部党员的人员信息共享,并以组织架构图的形式展出; 6、微信端支持查看党员通讯录功能,支持直接拨号或发短信。扫描党员二维码,可快 速添加名片信息至手机通讯录; 7、党支部负责人有权限维护本支部人员的信息。 三、时事政治 1、后台管理员可发布党建新闻、政策法规、反腐倡廉等类型的新闻; 2、针对已发布的新闻后台支持编辑和删除功能; 3、支持新闻内图片、视频和音频的上传; 4、支持外链新闻的发布; 5、微信端支持新闻推送到用户首页; 6、微信端用户支持新闻检索; 7、党员可在微信端对新闻进行点赞、评论和收藏; 8、支持和积分模块关联,点赞和评论的用户享有积分奖励; 9、支持新闻信息置顶功能; 10、支持人员已读/未读的统计; 11、支持新闻指定人员可见。 四、入党申请 1、该功能可面向全体党员和非党员用户; 2、微信端支持非党员入党申请功能并支持附件文档的上传; 3、支持相关负责人对入党申请各个环节(阶段分为:入党积极分子,预备党员等;角色 分为党支部负责人等)状态的更新; 4、每个阶段,领导可对入党申请进行点评; 5、支持入党申请成功后的提醒功能; 6、支持和积分模块关联,成功入党的用户享有积分奖励。 五、党群活动 1、管理员后台可发布党群活动,并可对活动进行维护修改; 2、支持图片和视频的上传; 3、活动支持微信端在线报名; 4、微信端显示已报名人员,报名名额先到先得,公开透明; 5、可将活动推荐至相关人员首页,增加曝光度;

模数转换器ADC0809应用原理

AD0809应用原理--很全面的资料 1. 0809的芯片说明: ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。 (1)ADC0809的内部逻辑结构 由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/ D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8 路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。 (2).引脚结构 IN0-IN7:8条模拟量输入通道 ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

4.电路原理图 5.程序设计: (1).进行A/D转换时,采用查询EOC的标志信号来检测A/D转换是否完毕,若完毕则把数据通过P0端口读入,经过数据处理之后在数码管上显示。(2).进行A/D转换之前,要启动转换的方法: ABC=110选择第三通道 ST=0,ST=1,ST=0产生启动转换的正脉冲信号. (3). 关于0809的计算: ad0809是根据逐位逼近的方法产生数据的。。 参考电压为0-5V的话。以0809八位255的转换精度每一位的电压值为(5-0)/2 55≈0.0196V 设输入电压为X则: X-27*0.0196>=0则AD7=1否则AD7=0。 X-26*0.0196>=0则AD6=1否则AD6=0。 X-20*0.0196>=0则AD0=1否则AD0=0。 (27指2的7次方。26-------20同理) 若参考电压为0-1V (1-0)/255≈0.0039V精度自然高了。。可测量范围小了。 1)汇编源程序: CH EQU 30H

DSP芯片的单路,多路模数转换(AD)(精)

DSP芯片的单路,多路模数转换(AD) 单路,多路模数转换(AD)一.实验目的1.通过实验熟悉F2812A的定时器。2.掌握F2812A片内AD的控制方法。二.实验原理1.TMS320F2812A芯片自带模数转换模块特性-12位模数转换模块ADC,快速转换时间运行在25mhz,ADC 时钟或12.5MSPS。-16个模拟输入通道(AIN0—AIN15)。-内置双采样-保持器-采样幅度:0-3v2.模数模块介绍ADC模块有16个通道,可配置为两个独立的8通道模块以方便为事件管理器A和B服务。两个独立的8通道模块可以 单路,多路模数转换(AD) 一.实验目的 1.通过实验熟悉F2812A的定时器。 2.掌握F2812A片内AD 的控制方法。 二.实验原理 1.TMS320F2812A芯片自带模数转换模块特性 - 12 位模数转换模块ADC,快速转换时间运行在25mhz,ADC时钟或 12.5MSPS。 -16个模拟输入通道(AIN0—AIN15)。 -内置双采样-保持器 -采样幅度:0-3v 2.模数模块介绍 ADC模块有16个通道,可配置为两个独立的8通道模块以方便为事件管理器A 和B 服务。两个独立的8 通道模块可以级连组成16 通道模块。虽然有多个输入通道和两个序 列器,但在ADC内部只有一个转换器,同一时刻只有1 路ad进行转换数据。3.模数转换的程序控制 模数转换相对于计算机来说是一个较为缓慢的过程。一般采用中断方式启动转换或保 存结果,这样在CPU忙于其他工作时可以少占用处理时间。设计转换程序应首先考虑处 理过程如何与模数转换的时间相匹配,根据实际需要选择适当的触发转换的手段,也要 能及时地保存结果。 4.实验程序流程图 三.实验设备 计算机,ICETEK-F2812-EDU实验箱(或ICETEK 仿真器+ICETEK-F2812-A系统板+相关连线及电源)。 四.实验内容与步骤 1.实验准备 (1)连接实验设备:请参看本书第一部分、二。

相关文档
最新文档