Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation

Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation
Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation

Journal of Intelligent&Fuzzy Systems27(2014)2969–2985

DOI:10.3233/IFS-141256

IOS Press

2969

Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation

Huchang Liao a,Zeshui Xu b,?and Meimei Xia c

a Antai College of Economics and Management,Shanghai Jiao Tong University,Shanghai,China

b Business School,Sichuan University,Chengdu,Sichuan,China

c Institute of Information System,Beijing Jiaotong University,Beijing,China

Abstract.Interval-valued intuitionistic fuzzy preference relation(IVIFPR)is an important structure in representing fuzzy informa-tion comprehensively.This paper focuses on the multiplicative consistency of the IVIFPR.Some concepts,such as the approximate multiplicative consistent IVIFPR,the perfect multiplicative consistent IVIFPR and the acceptable multiplicative consistent IVIFPR are de?ned.Then,a desirable property of multiplicative consistent IVIFPR is investigated.Two algorithms are developed to con-struct the approximate/perfect multiplicative consistent IVIFPR.Since inconsistent IVIFPR is common but unreasonable in deriving the priorities of an IVIFPR,an iterative procedure is proposed to improve the consistency of an inconsistent IVIFPR. Furthermore,a convergent approach is developed for group decision making with IVIFPRs.Several numerical examples are given to illustrate the validity and applicability of the algorithms and procedures.

Keywords:Group decision making,interval-valued intuitionistic fuzzy preference relation,multiplicative consistency

1.Introduction

Intuitionistic fuzzy set(IFS)[1]has turned out to be powerful in handling vagueness and uncertainty in decision making.It is characterized by a membership function,a nonmembership function and a hesitancy function.Since IFS was conceived to alleviate some of the drawbacks of FS,many scholars have paid great attention to it[2–12].However,due to the complex-ity and uncertainty of modern society,people may not express the membership degree or the non-membership degree or hesitancy degree in exact number but in value ranges.To model such situation,Atanassov and Gargov [13]generalized IFS into interval-valued intuitionistic fuzzy set(IVIFS),which is more suitable for describ-ing uncertain evaluation information.Many researchers have investigated IVIFS in the setting of decision mak-ing[14–19].Atanassov[14]de?ned some different ?Corresponding author.Zeshui Xu,Business School,Sichuan University,Chengdu610064,China.E-mails:xuzeshui@https://www.360docs.net/doc/f110456803.html,; liaohuchang@https://www.360docs.net/doc/f110456803.html,(Huchang Liao).operators over IVIFSs and investigated their properties. By introducing the interval-valued intuitionistic judg-ment matrix and its score matrix and accuracy matrix, Xu and Chen[15]developed an approach to group decision making(GDM)with interval-valued intuition-istic judgment matrices.As for the incomplete IVIFPRs whose preference information of the decision makers is partly unknown,Xu and Cai[16]proposed two pro-cedures to extend acceptable incomplete IVIFPRs to complete IVIFPRs.Xu and Yager[17]proposed a sim-ilarity measure to depict the degree of agreement among group of experts with IVIFPRs.When dealing with multi-attribute decision making(MADM)problems where individual assessments are provided as IVIFSs, the weight information of attributes may be incomplete. To solve this problem,Wang et al.[18]derived a lin-ear model to determine the weights of attributes.Chen et al.[19]determined the relative importance of criteria with IVIFPR by using an optimization model,and then calculated the aggregated value for each alternative in a MADM problem.

1064-1246/14/$27.50?2014–IOS Press and the authors.All rights reserved

2970H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation

In the process of decision making,expert usually expresses his/her preferences by comparing each pair of alternatives and then constructs a preference rela-tion.Preference relation is the most common tool in representing people’s preference information.Up to now,several types of preference relations have been introduced,including multiplicative preference rela-tion[20],fuzzy preference relation[21],linguistic preference relation[22],intuitionistic fuzzy prefer-ence relation(IFPR)[4,7],interval-valued intuitionistic fuzzy preference relation(IVIFPR)[15],intuitionistic multiplicative preference relation[23],hesitant pref-erence relation[24],and so on[25].Since this paper focuses on the IFPR and IVIFPR,below we only roughly review these two kinds of preference relations. Xu[4]de?ned the concepts of IFPR and incomplete IFPR.Xu et al.[5]developed some algorithms to esti-mate the missing elements of an incomplete IFPR.Liao and Xu[6]proposed the IF-PROMETHEE method based on the IFPR.Furthermore,Xu and Liao[7]devel-oped the intuitionistic fuzzy AHP method.A novel de?nition of multiplicative consistency for IFPR was proposed by Liao and Xu[8].The IFPR was also imple-mented into GDM circumstances[9–12].The concept of IVIFPR was introduced by Xu and Chen[15].They also gave an approach to GDM with IVIFPRs.Xu and Cai[16]discussed the incomplete IVIFPRs.The inves-tigation on consistency of a preference relation is an important research topic in decision https://www.360docs.net/doc/f110456803.html,ck-ing of consistency of a preference relation may lead to unreasonable results[8,24].Moreover,in practi-cal application,perfect consistent preference relation is too hard to construct,especially when the number of alternatives is too large.

Some scholars have paid attention to the consistency of a preference relation.The consistency can be per-formed to ensure pairwise comparisons be logical rather than random.Saaty[20]?rstly derived a consistency ratio from the maximum eigenvalue of a multiplicative preference relation,and pointed out that a multiplica-tive preference relation is of acceptable consistency if its consistency ratio is less than0.1.He also presented that it is dif?cult to obtain such a preference relation, especially when it has a high order.Hence,some soft consistent methods were proposed.As to IFPR,Szmidt and Kacprzyk[9]de?ned the intuitionistic fuzzy core and the consensus winner,and aggregated the individual IFPRs into a social fuzzy preference relation by using the fuzzy majority rule equated with a fuzzy linguistic quanti?er.Liao and Xu[8]proposed the multiplicative consistency of IFPR based on the membership degree and nonmembership degree of each intuitionistic fuzzy preference directly.With regard to the IVIFPR,as far as we known,little research has been done on this topic.In order to derive a scienti?c and ef?cient decision result, it is necessary to develop some methods to improve the consistency of an IVIFPR.In this paper,we shall focus on this topic and investigate the consistency of an IVIFPR and give some algorithms to improve the consistency of an IVIFPR.Moreover,an approach for GDM with IVIFPRs will be investigated.

The rest of this paper is set out as follows:Sec. 2reviews some basic concepts and studies the prop-erty of IVIFPR.Sec.3proposes two algorithms to obtain the perfect or approximate multiplicative con-sistent IVIFPR.An iterative algorithm is also given to improve the inconsistent IVIFPR.In Sec.4,a conver-gent approach is developed for GDM with IVIFPRs. The paper ends in Sec.5.

2.Multiplicative consistency of IVIFPR

In the process of decision making,expert is usually needed to provide his/her preferences over alternatives according to pairwise comparisons and then constructs a preference relation.In addition,it is possible that he/she is not sure about the evaluation values.In such cases,it is suitable to express the preferences in interval-valued intuitionistic fuzzy values and then construct an IVIFPR.Xu and Chen[15]gave the de?nition of IVIFPR as follows:

De?nition 1.[15]Let?R=

?r(x i,x j)

n×n be a preference relation on the set X,with ?r(x i,x j)=(?μ(x i,x j),?v(x i,x j),?π(x i,x j))for all i,j=1,2,...,n.?μ(x i,x j)denotes the degree range that expert prefers alternative x i to x j,while?v(x i,x j) means the degree range that expert prefers alternative x j to x i.?π(x i,x j)is called degree range of indeter-minacy or hesitancy.For simplicity,denote?μ(x i,x j),?v(x i,x j),?π(x i,x j),?r(x i,x j)and?R(X)as?μij,?v ij,?πij,?r ij and?R,respectively,i.e.,?R=(?r ij)n×n with ?r ij=(?μij,?v ij,?πij)(i,j=1,2,...,n)and satis?es:?μij=[?μL ij,?μU ij]?[0,1],?v ij=[?v L ij,?v U ij]?[0,1],?πij=[?πL ij,?πU ij]?[0,1],?μji=?v ij,?v ji=?μij,

?πL ij=1?(?μU ij+?v U ij),?πU ij=1?(?μL ij+?v L ij),

?μii=?v ii=[0.5,0.5],μU ij+v U ij≤1,

i,j=1,2,...,n

(1)

H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation2971

whereμL ij andμU ij indicate,respectively,the lower and upper bounds of?μij,v L ij and v U ij indicate,respectively, the lower and upper bounds of?v ij.Then?R is called an

interval-valued intuitionistic fuzzy preference relation (IVIFPR).

In particular,if?μL ij=?μU ij=μij,?v L ij=?v U ij=v ij and ?πL ij=?πU ij=πij,for all i,j=1,2,...,n,then the IVIFPR?R reduces to the IFPR R=(r ij)n×n,with r ij= (μij,v ij,πij).Ifμij+v ij=1,for all i,j=1,2,...,n, the IFPR R reduces to a fuzzy preference relation. De?nition2.[16]Let?R=(?r ij)n×n be an IVIFPR, where?r ij=(?μij,?v ij,?πij)(i,j=1,2,...,n),then?R is called an incomplete IVIFPR,if some of its elements are unknown,and the others can be determined by the expert,which satisfy(1).Let? be the set of all known elements in?R.

Considering the relations among all the three compo-nents:?πL ij=1?(?μU ij+?v U ij)and?πU ij=1?(?μL ij+?v L ij), we here and also thereafter denote?r ij by its two former components(?μij,?v ij)for brevity.

As presented in the Introduction,the consistency of an IVIFPR is very important in deriving a reasonable result for a decision making problem.Two questions are raised regarding to the consistency of an IVIFPR, which are:(1)how to judge whether the IVIFPR is con-sistent or not;(2)how to adjust or repair the inconsistent IVIFPR until it is of acceptable consistency.

As to the?rst problem,the concept of consistency has been traditionally de?ned in terms of different transitivity conditions,such as weak transitivity, max-max transitivity,max-min transitivity,restricted max-min transitivity,restricted max-max transitivity, additive transitivity,and multiplicative transitivity[8, 26].Among these transitivity properties,the weak tran-sitivity is the minimum requirement condition to?nd out whether a preference relation is consistent or not. The max-max transitivity is better than the max-min transitivity;however,the max-max transitivity can’t be veri?ed under reciprocity.Neither the restricted max-min transitivity nor the restricted max-max transitivity implies reciprocity.Both the additive transitivity and the multiplicative transitivity imply reciprocity[7,8]. Nonetheless,the additive transitivity is in con?ict with the[0,1]scale used for providing the preference values [23].Therefore,in this paper,we investigate the con-sistency of an IVIFPR from the point of multiplicative transitivity.

To simplify the presentation,let us start our discussion from the study of fuzzy preference relation,a type of easy but widely used preference structure in decision making[21].The fuzzy preference rela-tion can be denoted as C=(c ij)n×n,where c ij∈[0,1], c ij+c ji=1,c ii=0.5,for i,j=1,2,...,n.The mul-

tiplicative transitivity[26]is an important property of C=(c ij)n×n,shown as:

c ij c jk c ki=c ik c kj c ji(2)

where c ij denotes a ratio of preference intensity for the alternative x i to that for x j,in another words,x i is c ij times as good as x j,and c ij∈[0,1],for all i,j=1,2,...,n.

In case where(c ik,c kj)/∈{(0,1),(1,0)},Equation (2)is equivalent to the following[27]:

c ij=

c ik c kj

c ik c kj+(1?c ik)(1?c kj)

(3)

and if(c ik,c kj)∈{(0,1),(1,0)},then we stipulate c ij=0.

Motivated by the above idea,the concept of multi-plicative transitivity for IVIFPR is introduced:

De?nition 3.Let?R=(?r ij)n×n be an IVIFPR, where?r ij=(?μij,?v ij),?μij=[μL ij,μU ij]?[0,1],?v ij= [v L ij,v U ij]?[0,1],and?μii=?v ii=[0.5,0.5],for i,j=1,2,...,n.Then?R is called of multiplicative transitivity,if

μL ij=

?

???

???

0,(μL ik,μL kj)∈{(0,1),(1,0)}

μL ikμL kj

μL ikμL kj+(1?μL ik)(1?μL kj)

,otherwise, for all i

?

???

???

0,(μU ik,μU kj)∈{(0,1),(1,0)}

μU ikμU kj

μU ikμU kj+(1?μU ik)(1?μU kj)

,otherwise

, for all i

?

???

???

0,(v L ik,v L kj)∈{(0,1),(1,0)}

v L ik v L kj

v L ik v L kj+(1?v L ik)(1?v L kj)

,otherwise

, for all i

2972H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation

v U ij=?

???

???

0,(v U ik,v U kj)∈{(0,1),(1,0)}

v U ik v U kj

v U ik v U kj U ik)(1?v U kj)

,otherwise

,

for all i

De?nition4.If?R has the property of multiplicative transitivity,we say?R is a perfect multiplicative consis-tent IVIFPR.

Theorem1.For an IVIFPR?R,Equations(4)–(7)are equivalent to the following:

?μL ij=

j?i?1

j?1

k=i+1

?μL ik?μL kj

j?i?1

j?1

k=i+1

?μL ik?μL kj+j?i?1

j?1

k=i+1

(1??μL ik)(1??μL kj)

,i

?μU ij=

j?i?1

j?1

k=i+1

?μU ik?μU kj

j?i?1

j?1

k=i+1

?μU ik?μU kj+j?i?1

j?1

k=i+1

(1??μU ik)(1??μU kj)

,i

?v L ij=

j?i?1

j?1

k=i+1

?v L ik?v L kj

j?i?1

j?1

k=i+1

?v L ik?v L kj+j?i?1

j?1

k=i+1

(1??v L ik)(1??v L kj)

,i

?v U ij=

j?i?1

j?1

k=i+1

?v U ik?v U kj

j?i?1

j?1

k=i+1

?v U ik?v U kj+j?i?1

j?1

k=i+1

(1??v U ik)(1??v U kj)

,i

Proof.For(?μL ik,?μL kj)∈{(0,1),(1,0)},i

evidence that Equation(8)is equivalent to Equation

(4).Thus,we only prove the case that(?μL ik,?μL kj)/∈

{(0,1),(1,0)},i

holds for all i

?μL ij=

?μL ik?μL kj

?μL ik?μL kj+(1??μL ik)(1??μL kj)

?(1??μL ij)?μL ik?μL kj=?μL ij(1??μL ik)(1??μL kj),

?(1??μL ij)j?i?1

j?1

k=i+1

(?μL ik?μL kj)=(?μL ij)j?i?1

j?1

k=i+1

(1??μL ik)(1??μL kj)

?(1??μL ij)j?i?1

j?1

k=i+1

(?μL ik?μL kj)=?μL ij j?i?1

j?1

k=i+1

(1??μL ik)(1??μL kj)

??μL ij=

j?i?1

j?1

k=i+1

?μL ik?μL kj

j?i?1

j?1

k=i+1

?μL ik?μL kj+j?i?1

j?1

k=i+1

(1??μL ik)(1??μL kj)

(12)

H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation2973 Conversely,let

?μL ij=

j?i?1

j?1

k=i+1

?μL ik?μL kj

j?i?1

j?1

k=i+1

?μL ik?μL kj+j?i?1

j?1

k=i+1

(1??μL ik)(1??μL kj)

,i

Firstly,we prove the following equation:

?μL ij=

j?i?1

l=0

?μL(i+l)(i+l+1)

j?i?1

l=0

?μL(i+l)(i+l+1)+

j?i?1

l=0

(1??μL(i+l)(i+l+1))

,i

Let p=j?i,then Equation(13)turns to

?μL i(i+p)=

p?1

l=0

?μL(i+l)(i+l+1)

p?1

l=0

?μL(i+l)(i+l+1)+

p?1

l=0

(1??μL(i+l)(i+l+1))

,i

Now we prove Equation(14)by using mathematical induction on n.

1)When p=2,obviously,Equation(14)holds.

2)Suppose that it is true for p=n(n>2),i.e.,

?μL i(i+n)=

n?1

l=0

?μL(i+l)(i+l+1)

n?1

l=0

?μL(i+l)(i+l+1)+

n?1

l=0

(1??μL(i+l)(i+l+1))

(15)

In what follows,we prove it is true for p=n+1, here j=i+n+1.

From Equation(15),and when k=i+1,i+ 2,...,i+n,we can easily get

?μL ik=

k?i?1

l=0

?μL(i+l)(i+l+1)

k?i?1

l=0

?μL(i+l)(i+l+1)+

k?i?1

l=0

(1??μL(i+l)(i+l+1))

,k=i+1,i+2,...,i+n

and

?μL k(i+n+1)=

i+n?k

l=0

?μL(k+l)(i+l+1)

i+n?k

l=0

?μL(k+l)(i+l+1)+

i+n?k

l=0

(1??μL(k+l)(i+l+1))

,k=i+1,i+2,...,i+n

Let

?E ik=k?i?1

l=0

?μL(i+l)(i+l+1)+

k?i?1

l=0

(1??μL(i+l)(i+l+1)),k=i+1,i+2,...,i+n

and

?F k(i+n+1)=

i+n?k

l=0

?μL(k+l)(i+l+1)

+

i+n?k

l=0

(1??μL(k+l)(i+l+1)),

k=i+1,i+2,...,i+n

2974H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation Then we can obtain

?μL i(i+n+1)=

n

i+n

k=i+1

?μL ik?μL k(i+n+1)

n

i+n

k=i+1

?μL ik?μL k(i+n+1)+n

i+n

k=i+1

(1??μL ik)(1??μL k(i+n+1))

=

n

i+n

k=i+1

?

??

?

k?i?1

l=0

?μL

(i+l)(i+l+1)

?E ik

i+n?k

l=0

?μL

(k+l)(i+l+1)

?F k(i+n+1)

?

??

?

n

i+n

k=i+1

?

??

?

k?i?1

l=0

?μL

(i+l)(i+l+1)

?E ik

i+n?k

l=0

?μL

(k+l)(i+l+1)

?F k(i+n+1)

?

??

?+n

i+n

k=i+1

?

??

?1?

k?i?1

l=0

?μL

(i+l)(i+l+1)

?E ik

?

??

?

?

??

?1?

i+n?k

l=0

?μL

(k+l)(i+l+1)

?F k(i+n+1)

?

??

?

Since

???

??1?k?i?1

l=0

?μL(i+l)(i+l+1)

?E ik

?

??

??

?

??

??1?

i+n?k

l=0

?μL(k+l)(i+l+1)

?F k(i+n+1)

?

??

??=

k?i?1

l=0

(1??μL(i+l)(i+l+1))

?E ik

i+n?k

l=0

(1??μL(k+l)(i+l+1))

?F k(i+n+1)

=

n

l=0

(1??μL(i+l)(i+l+1))

?E ik?F k(i+n+1),k=i+1,i+2,...,i+n

and

k?i?1 l=0?μL(i+l)(i+l+1)

?E ik

i+n?k

l=0

?μL(k+l)(i+l+1)

?F k(i+n+1)

=

n

l=0

?μL(i+l)(i+l+1)

?E ik?F k(i+n+1),t=i+1,i+2,...,i+n

we have

?μL i(i+n+1)=

n

i+n

k=i+1

n

l=0

?μL(i+l)(i+l+1)

n

i+n

k=i+1

n

l=0

?μL(i+l)(i+l+1)

+n

i+n

k=i+1

n

l=0

(1??μL(i+l)(i+l+1))

=

n

l=0

?μL(i+l)(i+l+1)

n

l=0

?μL(i+l)(i+l+1)+

n

l=0

(1??μL(i+l)(i+l+1))

Thus,it is true for p=n+1.Let ?μL ik=

k?i?1

l=0

?μL(i+l)(i+l+1)

k?i?1

?μL(i+l)(i+l+1)+

k?i?1

(1??μL(i+l)(i+l+1))

,i

H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation2975

?μL kj=

j?k?1

l=0

?μL(k+l)(k+l+1)

j?k?1

l=0

?μL(k+l)(k+l+1)+

j?k?1

l=0

(1??μL(k+l)(k+l+1))

,k

and suppose

?M ik=k?i?1

l=0

?μL(i+l)(i+l+1)+

k?i?1

l=0

(1??μL(i+l)(i+l+1)),i

?N kj=j?k?1

l=0

?μL(k+l)(k+l+1)+

j?k?1

l=0

(1??μL(k+l)(k+l+1)),k

Then we have

?μL ik?μL kj

?μL ik?μL kj+(1??μL ik)(1??μL kj)

=

k?i?1

l=0

?μL

(i+l)(i+l+1)

?M ik

j?k?1

l=0

?μL

(k+l)(k+l+1)

?N kj

k?i?1

l=0

?μL

(i+l)(i+l+1)

?M ik

j?k?1

l=0

?μL

(k+l)(k+l+1)

?N kj

+

?

??

?1?

k?i?1

l=0

?μL

(i+l)(i+l+1)

?M ik

?

??

?

?

??

?1?

j?k?1

l=0

?μL

(k+l)(k+l+1)

?N kj

?

??

?

=

j?i?1

l=0

?μL(i+l)(i+l+1)

j?i?1

l=0

?μL(i+l)(i+l+1)+

j?i?1

l=0

(1??μL(i+l)(i+l+1))

=?μL ij,i

Combining Equation(12)and(16),it follows that Equation(4)and(8)are equivalent.Similarly,we can prove the other part of Theorem1. Theorem1shows an important property of the per-fect multiplicative consistent IVIFPR.We can use this property to check whether an IVIFPR is perfect multiplicative consistent or not.However,the perfect multiplicative consistent IVIFPR is sometimes too ideal for an expert to construct in practice.In the follow-ing,we would introduce the concepts of approximate multiplicative consistent IVIFPR and acceptable mul-tiplicative consistent IVIFPR to model general cases. For the inconsistent IVIFPR,some algorithms should be proposed to adjust or repair it.3.Multiplicative consistency repairing

procedure for inconsistent IVIFPR

3.1.Construct an approximate multiplicative

consistent IVIFPR with n?1known

judgments

When constructing an IVIFPR,expert may be unwill-ing or unable to provide his/her preferences over some of the alternatives due to time pressure,lacking of knowledge,individual emotion or limited expertise related to problem.In such a case,an incomplete IVIFPR is furnished.How to estimate the missing values of an incomplete IVIFPR turns out to be an

2976H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation important issue.For an incomplete IVIFPR,Xu and

Cai[16]proved that in order to estimate all the missing

values,there should exist at least one known element

(except diagonal elements)in each line or each col-

umn of the incomplete IVIFPR?R,i.e.,there exists at

least n?1judgments provided by the expert.In other

words,each one of the alternatives is compared at least

one time.The unknown element?μij in an incomplete

IVIFPR?R can be obtained indirectly according to the

known element?μik and?μkj in? .Inspired by the proof

of Theorem1,an algorithm is proposed to construct the

approximate multiplicative consistent IVIFPR with the

least judgments(i.e.,n?1judgments):

Algorithm1.

Step1.For j>i+1,letˉ?r ij=(ˉ?μij,ˉ?v ij),where

ˉ?μL ij =

j?i?1

k=0

?μL(i+k)(i+k+1)

j?i?1

k=0

?μL(i+k)(i+k+1)+

j?i?1

k=0

(1??μL(i+k)(i+k+1))

,j>i+1(17)

ˉ?μU ij =

j?i?1

k=0

?μU(i+k)(i+k+1)

j?i?1

k=0

?μU(i+k)(i+k+1)+

j?i?1

k=0

(1??μU(i+k)(i+k+1))

,j>i+1(18)

ˉ?v L ij =

j?i?1

k=0

?v L(i+k)(i+k+1)

j?i?1

k=0

?v L(i+k)(i+k+1)+

j?i?1

k=0

(1??v L(i+k)(i+k+1))

,j>i+1(19)

ˉ?v U ij =

j?i?1

k=0

?v U(i+k)(i+k+1)

j?i?1

k=0

?v U(i+k)(i+k+1)+

j?i?1

k=0

(1??v U(i+k)(i+k+1))

,j>i+1(20)

Step2.For j=i+1,letˉ?r ij=?r ij.

Step3.For j

De?nition5.The IVIFPR?R obtained from Algorithm 1is called an approximate multiplicative consistent IVIFPR.

Now,we give a simple numerical example to illus-trate how to build the approximate multiplicative consistent IVIFPR.

Example1.Assume that the expert compares only two pairs of alternatives corresponding to a decision making problem with three alternatives x i(i=1,2,3), and determines the preference information over(x1,x2) and(x2,x3)as?r12=([0.3,0.4],[0.2,0.3])and?r23=

([0.4,0.5],[0.1,0.4]).

Firstly,by Equation(1),we can easily construct an 3×3incomplete IVIFPR with the least judgments as follows:

ˉ?R=?

??

([0.5,0.5],[0.5,0.5])([0.3,0.4],[0.2,0.3])x

([0.2,0.3],[0.3,0.4])([0.5,0.5],[0.5,0.5])([0.4,0.5],[0.1,0.4])

x([0.1,0.4],[0.4,0.5])([0.5,0.5],[0.5,0.5])

?

??

Using Algorithm1,we have

ˉ?μL

13

=?μ

L

12

·?μL23

?μL12·?μL23+(1??μL12)·(1??μL23)

=0.222

Similarly,we can get

ˉ?μU

13

=0.400,ˉ?v L13=0.027,ˉ?v U13=0.222.

H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation 2977

Thus,ˉ?

r 13=([0.222,0.400],[0.027,0.222]),and furthermore,ˉ?

r 31=([0.027,0.222],[0.222,0.400]).Therefore,we obtain an approximate multiplicative

consistent IVIFPR:

ˉ?R

=???([0.500,0.500],[0.500,0.500])([0.300,0.400],[0.200,0.300])([0.222,0.400],[0.027,0.222])

([0.200,0.300],[0.300,0.400])([0.500,0.500],[0.500,0.500])([0.400,0.500],[0.100,0.400])([0.027,0.222],[0.222,0.400])

([0.100,0.400],[0.400,0.500])

([0.500,0.500],[0.500,0.500])

???3.2.Construct a perfect multiplicative consistent

IVIFPR with more known judgments Algorithm 1constructs an approximate multiplicat-ive consistent IVIFPR,but it only considers a special case where there are only n ?1known judgments in the off-diagonal of an incomplete IVIFPR.In the following,we further give an algorithm to obtain a per-fect multiplicative consistent IVIFPR with more known judgments.Algorithm 2.

Step 1.For j >i +1,let ˉ?r ij =(ˉ?μij ,ˉ?

v ij ),where ˉ?μL ij =

j ?i ?1

j ?1

k =i +1

?μL ik ?μL kj

j ?i ?1

j ?1 k =i +1

?μL ik ?μL kj +

j ?i ?1

j ?1

k =i +1(1??μL ik )(1??μL kj )

,j >i +1

(21)

ˉ?μU ij =

j ?i ?1

j ?1 k =i +1

?μU ik ?μU kj

j ?i ?1

j ?1 k =i +1

?μU ik ?μU kj +

j ?i ?1

j ?1

k =i +1(1??μU ik )(1??μU kj )

,

j >i +1(22)

ˉ?v L ij =

j ?i ?1

j ?1

k =i +1

?v L ik ?v L kj

j ?i ?1

j ?1 k =i +1

?v L ik ?v L kj +

j ?i ?1

j ?1

k =i +1(1??v L ik )(1??v L kj )

,

j >i +1(23)

ˉ?v U ij =

j ?i ?1

j ?1

k =i +1

?v U ik ?v U kj

j ?i ?1

j ?1 k =i +1

?v U ik ?v U kj +

j ?i ?1

j ?1

k =i +1

(1??v U ik )(1??v U kj )

,

j >i +1(24)

Step 2.For j =i +1,let ˉ?r ij =?r ij .

Step 3.For j

Comparing Algorithm 1with Algorithm 2,we can easily ?nd that the former may get a multiplicative con-sistent IVIFPR more quickly as it only considers part of the preference information,but the latter can get much more objective information.

3.3.Iterative algorithm for repairing inconsistent

IVIFPR The approximate multiplicative consistent IVIFPR can be determined via Algorithm 1and Algorithm 2.However,in general,a multiplicative consistent IVIFPR is too ideal to achieve.As to the inconsistent IVIFPR,we need to ?nd some methods to repair it.

De?nition 6.Let ?R

be an IVIFPR on a ?xed set X ={x 1,x 2,...,x n },then ?R

is an acceptable multiplicative consistent IVIFPR,if

d 1(?R ,ˉ?R

)<τ(25)

2978H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation

where d (?R ,ˉ?R

)is the distance measure between the given IVIFPR ?R

and its corresponding perfect or approximate multiplicative consistent IVIFPR ˉ?

R which can be calculated by Algorithm 1or Algorithm 2,and τis the consistency threshold which is determined by the expert.

Very often,the IVIFPR ?R

constructed by expert is of unacceptable multiplicative consistency.Below we pro-pose an iterative algorithm to improve the consistency of an inconsistent IVIFPR.Algorithm 3

Step 1.Suppose p is the number of iterations,N is the maximum number of iteration,and τis the consistency threshold.Let σ=1 N be the iteration step.Let p =1,and construct the perfect (or approximate)multiplica-tive consistent IVIFPR ˉ?

R from ?R (p )by Algorithm 1(or Algorithm 2).

Step 2.Calculate the distance d 1(ˉ?R ,?R (p ))between ˉ?

R and ?R

(p ),where d 1(ˉ?R ,?R (p ))=14(n ?1)(n ?2)

n ?1 i =1n j =i +1

ˉ?μ

L ij ??μL (p )ij + ˉ?μU ij ??μU (p )ij + ˉ?v L ij ??v L (p )ij + ˉ?v U ij ??v U (p )ij + ˉ?πL ij +?ˉ?πL (p )ij ˉ?πU ij ?ˉ?πU (p )ij

(26)If d 1(ˉ?

R ,?R (p ))<τ,then output ?R (p );Otherwise,go to the next step.

Step 3.Construct the fused IVIFPR ??R (p )=(??r (p )ij )n ×n

by using

??μL (p )ij

=(?μL (p )ij

)1?pσ(ˉ?μL ij )

(?μL (p )ij )1?σ(ˉ?μL ij )pσ+(1??μL (p )ij )1?pσ(1?ˉ?μL ij

)pσ,i,j =1,2,...,n (27)

??μU (p )ij

=

(?μU (p )ij

)1?pσ(ˉ?μU ij )

(?μU (p )ij )1?pσ(ˉ?μU ij )pσ+(1??μU (p )ij )1?pσ(1?ˉ?μU ij )

pσ,i,j =1,2,...,n (28)

??

νL (p )ij =

(?νL (p )ij

)1?pσ(ˉ?νL ij )

(?νL (p )ij )1?pσ(ˉ?νL ij )pσ+(1??νL (p )ij )1?pσ(1?ˉ?

νL ij )pσ,i,j =1,2,...,n (29)

??

νU (p )ij =

(?νU (p )ij

)1?pσ(ˉ?νU ij )

(?νU (p )ij )1?pσ(ˉ?νU ij )pσ+(1??νU (p )ij )1?pσ(1?ˉ?νU ij )

pσ,i,j =1,2,...,n (30)

Let ?R

p +1=??R p and p =p +1,then go to Step 2.Step 4.End.

With Algorithm 3,an improved multiplicative con-sistent IVIFPR ?R

(p )is obtained.Theorem 2.Algorithm 3is convergent.

Proof.We actually repair the inconsistent IVIFPR ?R

(p )through ??R (p ?1)and the deviation between ˉ?

R and ??R (p ?1).As N is the given maximum iteration number,then after p =N iterations of calculation,we can obtain pδ=1

thus ?R (p )=ˉ?

R with the consistency level τ.That is to say,Algorithm 3is convergent. The following example can illustrate Algorithm 2and Algorithm 3.There is one thing on which we have to emphasize:the hesitancy degree is very important in calculating the deviation between two IVIFPRs [28]and we shall not ignore it.

Example 2.Assume that the expert gives an IVIFPR as follows:?R

(1)=?

?

????

([0.5,0.5],[0.5,0.5])

([0.3,0.4],[0.2,0.5])([0.6,0.7],[0.1,0.2])([0.4,0.6],[0.3,0.4])

([0.2,0.5],[0.3,0.4])([0.5,0.5],[0.5,0.5])([0.3,0.6],[0.2,0.4])([0.1,0.3],[0.5,0.7])([0.1,0.2],[0.6,0.7])([0.2,0.4],[0.3,0.6])([0.5,0.5],[0.5,0.5])([0.4,0.4],[0.2,0.3])([0.3,0.4],[0.4,0.6])([0.5,0.7],[0.1,0.3])

([0.2,0.3],[0.4,0.4])

([0.5,0.5],[0.5,0.5])

?

?

?

?

??From Equations (4)–(8),we know that ?R

is not multiplicative consistent.Then Algorithm 3can be

used to improve the consistency of ?R

.Let τ=0.1and σ=0.8.First of all,via Algorithm 2,the perfect mul-tiplicative consistent IVIFPR is constructed.

H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation 2979

ˉ?R =????([0.500,0.500],[0.500,0.500])([0.300,0.400],[0.200,0.500])([0.155,0.500],[0.063,0.400])([0.179,0.400],[0.077,0.333])([0.200,0.500],[0.300,0.400])([0.500,0.500],[0.500,0.500])([0.300,0.600],[0.200,0.400])([0.222,0.500],[0.063,0.222])([0.063,0.400],[0.155,0.500])([0.200,0.400],[0.300,0.600])([0.500,0.500],[0.500,0.500])([0.400,0.400],[0.200,0.300])([0.077,0.333],[0.179,0.400])([0.063,0.222],[0.222,0.500])([0.200,0.300],[0.400,0.400]])([0.500,0.500],[0.500,0.500])

??

??.

Let p =1.According to Equation (26),the deviation

is calculated:d 1(ˉ?

R ,?R (1))=0.3675>0.1.According to Algorithm 3,it is needed to construct the fused

IVIFPR ??

R (1).By Equations (44)–(48),we have ??R (1)=????([0.500,0.500],[0.500,0.500])([0.300,0.400],[0.200,0.500])([0.218,0.542],[0.069,0.354])([0.214,0.439],[0.104,0.346])([0.200,0.500],[0.300,0.400])([0.500,0.500],[0.500,0.500])([0.300,0.600],[0.200,0.400])([0.191,0.458],[0.103,0.303])([0.069,0.354],[0.218,0.542])([0.200,0.400],[0.300,0.600])([0.500,0.500],[0.500,0.500])([0.400,0.400],[0.200,0.300])([0.104,0.346],[0.214,0.439])([0.103,0.303],[0.191,0.458])([0.200,0.300],[0.400,0.400])([0.500,0.500],[0.500,0.500])

??

??

Let ?R

(2)=??R (1),then from Equation (26),it fol-lows d 1(ˉ?

R ,?R (2))=0.0585<0.1,which implies ?R 2is of acceptable consistency.

4.An approach for group decision making with IVIFPRs

A GDM problem with IVIFPRs can be

described as follows:Suppose that m experts

e l (l =1,2,...,m )provide their individual IVIFPRs ?R l =(?r ijl )n ×n (l =1,2,...,m )over alternatives

x 1,x 2,...,x n ,where ?r ijl =(?μijl ,?v ijl ),?μijl =

[?μL ijl ,?μ

U ijl ]?[0,1],?v ijl =[?v L ijl ,?v U ijl ]?[0,1],?πijl =[?πL ijl ,?πU ijl ]?[0,1],?μjil =?v ijl ,?v jil =?μijl ,

?πL ijl =1?(?μU ijl +?v U ijl ),?πU ijl =1?(?μL ijl +?v L ijl ),?μiil =?v iil =[0.5,0.5],μU ijl +v U

ijl ≤1,

for all i,j =1,2,...,n ,and ω=(ω1,ω2,...,ωm )T is the weighting vector of the experts e l (l =1,2,...,m )with m l =1ωl =1and 0≤ωl ≤1,l =1,2,...,m .

The aim of GDM is to select the most disable solution

from a set of candidate alternatives.In the process of group decision making,we need to check whether the individual preference relations provided by the experts are consistent or not,and then to repair the inconsistent

ones until they are acceptable.After that,all the individ-ual IVIFPRs can be aggregated into an overall IVIFPR so as to select the most desirable alternative(s).Moti-vated by Xia and Xu [3],we propose a symmetric interval-valued intuitionistic fuzzy weighted averaging (SIVIFW A)operator to fuse the individual IVIFPRs ?R l =(?r ijl )n ×n (l =1,2,...,m )into a collected one.

De?nition 7.For a given collection of IVIFSs ?r =(?r 1,?r 2,...,?r n ),w =(w 1,w 2,...,w n )T being the weighting vector of ?r i (i =1,2,...,n ),where n i =1w i =1and 0≤w i ≤1,if SIVIFWA:I n

→I ,and SIVIFWA w (?r 1,?r 2,...?r n )= n i =1(?μL ?r i )w i n i =1(?μL ?r i )w i + n i =1(1??μL ?r i )w i , n i =1

(?μU ?r i

)w i n i =1(?μU ?r i )w i + n i =1

(1??μU ?r i )w i , n i =1(?v L ?r i )w i

n i =1(?v L ?r i )w i + n i =1(1??v L ?r i )w i , n i =1(?v U ?r

i )w i n i =1(?v U ?r i )w i + n i =1(1??v U ?r i )w i

i =1,2,...,n (31)then we call the function SIVIFW A a sym-metric interval-valued intuitionistic fuzzy weighted

averaging (SIVIFW A)operator.Especially,if w =(1 n,1 n,...,1 n )T ,then the SIVIFWA operator reduces to a symmetric interval-valued intuitionistic fuzzy averaging (SIVIFA)operator.

Theorem 3.Let ?R l =(?r ijl )n ×n (l =1,2,...,m )be m

individual IVIFPRs,then their fusion ?R =(?r ij )n ×n is

also an IVIFPR,where ?r ij =

m

l =1(?μL ijl )

ωl

m l =1(?μL ijl )ωl + m

l =1(1??μL ijl

)ωl , m

l =1(?μU ijl )

ωl

m l =1(?μU ijl )ωl + m l =1(1??μU ijl )

ωl ,

m

l =1(?v L ijl )ωl

m l =1(?v L ijl )ωl + m l =1(1??v L ijl )ωl , m l =1(?v U ijl

)ωl m l =1(?v U ijl )ωl + m l =1(1??v U ijl )

ωl i,j =1,2,...,n

(32)

2980H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation Proof.We can easily obtain that

0≤?v U ij=

m

l=1

(?v U ijl)ωl

m

l=1

(?v U ijl)ωl+

m

l=1

(1??v U ijl)ωl

≤1

1+

m

l=1

(1

?v U ijl?1)ωl

,

≤1

1+

m

l=1

(1

(1??μU ijl)?1)ωl

m

l=1

(1??μU ijl)ωl

m

l=1

(1??μU ijl)ωl

m

l=1

(?μU ijl)ωl

≤1,i,j=1,2,...,n

Then

?μU ij+?v U ji=

m

l=1

(?μU ijl)ωl

m

l=1

(?μU ijl)ωl+

m

l=1

(1??μU ijl)ωl

+

m

l=1

(?v U jil)ωl

m

l=1

(?v U jil)ωl+

m

l=1

(1??v U jil)ωl

m

l=1

(?μU ijl)ωl

m

l=1

(?μU ijl)ωl+

m

l=1

(1??μU ijl)ωl

+

m

l=1

(1??μU jil)ωl

m

l=1

(1??μU jil)ωl

m

l=1

(?μU ijl)ωl

=1,

i,j=1,2,...,n

Hence,Theorem3holds. Based on Theorem3and Equations(4)–(7),the fol-lowing interesting result is obtained:

Theorem4.If all individual IVIFPRs?R l=(?r ijl)n×n (l=1,2,...,m)are multiplicative consistent,then their fused IVIFPR?R=(?r ij)n×n is also multiplicative consistent.

Proof.Let?R l=(?r ijl)n×n(l=1,2,...,m)be multi-plicative consistent,and

?U L

ikjl

=?μL ikl?μL kjl+(1??μL ikl)(1??μL kjl),i

?V L

ik

=

m

l=1

(?μL ikl)ωl+

m

l=1

(1??μL ikl)ωl,i

?W L

kj

=

m

l=1

(?μL kjl)ωl+

m

l=1

(1??μL kjl)ωl,k

?μL ij=

m

l=1

(?μL ijl)ωl

m

l=1

(?μL ijl)ωl+

m

l=1

(1??μL ijl)ωl

=

m

l=1

((?μL ikl?μL kjl)

?U L

ikjl

)ωl

m

l=1

((?μL ikl?μL kjl)

?U L

ikjl

)ωl+

m

l=1

(1?(?μL ikl?μL kjl)

?U L

ikjl

)ωl

=

m

l=1

(?μL ikl?μL kjl)ωl

m

l=1

(?μL ikl?μL kjl)ωl+

m

l=1

((1??μL ikl)(1??μL kjl))ωl

,i

On the other hand,

?μL ij=

?μL ik?μL kj

?μL ik?μL kj+(1??μL ik)(1??μL kj)

=

(

m

l=1

(?μL ikl)ωl

m

l=1

(?μL kjl)ωl)

(?V L ik?W L kj)

(

m

l=1

(?μL ikl)ωl

m

l=1

(?μL kjl)ωl)

(?V L ik?W L kj)+(1?

m

l=1

(?μL ikl)ωl

?V L

ik

)(1?

m

l=1

(?μL kjl)ωl

?W L

kj

)

=

m

l=1

(?μL ikl)ωl

m

l=1

(?μL kjl)ωl

m

l=1

(?μL ikl)ωl

m

l=1

(?μL kjl)ωl+

m

l=1

(1??μL ikl)ωl

m

l=1

(1??μL kjl)ωl

=

m

l=1

(?μL ikl?μL kjl)ωl

m

(?μL?μL)l

m

((1??μL)(1??μL))l

,i

Hence,

?μL ij=

?μL ik?μL kj

?μL ik?μL kj+(1??μL ik)(1??μL kj)

,

i

H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation2981 In a similar way,we can get

?μU ij=

?μU ik?μU kj

?μU ik?μU kj+(1??μU ik)(1??μU kj)

,i

?νL ij=

?v L ik?v L kj

?v L ik?v L kj+(1??v L ik)(1??v L kj)

,i

?νU ij=

?v U ik?v U kj

?v U ik?v U kj U ik)(1??v U kj)

,i

which denotes that?R is a multiplicative consistent IVIFPR.Therefore,Theorem4holds.

It should be noted that there are many differ-ent aggregation operators for IVIFSs existing in the literatures.However,as shown by the proof processes of

Theorem4,only the SIVIFW A operator proposed in this paper can guarantee that the fused IVIFPR?R is multiplicative consistent on condition that all individual IVIFPRs?R l(l=1,2,...,m)are multiplicative con-sistent.

Based on the above analysis,we propose an approach for group decision making with IVIFPRs.Algorithm4.

Step1.Let?R(p)l=?R l and p=1.Construct the perfect (or approximate)multiplicative consistent IVIFPRs ˉ?R(p)

l

=(ˉ?r(p)ijl)n×n(l=1,2,...,m)from?R(p)l= (?r(p)ijl)n×n(l=1,2,...,m)by Algorithm1(or Algorithm2).

Step 2.Aggregate all the individual multiplicative consistent IVIFPRˉ?R(p)l=(ˉ?r(p)ijl)n×n into a collective multiplicative consistent IVIFPRˉ?R(p)=(ˉ?r(p)ij)n×n by the SIVIFW A operator,where

ˉ?r(p) ij =

?

?

?

?

m

l=1

(?μL(p)

ijl

)ωl

m

l=1

(?μL(p)

ijl

)

ωl+ m

l=1

(1??μL(p)

ijl

)

ωl,

m

l=1

(?μU(p)

ijl

)

ωl

m

l=1

(?μU(p)

ijl

)

ωl+ m

l=1

(1??μU(p)

ijl

)

ωl

?

?,

m

l=1

(?v L(p)

ijl

)ωl

m

l=1

(?v L(p)

ijl

)ωl+

m

l=1

(1??v L(p)

ijl

)ωl

,

m

l=1

(?v U(p)

ijl

)ωl

m

l=1

(?v U(p)

ijl

)ωl+

m

l=1

(1??v U(p)

ijl

)ωl

i,j=1,2,...,n(33)

Step3.Calculate the deviation between each individual

multiplicative consistent IVIFPRˉ?R(p)l and the collective

multiplicative consistent IVIFPRˉ?R(p),i.e., d2(ˉ?R(p)l,ˉ?R(p))=

1

4(n?1)(n?2)

n?1

i=1

n

j=i+1

ˉ?μL(p)

ijl

?ˉ?μL(p)

ij

+

ˉ?μU(p)

ijl

?ˉ?μU(p)

ij

+

ˉ?v L(p)

ijl

?ˉ?v L(p)

ij

+

ˉ?v U(p)

ijl

?ˉ?v U(p)

ij

+

ˉ?πL(p)

ijl

?ˉ?πL(p)

ij

+

ˉ?πU(p)

ijl

?ˉ?πU(p)

ij

(34)

If d2(ˉ?R(p)l,ˉ?R(p))≤τ?,for all l=1,2,...,m,where

τ?is the consistency threshold,then go to Step5;Oth-

erwise,go to the next step.

Step 4.Letˉ?R(p+1)

l

=(ˉ?r(p+1)

ijl

)n×n,whereˉ?r(p+1)

ijl

=

(ˉ?μ(p+1)

ijl

,ˉ?v(p+1)

ijl

),and

ˉ?μL(p+1) ijl =

(ˉ?μL(p)

ijl

)1?pη(ˉ?μL(p)

ij

)pη

(ˉ?μL(p)

ijl

)

1?pη

(ˉ?μL(p)

ij

)

pη+(1?ˉ?μL(p)

ijl

)

1?pη

(1?ˉ?μL(p)

ij

)

,i,j=1,2,...,n,l=1,2,...,m(35)

ˉ?μL(p+1) ijl =

(ˉ?μL(p)

ijl

)1?pη(ˉ?μL(p)

ij

)pη

(ˉ?μL(p)

ijl

)1?pη(ˉ?μL(p)

ij

)pη+(1?ˉ?μL(p)

ijl

)1?pη(1?ˉ?μL(p)

ij

)pη

,i,j=1,2,...,n,l=1,2,...,m(36)

ˉ?v L(p+1) ijl =

(ˉ?v L(p)

ijl

)1?pη(ˉ?v L(p)

ij

)pη

(ˉ?v L(p)

ijl

)1?pη(ˉ?v L(p)

ij

)pη+(1?ˉ?v L(p)

ijl

)1?pη(1?ˉ?v L(p)

ij

)pη

,i,j=1,2,...,n,l=1,2,...,m(37)

ˉ?v U(p+1) ijl =

(ˉ?v U(p)

ijl

)1?pη(ˉ?v U(p)

ij

)pη

(ˉ?v U(p)

ijl

)1?pη(ˉ?v U(p)

ij

)pη+(1?ˉ?v U(p)

ijl

)1?pη(1?ˉ?v U(p)

ij

)pη

,i,j=1,2,...,n,l=1,2,...,m(38)

2982H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation

Let p =p +1,then go to step 2.

Step 5.Let ?R =ˉ?

R (p ),and employ the SIVIFA operator to fuse all the interval-valued intuition-istic fuzzy preference values ?r ij =(?μij ,?v ij )(j =1,2,...,n )corresponding to alternative x i into the overall interval-valued intuitionistic fuzzy preference value ?r i =(?μi ,?v i ),where ?r i = n j =1(?μL ij )1/n n j =1(?μL ij )1/n + n j =1(1??μL ij )1/n , n j =1

(?μU ij )1/n n j =1(?μU ij )1/n + n j =1

(1??μU ij )1/n , n j =1(?v L ij )1/n n j =1(?v L ij )1/n + n j =1(1??v L ij )1/n , n j =1(?v U ij

)1/n n j =1(?v U ij )1/n + n j =1(1??v U ij )1/n i =1,2,...,n (39)Step 6.Rank all the objects corresponding to the meth-ods given by Wang et al.[18].

Step 7.End.

Similar to Algorithm 3,it can be seen that Algo-rithm 4is also convergent.To illustrate Algorithm 4,

we now consider a group decision making problem

that concerns the evaluation and selection of the suit-able suppliers in the supply chain management (adapted

from [19]).

Example 3.As the sound supply chain management can reduce supply chain risk,optimize business process,

maximize revenue,and help an enterprise to maintain

a dominant position especially in the globalized and increasingly competitive markets,how to choose the

best suitable supplier has become a crucial issue.But,

actually,it is very dif?cult to do so due to the complex and con?icting criteria and the limited knowledge of the experts,as well as some emotional factors.Here we use

our procedure presented above to solve this problem.

A high-tech company which manufactures electronic

products intends to choose a supplier of USB con-nectors.There are four alternative suppliers,denoted

as x i ,(i =1,2,3,4),respectively.Four criteria are

considered,that is,?nance (ξ1),performance (ξ2),tech-nique (ξ3),and organizational culture (ξ4).In order

to make the best choice,a committee comprising three experts e l (l =1,2,3)(whose weights are ω=(0.4,0.3,0.3)T )is found.After comparing pairs of enterprises with respect to the four criteria ξj (j =1,2,3,4),the experts e l (l =1,2,3)give their prefer-ences using interval-valued intuitionistic fuzzy values,and then obtain the IVIFPRs as follows:?R

1=????([0.5,0.5],[0.5,0.5])([0.4,0.7],[0.1,0.2])([0.5,0.6],[0.2,0.3])([0.3,0.5],[0.2,0.4])([0.1,0.2],[0.4,0.7])([0.5,0.5],[0.5,0.5])([0.4,0.5],[0.1,0.2])([0.6,0.7],[0.1,0.3])([0.2,0.3],[0.5,0.6])([0.1,0.2],[0.4,0.5])([0.5,0.5],[0.5,0.5])([0.3,0.4],[0.5,0.6])([0.2,0.4],[0.3,0.5])([0.1,0.3],[0.6,0.7])([0.5,0.6],[0.3,0.4])([0.5,0.5],[0.5,0.5])

?

?

?

?

?R

2=????([0.5,0.5],[0.5,0.5])([0.2,0.3],[0.4,0.5])([0.5,0.8],[0.1,0.2])([0.2,0.4],[0.1,0.3])([0.4,0.5],[0.2,0.3])([0.5,0.5],[0.5,0.5])([0.5,0.8],[0.1,0.2])([0.3,0.5],[0.2,0.3])([0.1,0.2],[0.5,0.8])([0.1,0.2],[0.5,0.8])([0.5,0.5],[0.5,0.5])([0.4,0.6],[0.1,0.4])([0.1,0.3],[0.2,0.4])([0.2,0.3],[0.3,0.5])([0.1,0.4],[0.4,0.6])([0.5,0.5],[0.5,0.5])

??

??

?R

3=????([0.5,0.5],[0.5,0.5])([0.4,0.5],[0.2,0.3])([0.6,0.7],[0.1,0.2])([0.5,0.7],[0.2,0.3])([0.2,0.3],[0.4,0.5])([0.5,0.5],[0.5,0.5])([0.4,0.6],[0.2,0.4])([0.7,0.8],[0.1,0.2])([0.1,0.2],[0.6,0.7])([0.2,0.4],[0.4,0.6])([0.5,0.5],[0.5,0.5])([0.6,0.7],[0.1,0.3])([0.2,0.3],[0.5,0.7)

([0.1,0.2],[0.7,0.8])([0.1,0.3],[0.6,0.7])([0.5,0.5],[0.5,0.5])

??

??

Let ?R (0)l =?R l .By Algorithm 2,we construct the perfect multiplicative consistent IVIFPRs ˉ?R (0)l (l =

1,2,3).ˉ?R (0)1=????([0.500,0.500],[0.500,0.500])([0.400,0.700],[0.100,0.200])([0.308,0.700],[0.012,0.059])([0.160,0.609],[0.012,0.086])([0.100,0.200],[0.400,0.700])([0.500,0.500],[0.500,0.500])([0.400,0.500],[0.100,0.200])([0.222,0.400],[0.100,0.273])([0.012,0.059],[0.308,0.700])([0.100,0.200],[0.400,0.500])([0.500,0.500],[0.500,0.500])([0.300,0.400],[0.500,0.600])([0.012,0.086],[0.160,0.609])([0.100,0.273],[0.222,0.400])([0.500,0.600],[0.300,0.400])([0.500,0.500],[0.500,0.500])

????

H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation2983

ˉ?R (0)

2

=

?

??

?

([0.500,0.500],[0.500,0.500])([0.200,0.300],[0.400,0.500])([0.200,0.632],[0.069,0.200]])([0.143,0.720],[0.008,0.143]) ([0.400,0.500],[0.200,0.300])([0.500,0.500],[0.500,0.500])([0.500,0.800],[0.100,0.200])([0.400,0.857],[0.012,0.143]) ([0.069,0.200],[0.200,0.632])([0.100,0.200],[0.500,0.800])([0.500,0.500],[0.500,0.500])([0.400,0.600],[0.100,0.400]) ([0.008,0.143],[0.143,0.720])([0.012,0.143],[0.400,0.857])([0.100,0.400],[0.400,0.600])([0.500,0.500],[0.500,0.500])

?

??

?

ˉ?R (0)

3

=

?

??

?

([0.500,0.500],[0.500,0.500])([0.400,0.500],[0.200,0.300])([0.308,0.600],[0.059,0.222])([0.400,0.778],[0.007,0.109]) ([0.200,0.300],[0.400,0.500])([0.500,0.500],[0.500,0.500])([0.400,0.600],[0.200,0.400])([0.500,0.778],[0.027,0.222]) ([0.059,0.222],[0.308,0.600])([0.200,0.400],[0.400,0.600])([0.500,0.500],[0.500,0.500])([0.600,0.700],[0.100,0.300]) ([0.007,0.109],[0.400,0.778])([0.027,0.222],[0.500,0.778])([0.100,0.300],[0.600,0.700])([0.500,0.500],[0.500,0.500])

?

??

?By Equation(33),we fuse the individual multi-

plicative consistent IVIFPRsˉ?R(0)l(l=1,2,3)into the collective IVIFPRˉ?R(0):

ˉ?R (0)=

?

??

?

([0.500,0.500],[0.500,0.500])([0.332,0.521],[0.195,0.308])([0.272,0.651],[0.033,0.130])([0.210,0.698],[0.009,0.108]) ([0.195,0.308],[0.332,0.521])([0.500,0.500],[0.500,0.500])([0.430,0.631],[0.124,0.251])([0.349,0.679],[0.036,0.213]) ([0.033,0.130],[0.272,0.651])([0.124,0.251],[0.430,0.631])([0.500,0.500],[0.500,0.500])([0.416,0.553],[0.211,0.447]) ([0.009,0.108],[0.210,0.698])([0.036,0.213],[0.349,0.679])([0.211,0.447],[0.416,0.553])([0.500,0.500],[0.500,0.500])

?

??

?Then,via Equation(34),we can obtain the

deviation between each individual multiplicative con-sistent IVIFPRˉ?R(0)l and the collective IVIFPRˉ?R(0), which are:d2(ˉ?R(0)1,ˉ?R(0))=0.193,d2(ˉ?R(0)2,ˉ?R(0))= 0.123,d2(ˉ?R(0)3,ˉ?R(0))=0.156.As all d2(ˉ?R(0)l,ˉ?R(0))> 0.1,we need to repair these individual IVIFPRs.Let

η=0.5,and according to Equations(35)–(38),the new individual IVIFPRsˉ?R(1)l(l=1,2,3)are constructed:

ˉ?R (1)

1

=

?

??

?

([0.500,0.500],[0.500,0.500])([0.365,0.614],[0.141,0.250])([0.290,0.676],[0.020,0.088])([0.184,0.655],[0.010,0.096]) ([0.141,0.250],[0.365,0.614])([0.500,0.500],[0.500,0.500])([0.415,0.567],[0.111,0.225])([0.281,0.543],[0.061,0.242]) ([0.020,0.088],[0.290,0.676])([0.111,0.225],[0.415,0.567])([0.500,0.500],[0.500,0.500])([0.356,0.476],[0.341,0.524]) ([0.010,0.096],[0.184,0.655])([0.061,0.242],[0.281,0.543])([0.341,0.524],[0.356,0.476])([0.500,0.500],[0.500,0.500])

?

??

?

ˉ?R (1)

2

=

?

??

?

([0.500,0.500],[0.500,0.500])([0.261,0.406],[0.287,0.400])([0.234,0.642],[0.048,0.162])([0.174,0.709],[0.009,0.124]) ([0.287,0.400],[0.261,0.406])([0.500,0.500],[0.500,0.500])([0.465,0.723],[0.111,0.225])([0.374,0.776],[0.021,0.175]) ([0.048,0.162],[0.234,0.642])([0.111,0.225],[0.465,0.723])([0.500,0.500],[0.500,0.500])([0.409,0.577],[0.147,0.423]) ([0.009,0.124],[0.174,0.709])([0.021,0.175],[0.374,0.776])([0.147,0.423],[0.409,0.577])([0.500,0.500],[0.500,0.500])

?

??

?

ˉ?R (1)

3

=

?

??

?

([0.500,0.500],[0.500,0.500])([0.365,0.511],[0.198,0.304])([0.290,0.626],[0.044,0.171])([0.296,0.740],[0.008,0.109]) ([0.198,0.304],[0.365,0.511])([0.500,0.500],[0.500,0.500])([0.415,0.616],[0.158,0.321])([0.423,0.731],[0.031,0.218]) ([0.044,0.171],[0.290,0.626])([0.158,0.321],[0.415,0.616])([0.500,0.500],[0.500,0.500])([0.508,0.630],[0.147,0.370]) ([0.008,0.109],[0.296,0.740])([0.031,0.218],[0.423,0.731])([0.147,0.370],[0.508,0.630])([0.500,0.500],[0.500,0.500])

?

??

?Then,the collective IVIFPRˉ?R(1)is

ˉ?R (1)=

?

??

?

([0.500,0.500],[0.500,0.500])([0.332,0.521],[0.195,0.308])([0.272,0.651],[0.033,0.130])([0.210,0.698],[0.009,0.108]) ([0.195,0.308],[0.332,0.521])([0.500,0.500],[0.500,0.500])([0.430,0.631],[0.124,0.252])([0.349,0.677],[0.036,0.213]) ([0.033,0.130],[0.272,0.651])([0.124,0.252],[0.430,0.631])([0.500,0.500],[0.500,0.500])([0.416,0.553],[0.211,0.447]) ([0.009,0.108],[0.210,0.698])([0.036,0.213],[0.349,0.677])([0.211,0.447],[0.416,0.553])([0.500,0.500],[0.500,0.500])

?

??

?

Thus,we can calculate the deviation between each

individual IVIFPRˉ?R(1)l and the collective IVIFPRˉ?R(1):

d2(ˉ?R(1)1,ˉ?R(1))=0.091,d2(ˉ?R(1)2,ˉ?R(1))=0.077,

d2(ˉ?R(1)3,ˉ?R(1))=0.073.As all d2(ˉ?R(1)l,ˉ?R(1))<0.1,let

?R=ˉ?R(1),and then employ the SIVIFA operator to fuse

all the interval-valued intuitionistic fuzzy preference

values?r ij=(?μij,?v ij)corresponding to the criterion

ξj into the overall interval-valued intuitionistic fuzzy

values:

2984H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation

?r1=([0.320,0.595],[0.085,0.230]),

?r2=([0.359,0.529],[0.185,0.359]),

?r3=([0.195,0.333],[0.344,0.557]),

?r4=([0.089,0.286],[0.361,0.610]). Finally,we use the comparison laws of interval-valued intuitionistic fuzzy values given by Wang et al.[18]to rank?r i(i=1,2,3,4),and then s(?r1)= 0.6,s(?r2)=0.344,s(?r3)=?0.373,s(?r4)=?0.596. Thus,?r1 ?r2 ?r3 ?r4.Therefore,the ranking of the suppliers is x1 x2 x3 x4.

5.Conclusions

In this paper,the multiplicative consistency of IVIFPR has been investigated.With studying the desir-able property of the multiplicative consistent IVIFPR, we have proposed two algorithms,in which the for-mer procedure is used to construct the approximate multiplicative consistent IVIFPR with only known off-diagonal elements,while the latter is to build the perfect one in general case with much more known evaluation information.Subsequently,we have devel-oped a convergent iterative procedure to improve the multiplicative consistency of an inconsistent IVIFPR.

A convergent iterative algorithm has been proposed for group decision making with IVIFPRs.The numerical examples given in the paper have shown that our algo-rithms and procedures are effective in solving decision making problems with IVIFPR.

Acknowledgments

The authors would like to thank the anonymous ref-erees for their insightful and constructive comments and suggestions.The work was supported in part by the National Natural Science Foundation of China(No. 61273209),the Excellent PhD Thesis Foundation of Shanghai Jiao Tong University(No.20131216),and the Scholarship from China Scholarship Council(No. 201306230047).

References

[1]K.Atanassov,Intuitionistic fuzzy sets,Fuzzy Sets and Systems

20(1986),87–96.

[2]Z.S.Xu,Intuitionistic fuzzy aggregation operators,IEEE

Transactions on Fuzzy Systems15(2007),1179–1187.

[3]M.M.Xia and Z.S.Xu,Entropy/cross entropy-based group

decision making under intuitionistic fuzzy environment,Infor-mation Fusion13(2012),31–47.

[4]Z.S.Xu,Intuitionistic preference relations and their appli-

cation in group decision making,Information Sciences177 (2007),2363–2379.

[5]Z.S.Xu,X.Q.Cai and E.Szmidt,Algorithms for estimating

missing elements of incomplete intuitionistic preference rela-tions,International Journal of Intelligent Systems21(2011), 787–813.

[6]H.C.Liao and Z.S.Xu,Multi-criteria decision making with

intuitionistic fuzzy PROMETHEE,Journal of Intelligent& Fuzzy Systems(2014),doi:10.3233/IFS-141137,in press. [7]Z.S.Xu and H.C.Liao,Intuitionistic fuzzy analytic hierar-

chy process,IEEE Transactions on Fuzzy Systems(2013).

10.1109/TFUZZ.2013.2272585,in press.

[8]H.C.Liao and Z.S.Xu,Priorities of intutionistic fuzzy

preference relation based on multiplicative consistency, IEEE Transactions on Fuzzy Systems(2014),doi:10.1109/ TFUZZ.2014.2302495,in press.

[9] E.Szmidt and J.Kacprzyk,Using intuitionistic fuzzy sets in

group decision making,Control and cybernetics31(2002), 1037–1053.

[10]H.C.Liao and Z.S.Xu,Some algorithms for group

decision making with intuitionistic fuzzy preference infor-mation,International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems(2014)in press.

[11]H.C.Liao and Z.S.Xu,Automatic procedures for group

decision making with intuitionistic fuzzy preference rela-tions,Journal of Intelligent&Fuzzy Systems(2014),doi:

10.3233/IFS-141203

[12] E.Szmidt and J.Kacprzyk,A consensus-reaching process

under intuitionistic fuzzy preference relations,International journal of Intelligent Systems18(2003),837–852.

[13]K.Atanassov and G.Gargov,Interval-valued intuitionistic

fuzzy sets,Fuzzy Sets and Systems31(1989),343–349. [14]K.Atanassov,Operators over interval-valued intuitionistic

fuzzy sets,Fuzzy Sets and Systems64(1994),159–174. [15]Z.S.Xu and J.Chen,Approach to group decision making based

on interval-valued intuitionistic judgment matrices,Systems Engineering-Theory&Practice27(2007),126–133. [16]Z.S.Xu and X.Q.Cai,Incomplete interval-valued intuitionistic

fuzzy preference relations,International Journal of General Systems38(2009),871–886.

[17]Z.S.Xu and R.R.Yager,Intuitionistic and interval-valued

intutionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group, Fuzzy Optimization and Decision Making8(2009),123–139.

[18]Z.J.Wang,K.W.Li and W.Z.Wang,An approach to mul-

tiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights,Information Sci-ences179(2009),3026–3040.

[19]T.Y.Chen,H.P.Wang and Y.Y.Lu,A multicriteria group

decision-making approach based on interval-valued intuition-istic fuzzy sets:A comparative perspective,Expert Systems with Applications38(2011),7647–7658.

[20]T.L.Saaty,The Analytic Hierarchy Process,New York,NY:

McGraw-Hill,1980.

[21]S.A.Orlovsky,Decision-making with a fuzzy preference rela-

tion,Fuzzy Sets and Systems1(1978),155–167.

[22] F.Herrera, E.Herrera-Viedma and J.L.Verdegay,Direct

approach processes in group decision making using linguistic OWA operators,Fuzzy Sets and Systems79(1996),175–190.

H.Liao et al./Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation2985

[23]M.M.Xia,Z.S.Xu and H.C.Liao,Preference relations based

on intuitionistic multiplicative information,IEEE Transaction on Fuzzy Systems21(2013),113–133.

[24]H.C.Liao,Z.S.Xu and M.M.Xia,Multiplicative consistency

of hesitant fuzzy preference relation and its application in group decision making,International Journal of Information Technology&Decision Making13(1)(2014),47–76. [25]H.C.Liao,Z.S.Xu and X.J.Zeng,Distance and similarity

measures for hesitant fuzzy linguistic term sets and their appli-cation in multi-criteria decision making,Information Sciences 271(2014),125–142.[26]T.Tanino,Fuzzy preference orderings in group decision mak-

ing,Fuzzy Sets and Systems12(1984),117–131.

[27] F.Chiclana,E.Herrera-Viedma,S.Alonso and F.Herrera,

Cardinal consistency of reciprocal preference relation:A char-acterization of multiplicative transitivity,IEEE Transactions on Fuzzy Systems17(2009),14–23.

[28] E.Szmidt and J.Kacprzyk,Distances between intuitionistic

fuzzy sets,Fuzzy Sets and Systems114(2000),505–518.

教你学会看手机电路图轻松修手机

第一篇、教你学会看电路图轻松修手机 一、一套完整的主板电路图,是由主板原理图和主板元件位置图组成的。 1.主板原理图,如图: 2.主板元件位置图,如图:

主板元件位置图的作用:是方便用户找到相应元件所在主板的正确位置。而主板原理图是让用户对主板的电路原理有所了解,知道各个芯片的功能,及其线路的连接。 二、相关名词解释 电路图中会涉及到许多英文标识,这些标识主要起到了辅助解图的作用,如果不了解它们,根本不知道他们的作用,也就根本不可能看得懂原理图。所以在这里我们会将主要的英文标识进行解释。希望大家能够背熟记熟,同时希望大家多看电路图,对不懂的英文及时查找记熟。 如图:

以上英文标识在电路图上会灵活出现,比如“扬声器”是“SPEAKER” ,它的缩写就是“SPK”,“正极”是“positive” ,缩写是“P” ,那么如果在图中标记SPKP,那么就证明它是扬声器正极。所以当有英文不明白的时候,可以将它们拆开后再进行理解,请大家灵活运用。

第二节主板元件位置图 一、元件编号 每一个元件在主板元件位置图中,都有一个唯一的编号。这个编号由英文字母和数字共同组成。编号规则可以分成以下几类: 芯片类:以U 为开头,如CPU U101 接口类:以J 为开头,如键盘接口J1202 三极管类:以Q 为开头,如三极管Q1206 二级管类:以D 为开头,如二极管D1102 晶振类:以X 为开头,如26M 晶体X901 电阻类:以R 或VR(压敏电阻)为开头,如电阻R32 VR211 电容类:以C 为开头,如电容C101 电感类:以L 为开头,如电感L1104 侧键类:以S 为开头,如侧键S1201 电池类:以 B 为开头,如备用电池B201 屏蔽罩:以SH 为开头,如屏蔽罩SH1 振动器:以M 为开头,如振子M201 还有一部分标号是主板上的测试点,以TP 为开头。 二、查找元件功能 用户可以根据相应的元件编号去查找主板原理图,从而了解此元件的作用。随便拿块主板作为示例。 如果想了解某一个元件的主要功能(图中红圈内元件) 如图:

scifinder使用介绍

6.6.1 内容简介 SciFinder Scholar是美国化学学会所属的化学文摘服务社CAS(Chemical Abstract Service)出版的化学资料电子数据库学术版。它是全世界最大、最全面的化学和科学信息数据库。 《化学文摘》(CA)是涉及学科领域最广、收集文献类型最全、提供检索途径最多、部卷也最为庞大的一部著名的世界性检索工具。CA报道了世界上150多个国家、56种文字出版的20000多种科技期刊、科技报告、会议论文、学位论文、资料汇编、技术报告、新书及视听资料,摘录了世界范围约98%的化学化工文献,所报道的内容几乎涉及化学家感兴趣的所有领域。 CA网络版SciFinder Scholar,整合了Medline医学数据库、欧洲和美国等30几家专利机构的全文专利资料、以及化学文摘1907年至今的所有内容。涵盖的学科包括应用化学、化学工程、普通化学、物理、生物学、生命科学、医学、聚合体学、材料学、地质学、食品科学和农学等诸多领域。 SciFinder Scholar 收集由CAS 出版的数据库的内容以及MEDLINE?数据库,所有的记录都为英文(但如果MEDLINE 没有英文标题的则以出版的文字显示)。 6.6.2 通过 SciFinder Scholar 可以得到的信息:

6.6.3 SciFinder? Scholar? 使用的简单介绍 主要分为Explore 和Browse。如图6.6.1 一、Explore Explore Tool 可获取化学相关的所有信息及结构等,有如下: 1、Chemical Substance or Reaction – Retrieve the corresponding literature 2、By chemical structure 3、By substance identifier 4、By molecular formula

电脑主板供电电路图分析

电脑主板供电电路图分 析 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

1、结合m s i-7144主板电路图分析主板四大供电的产生 一、四大供电的产生 1、CPU供电: 电源管理芯片: 场馆为6个N沟道的Mos管,型号为06N03LA,此管极性与一般N沟道Mos管不同,从左向右分别是SDG,两相供电,每相供电,一个上管,两个下管。 CPU供电核心电压在上管的S极或者电感上测量。 2、内存供电: DDR400内存供电的测量点: (1)、VCCDDR(7脚位):VDD25SUS MS-6控制两个场管Q17,Q18产生VDD25SUS电压,如图: VDD25SUS测量点在Q18的S极。 (2)、总线终结电压的产生 (3)参考电压的产生 VDD25SUS经电阻分压得到的。 3、总线供电:通过场管Q15产生VDD_12_A. 4、桥供电:VCC2_5通过LT1087S降压产生,LT1087S1脚输入,2脚输出,3脚调整,与常见的1117稳压管功能相同。 5、其他供电 (1)AGP供电:A1脚12V供电,A64脚:VDDQ 2、结合跑线分析intel865pcd主板电路 因找不到intel865pcd电路图,只能参考865pe电路图,结合跑线路完成分析主板的电路。 一、Cpu主供电(Vcore) cpu主供电为2相供电,一个电源管理芯片控制连个驱动芯片,共8个场管,每相4个场管,上管、下管各两个,cpu主供电在测量点在电感或者场管上管的S极测量。 二、内存供电 1、内存第7脚,场管Q6H1S脚测量2.5v电压 参考电路图: 在这个电路图中,Q42D极输出2.5V内存主供电,一个场管的分压基本上在 0.4-0.5V,两个场管分压0.8V,3.3-0.8=2.5V

运放参数详解-超详细

运放参数的详细解释和分析1—输入偏置电流和输入失调电 流 一般运放的datasheet中会列出众多的运放参数,有些易于理解,我们常关注,有些可能会被忽略了。在接下来的一些主题里,将对每一个参数进行详细的说明和分析。力求在原理和对应用的影响上把运放参数阐述清楚。由于本人的水平有限,写的博文中难免有些疏漏,希望大家批评指正。 第一节要说明的是运放的输入偏置电流Ib和输入失调电流Ios .众说周知,理想运放是没有输入偏置电流Ib和输入失调电流Ios .的。但每一颗实际运放都会有输入偏置电流Ib和输入失调电流Ios .我们可以用下图中的模型来说明它们的定义。 输入偏置电流Ib是由于运放两个输入极都有漏电流(我们暂且称之为漏电流)的存在。我们可以理解为,理想运放的各个输入端都串联进了一个电流源,这两个电流源的电流值一般为不相同。也就是说,实际的运入,会有电流流入或流出运放的输入端的(与理想运放的虚断不太一样)。那么输入偏置电流就定义这两个电流的平均值,这个很好理解。输入失调电流呢,就定义为两个电流的差。

说完定义,下面我们要深究一下这个电流的来源。那我们就要看一下运入的输入级了,运放的输入级一般采用差分输入(电压反馈运放)。采用的管子,要么是三级管bipolar,要么是场效应管FET。如下图所示,对于bipolar,要使其工作在线性区,就要给基极提供偏置电压,或者说要有比较大的基极电流,也就是常说的,三极管是电流控制器件。那么其偏置电流就来源于输入级的三极管的基极电流,由于工艺上很难做到两个管子的完全匹配,所以这两个管子Q1和Q2的基极电流总是有这么点差别,也就是输入的失调电流。Bipolar输入的运放这两个值还是很可观的,也就是说是比较大的,进行电路设计时,不得不考虑的。而对于FET输入的运放,由于其是电压控制电流器件,可以说它的栅极电流是很小很小的,一般会在fA级,但不幸的是,它的每个输入引脚都有一对ESD保护二极管。这两个二极管都是有漏电流的,这个漏电流一般会比FET的栅极电流大的多,这也成为了FET 输入运放的偏置电流的来源。当然,这两对ESD保护二极管也不可能完全一致,因此也就有了不同的漏电流,漏电流之差也就构成了输入失调电流的主要成份。

商法第一章国际商法概述

问t 沁卩匚I淑劣卑彳端. 韌汕丨 心一4章实体法5章程序法) 第?章国际商法概述 导读:明确国际商法的概念,与相邻部门法关系的基础,深入了解大陆法系与英美法系商法的特点,施点学握国际商法的渊源,国际商法的历史沿革,初步拿握学习国际商法的比较分析研究方法。 国际商法作为?门独立的法卸学科,是调整国际商事交易和国际商事组织的实体法律规范和程序法律规范 第?节国际商法的概述 -国际商法的概念 槪念:国际商法是指调整国际商事交易和国际商事组织的实体法规范和程序法律规范的总称。 此概念包含三层含义: A调整国际商出交易(上市交易)。国际商事交易是指国际货物买贞或交易沾动(涉及有形货物交易也涉及无形的技术,资金和服务交易,如投资,租赁等) B调整国际商事组织。(商事组织是指个人,合伙企业,公司,个人独资),只有这些商事组织参与跨越国界的商事交易或进行国际投资时,才能成为国际商事组织 C是实体法和程序法的统实体法:规范主体平等,规定相关权利与义务(商法合同法公司法)程序法:规则是对实体法实行过程中不正确程序进行规范(民事诉讼和刑事诉讼)

二国际商法是独立的法律学科 国际商法是独立的法律学科,理由由以下几点分析: A国际商法具有特定的调整对象和调整方法 国际商申交易和国际商事组织是其特有的调整对象,核心是以营利为目的。基于此,其强调方法也有别与其他法律部门,主要以自治(即尊重双方意愿,个人自愿自发)手段进行调整,显而易见与国际经济法以强调干预手段的调整方法有所不同 B国际商法规范的性质属于私法 “公法是关于罗马国家的法卸,私法是关于个人利益的法律” 公法:强制性权利义务不平等(如纳税人更多的是义务交税) 私法:自由意志主体平等(判断标准:既有义务又有权利) 私法和公法:私法是主体平等,衡虽的依据为双方是否既有权力又有义务(是则平等);公法: 税法主体是国家、政府、纳税人,衡虽的依据是有权利和义务中的其中-个。 私法是遵循当事人意思自治原则,公法是利用国家强制性权力 C国际商法事实上已经是独立的法律部门 四国际商法的渊源 含义:法的来源或法的栖身之地 国际商法的渊源,主要指国际商事产生的依据及其农现形式,包括以下几种类型: (-)国际商事条约如:关贸总协定TPP (二)国际商事惯例如国际贸易术语(含义:通常做法) 理解:国际商事惯例:指具有?定的普通性的通常做法,是在长期的商业或贸易实践基础上发展起来的用于解决国际商事问题的实体法性质的国际商事惯例(不是实体法) 国际商事惯例与公约相比,没有普遍的约束力,无法与国际公约的效力相比 (三)国内法 国家与贸易有关的法律构成的国际商法 第二节国际商法的历史沿革

主板电路详解

主板电路详解 主板可是一台电脑的基石,但是在茫茫主板海洋当中要选择一款好的主板实属难事!一款主板如果要想能够稳定的工作,那么主板的供电部分的用料和做工就显得极为的重要。相信大家对于许多专业媒体上经常看到在介绍主板的时候都在介绍主板的是几相电路设计的,那么主板的几相电路到底是怎样区分的呢?其实这个问题也是非常容易回答的!用一些基本的电路知识就可以解释的清楚。 其实主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定的运行,同时它也是主板上信号强度最大的地方,处理得不好会产生串扰(cross talk)效应,而影响到其它较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单来说,供电部分的最终目的就是在CPU电源输入端达到CPU 对电压和电流的要求,就可以正常工作了。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和技术经验。 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制可以输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。看起来是不是很简单呢!只要是略微有一点物理电路知识的人都能看出它的工作原理。 单相供电一般可以提供最大25A的电流,而现今常用的CPU早已超过了这个

商法概论

一、问答题 1.简述商业名称登记的效力 答:商业名称一经登记,商事主体就取得该商业名称的专用权,即获得名称权。一旦获得名称权,商业名称发生排他效力和救济效力。所谓排他效力是指商业名称一经登记,即发生排斥他人为相同或类似的商业名称登记或使用该商业名称的效力。救济效力是指商业名称登记而取得专有使用权,商事主体可据此排斥他人使用相同或类似商业名称于同一营业。 2.简述制作商业帐簿的意义。 答:(1)商业账簿的基本意义在于,向各财务会计信息的使用人提供相关可靠、清晰可比的财务会计信息,以作为决策依据。(2)商业账簿也是相关国家机关审核商事主体的营业状况或实施行政行为的依据。(3)商业账簿可以成为民事诉讼中的重要证据。 3.简述商业登记的意义。 答:1、是国家对商事主体的商事行为进行法律调整的重要前提。2、是国家对商事主体进行行政管理的重要手段。3、是商法维护商事主体的合法地位,保护第三人合法权益和社会公共利益的重要手段。4、是保障商事主体依法进行正常经营活动的必要形式。5、是维护第三人及社会公共利益的基础。 4.简述我国公司资本的原则 答:“资本三原则”即资本确定原则、资本维持原则、资本不变原则,是德国学者对公司法相关规则的抽象概括,并为人们沿用下来的。其素来被我国公司法学者视为大陆法系国家公司法的三项经典原则。 二、论述题 论述我国商法的基本原则。 答:经济基础决定上层建筑,西方实行市场经济已经有数百年历史,商品经济发达的原因之一是有着完备的商法。改革开放后,我国的商法才逐渐从民法和经济法中分立出来,不管是“民商合一”还是“民商分立”,商法都与民法、经济法和行政法关系密切。法学界关于商法的原则,观点不一,本人赞成四原则的分法,即现代商法分为强化企业组织、讲究经济效益、维护买卖公平和保障交易安全四大原则。 三、案例分析 问题 1.北陵公司章程规定的关于公司前五年利润分配的内容是否有效?为什么? 【答案】有效。公司法允许有限公司章程对利润作出不按出资比例的分配方法。

主板的结构工作原理

主板的结构工作原理 主板的结构/工作原理 主板无疑是电脑最核心的部件。目前,奔腾主板市场空前繁荣,据《计算机世界报》报导,奔腾主板来自数十个生产厂家,有近百种之多,如何从这么多种类的主板中选择呢?本节将从主板的原理与结构方面出发,揭开主板的神秘面纱,使读者对主板能有一个清晰的认识,对选购和装机都不无益处。 奔腾级AT主板的结构及工作原理 奔腾级主板的结构 下面是奔腾级主板的结构框图。由图中可以看到主板上的一些主要部分。 FDC:软驱控制器(接口) USB:通用串行总线(接口) SIMM:72线内存条插槽 DIMM:168线内存条插槽 PS/2:PS/22鼠标接口 BIOS:基本输入输出系统 LPT:并行接口(打印口) COM1、COM2:串行接口 显然,主板主要由三类构件组成:集成电路、各种插槽插座和一大块多层电路板。在主板上的众多集成电路中,有着重要程度上的差别。图中有阴影的几个集成电路决定了主板的性能,这几个集成电路称为“芯片组”或“套片”,包括PCM芯片、LBX芯片、SIO芯片。 奔腾主板的工作原理 PCI ISA总线奔腾主板中,CPU只与套片(芯片组)直接打交道,套片作为CPU的全权代表,处理CPU与内存、高速缓存、PCI插卡、ISA插卡、硬盘等外部设备的通信。各芯片的作用如下: 1. PCI、内存、Cache控制器(PCMC)芯片 PCMC是“PCI、Cache and Memory Controller”的缩写,从名字上就可以看出来,它的作用是:管理PCI总线、管理Cache、管理内存。 由于PCMC内的二级Cache控制器只支持256KB或512KB的二级Cache,于是采用Intel套片的主板就没有提供其它容量Cache。如果你听到某个主板声称自己支持1024KB 的Cache,那就说明它用的肯定不是Intel的套片。 另外,在PCMC内还集成有DRAM控制器,负责DRAM的刷新、读写和被Cache。因此,主板支持的内存种类、内存的最大容量也不是任意的,主板生产商在这方面依然只能服从这些限制。 2.局部总线加速器(LBX)芯片 LBX是“Local Bus Accellerator”的缩写,它具有下列主要功能: ◇提供64位的DRAM界面,支持猝发式读写。支持的内存读写方式和读写周期也

SciFinder使用说明

SciFinder使用说明 SciFinder简介 SciFinder?由美国化学会(American Chemical Society, ACS)旗下的美国化学文摘社(Chemical Abstracts Service, CAS)出品,是一个研发应用平台,提供全球最大、最权威的化学及相关学科文献、物质和反应信息。SciFinder涵盖了化学及相关领域如化学、生物、医药、工程、农学、物理等多学科、跨学科的科技信息。SciFinder收录的文献类型包括期刊、专利、会议论文、学位论文、图书、技术报告、评论和网络资源等。 通过SciFinder,可以: ?访问由CAS全球科学家构建的全球最大并每日更新的化学物质、反应、专利和期刊数据库,帮助您做出更加明智的决策。 ?获取一系列检索和筛选选项,便于检索、筛选、分析和规划,迅速获得您研究所需的最佳结果,从而节省宝贵的研究时间。 无需担心遗漏关键研究信息,SciFinder收录所有已公开披露、高质量且来自可靠信息源的信息。 通过SciFinder可以获得、检索以下数据库信息:CAplus SM(文献数据库)、CAS REGISTRY SM (物质信息数据库)、CASREACT? (化学反应数据库)、MARPAT?(马库什结构专利信息数据库)、CHEMLIST? (管控化学品信息数据库)、CHEMCATS?(化学品商业信息数据库)、MEDLINE?(美国国家医学图书馆数据库)。 专利工作流程解决方案PatentPak TM已在SciFinder上线,帮助用户在专利全文中快速定位难以查找的化学信息。 SciFinder 注册须知: 读者在使用SciFinder之前必须用学校的email邮箱地址注册,注册后系统将自动发送一个链接到您所填写的email邮箱中,激活此链接即可完成注册。参考“SciFinder注册说明”。

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

(完整版)主板供电电路图解说明

主板供电电路图解说明 主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。 主板上的供电电路原理 图1 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。 单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。 图2

运放参数解释

运放带宽相关知识! 一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。 在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。 也就是在设计电路时要同时满足增益带宽和功率带宽。 运放关于带宽和增益的主要指标以及定义 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽

主板电路工作原理

主板各电路工作原理 主要内容: 1、主板开机电路 含主供电及其他供电电路)) 主板供电电路((含主供电及其他供电电路 2、主板供电电路 3、时钟电路 4、复位电路 5.1 主板开机电路 5.1.1软开机电路的大致构成及工作原理 开机电路又叫软开机电路,是利用电源(绿线被拉成低电平之后,电源其它电压就可以 输出)的工作原理,在主板自身上设计的一个线路,此电路以南桥或I/O为核心,由门电路、电阻、电容、二极管(少见)三极管、门电路、稳压器等元件构成,整个电路中的元件皆由紫线5V提供工作电压,并由一个开关来控制其是否工作,(如图4-1) 当操作者瞬间触发开机之后,会产生一个瞬间变化的电平信号,即0或1的开机信号,此信号会直接或间接地作用于南桥或I/O内部的开机触发电路,使其恒定产生一个0或1的的信号,通过外围电路的转换之后,变成一个恒定的低电平并作用于电源的绿线。当电源的绿线被拉低之后,电源就会输出各路电压(红5V、橙3.3V、黄12V等)向主板供电,此时主板完成整个通电过程。

图5-1 主板通电电路的工作原理图 5.1.2学习重点: ①主板软开机电路的大致构成及工作原理; ②软开机线路的寻找; ④主板不通电故障的检修; ⑤实际检修中需注意的特殊现象。 5.1.3实例剖析: 一款MS-6714主板,故障为不能通电,其开机电路如图5-2所示 (图5-2) 通过以上线路发现,开机电路由W83627HF-AW组成整个线路,按照主板不通电故障的检修流程进行检修,测其67脚没有3.3V左右的控制电压,此时就算更换I/O仍是不

能工作的,于是查找相关线路,发现此点的控制电压是由FW82801DB直接发出,再查此南桥的1.5V的待机电压异常,跟寻此点线路,发现南桥旁一个型号为702的场效应管损坏,更换此管后,故障排除。 注:W83627系列I/O在Intel芯片组的主板中从Intel810主板开始,到目前的主板当中,都有广泛的应用,而且在实际维修中极容易损坏. 5.1.4目前主板中常见的几种开机电路图:

图解主板的供电原理(电脑维修必备)

现在的大多数主板的供电都使用PWM(Pulse Width Modul ati on 脉冲带宽调制)方法进行,主要是由MOSFET管、PWM芯片、扼流线圈和滤波电容等部分完成。 图1.浩鑫MN31主机板的电源部分,PWM芯片位于左边输入线圈的左部(见下图) 图2.电源管理芯片RT9241,可以精确的平衡各相电流,以维持功率组件的热均衡 PWM方法是通过开关和反馈控制环及滤波电路将输入电压调制为所设定之电压输出的,开关一般用MOSFET管,而滤波电路一般用LC电路,控制电路用的是PWM IC。

那么电源控制IC是如何控制CPU工作电压的?在主板启动时,主板BIOS将CPU所提供的VID0-VID3信号送到PWM芯片的D0-D3端,如果主板BIOS具有可设定CPU 电压的功能,主板会按时设定的电压与VID的对应关系产生新的VID信号并送到PWM芯片,PWM根据VID的设定并通过DAC电压将其转换为基准电压,再经过场效应管轮流导通和关闭,将能量通过电感线圈送到CPU,最后再经过调节电路使用输出电压与设定电压值相当。 目前绝大多数主板将5V或12V电压降到1.05~1.825V或1.30/1.80~3.5V都使用PWM方法,PWM方法是通过开关和反馈控制环及滤波电路将输入电压调制为所设定之电压输出的,开关一般用MOSFET管,而滤波电路一般用LC电路,控制电路都用PWM IC,下面对组成元件作一说明: 1.MOSFET管(Metallic Oxide Semiconductor Field Effect Tran sis tor 金属-氧化物-半导体场效应晶体管,简称为MOSFET管) 目前应用的较多的是以二氧化硅为绝缘层的栅型场效应管。MOSFET有增强型和耗尽型两种,每一种又有N沟道和P沟道之分。以N沟道增强型MOSFET为例,它是以P行硅为衬底,在衬底一侧(称为衬底表面)上用杂质扩散的方法形成两个高掺杂的N+区,分别作为源极(S)和漏极(D)。再在硅衬底表面生成一层很薄(几十纳米)的二氧化硅(SiO2)绝缘层,SiO2的上面则是一层金属铝,由此因出栅极(G)。显然,栅极与其他两个电极是相互绝缘的,故称为绝缘栅极。另外,在衬底的另一侧也引出一个电极,称为衬底电极(B),衬底电极一般与源极相连。这种绝缘栅FET具有从上到下的金属(铝)-氧化物(二氧化硅)-半导体(衬底)(Metal-Oxide-Semiconductor)三层结构,所以称之为MOSFET。从MOSFET的结构可以得知:那个黑色的小方块仅仅是个跟电阻,电容,电感等同级的电子元件,绝对不是集成块 绝对不是集成块! 绝对不是集成块 图3.N沟道MOSFET结构示意图

常用芯片型号大全

常用芯片型号大全 4N35/4N36/4N37 "光电耦合器" AD7520/AD7521/AD7530/AD7521 "D/A转换器" AD7541 12位D/A转换器 ADC0802/ADC0803/ADC0804 "8位A/D转换器" ADC0808/ADC0809 "8位A/D转换器" ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器" CA3080/CA3080A OTA跨导运算放大器 CA3140/CA3140A "BiMOS运算放大器" DAC0830/DAC0832 "8位D/A转换器" ICL7106,ICL7107 "3位半A/D转换器" ICL7116,ICL7117 "3位半A/D转换器" ICL7650 "载波稳零运算放大器" ICL7660/MAX1044 "CMOS电源电压变换器" ICL8038 "单片函数发生器" ICM7216 "10MHz通用计数器" ICM7226 "带BCD输出10MHz通用计数器" ICM7555/7555 CMOS单/双通用定时器 ISO2-CMOS MT8880C DTMF收发器 LF351 "JFET输入运算放大器" LF353 "JFET输入宽带高速双运算放大器" LM117/LM317A/LM317 "三端可调电源" LM124/LM124/LM324 "低功耗四运算放大器" LM137/LM337 "三端可调负电压调整器" LM139/LM239/LM339 "低功耗四电压比较器"

LM158/LM258/LM358 "低功耗双运算放大器" LM193/LM293/LM393 "低功耗双电压比较器" LM201/LM301 通用运算放大器 LM231/LM331 "精密电压—频率转换器" LM285/LM385 微功耗基准电压二极管 LM308A "精密运算放大器" LM386 "低压音频小功率放大器" LM399 "带温度稳定器精密电压基准电路" LM431 "可调电压基准电路" LM567/LM567C "锁相环音频译码器" LM741 "运算放大器" LM831 "双低噪声音频功率放大器" LM833 "双低噪声音频放大器" LM8365 "双定时LED电子钟电路" MAX038 0.1Hz-20MHz单片函数发生器 MAX232 "5V电源多通道RS232驱动器/接收器" MC1403 "2.5V精密电压基准电路" MC1404 5.0v/6.25v/10v基准电压 MC1413/MC1416 "七路达林顿驱动器" MC145026/MC145027/MC145028 "编码器/译码器" MC145403-5/8 "RS232驱动器/接收器" MC145406 "RS232驱动器/接收器"

浙江大学scifinder使用教程

浙江大学scifinder使用教程 1、输入网址:https://www.360docs.net/doc/f110456803.html,/ 如图1,点击继续浏览 图1 2、进入浙大的入口,输入用户名密码(卖家提供) 图2 3、登陆进去是图3这个页面。注意此时会自动安装插件,切记要一路放行。登陆成功的标志是屏幕右上角有个蓝框绿蓝S的LOGO! 如果未出现S,那么请根据图2的手动安装组件,下载安装组件!

图3 4、登陆页面不要覆盖,新标签页打开浙江大学图书馆 https://www.360docs.net/doc/f110456803.html,/libweb/点数据库导航,找到scifinder页面,进入 图4

5、点击图5红框中的链接https://www.360docs.net/doc/f110456803.html,/cgi-bin/casip,看下IP是不是浙大的IP,一般是61或者210开头,确定是,那就可以输入链接https://https://www.360docs.net/doc/f110456803.html,/登陆了 图5 6、scifinder登陆页面输入用户名密码(卖家提供),您就可以使用scifinder啦 图6

常见问题以及解决方法 1.浏览器不支持JavaScript,提示“您的浏览器不支持JavaScript(或它被 禁止了)请确认您的浏览器能支持JavaScript”,请启用“工具- >Internet选项->安全->自定义级别->活动脚本”选项。 2.浏览器不支持Cookie,提示“你的浏览器禁止了Cookie,必须设置为允许 才可以继续使用”,请在“工具->Internet选项->隐私->高级”启用 Cookie支持 3.浏览不支持BHO,提示:"您的浏览器没有启用第三方扩展",关闭IE时无法 自动注销用户。请在 "工具->Internet选项->高级->启用第三方浏览器扩展”前打勾启用! 4.APP服务不可用,可能是控件不是最新的,请您关闭IE,重新登陆VPN 5.IP服务不可用,可能你安装的IP服务控件不是最新的。请点击“程序- >SINFOR SSL VPN->卸载CS应用支持”和“程序->SINFOR SSL VPN->卸载SSL VNIC”,手动卸载IP服务控件,然后再重新登陆VPN。 6.IP服务可能与某些杀毒软件冲突。请在杀毒软件中放行IP服务的客户端程 序,或者在使用时暂时禁用杀毒软件。

电脑主板原理图

1.主板上的英文字母都代表什么 1.L----电感.电感线圈 2.C----电容. 3.BC---贴片电容 4.R----电阻 5.9231 芯片-----脉宽 6.74 门电路-----它在主板南桥旁边 7.PQ----场效应管 8.VT 、Q、V----三级管 9.VD 、D---二级管 10.RN----排阻 11. ZD----稳压二极管 12.W-----电位器 13.IC---稳压块 14.IC 、N、U----集成电路 15.X 、Y、G、Z----晶振 16.S-----开关 17.CM----频率发生器(一般在晶振14.31818 旁边) 2. 计算机开机原理 开机原理:插上ATX 电源后,有一个静态5V 电压送到南桥,为南桥里面的ATX 开机电路提 供工作条件(ATX 电源的开机电路是集成南桥里面的),南桥里面的ATX 开机电路将开始 工作,会送一个电压给晶体,晶体起振工作,产生振荡,发出波形。同时ATX 开机电路会 送出一个开机电压到主板的开机针帽的一个脚,针帽的另一个脚接地。当打开开机开关时, 开机针帽的两个脚接通,而使南桥送出开机电压对地短路,拉低南桥送出的开机电压,而使 南桥里的开机电路导通,拉低静态5V 电压,使其变为0 电位。使电源开始工作,从而达到 开机目的。(ATX 电源里还有一个稳压部分,它需要静态5V 变为0 电位才能工作)。 3. 主板时钟电路工作原理 时钟电路工作原理:3.5 电源经过二极管和电感进入分频器后,分频器开始工作,和晶体一 起产生振荡,在晶体的两脚均可以看到波形。晶体的两脚之间的阻值在450---700 欧之间。 在它的两脚各有1V 左右的电压,由分频器提供。晶体两脚常生的频率总和是14.318M 。 总频(OSC )在分频器出来后送到PCI 槽的B16 脚和ISA 的B30 脚。这两脚叫OSC 测试脚。 也有的还送到南桥,目的是使南桥的频率更加稳定。在总频OSC 线上还电容。

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

商法 第一章 国际商法概述

(1—4章实体法5章程序法) 第一章国际商法概述 导读:明确国际商法的概念,与相邻部门法关系的基础,深入了解大陆法系与英美法系商法的特点,重点掌握国际商法的渊源,国际商法的历史沿革,初步掌握学习国际商法的比较分析研究方法。 国际商法作为一门独立的法律学科,是调整国际商事交易和国际商事组织的实体法律规范和程序法律规范 第一节国际商法的概述 一国际商法的概念 概念:国际商法是指调整国际商事交易和国际商事组织的实体法规范和程序法律规范的总称。 此概念包含三层含义: A 调整国际商事交易(上市交易)。国际商事交易是指国际货物买卖或交易活动(涉及有形货物交易也涉及无形的技术,资金和服务交易,如投资,租赁等) B 调整国际商事组织。(商事组织是指个人,合伙企业,公司,个人独资),只有这些商事组织参与跨越国界的商事交易或进行国际投资时,才能成为国际商事组织

C 是实体法和程序法的统一,实体法:规范主体平等,规定相关权利与义务(商法合同法公司法)程序法:规则是对实体法实行过程中不正确程序进行规范(民事诉讼和刑事诉讼) 二国际商法是独立的法律学科 国际商法是独立的法律学科,理由由以下几点分析: A 国际商法具有特定的调整对象和调整方法 国际商事交易和国际商事组织是其特有的调整对象,核心是以营利为目的。基于此,其强调方法也有别与其他法律部门,主要以自治(即尊重双方意愿,个人自愿自发)手段进行调整,显而易见与国际经济法以强调干预手段的调整方法有所不同 B 国际商法规范的性质属于私法 “公法是关于罗马国家的法律,私法是关于个人利益的法律” 公法:强制性权利义务不平等(如纳税人更多的是义务交税) 私法:自由意志主体平等(判断标准:既有义务又有权利) 私法和公法:私法是主体平等,衡量的依据为双方是否既有权力又有义务(是则平等);公法:税法主体是国家、政府、纳税人,衡量的依据是有权利和义务中的其中一个。 私法是遵循当事人意思自治原则,公法是利用国家强制性权力 C 国际商法事实上已经是独立的法律部门 四国际商法的渊源 含义:法的来源或法的栖身之地 国际商法的渊源,主要指国际商事产生的依据及其表现形式,包括以下几种类型: (一)国际商事条约如:关贸总协定TPP (二)国际商事惯例如国际贸易术语(含义:通常做法) 理解:国际商事惯例:指具有一定的普通性的通常做法,是在长期的商业或贸易实践基础上发展起来的用于解决国际商事问题的实体法性质的国际商事惯例(不是实体法) 国际商事惯例与公约相比,没有普遍的约束力,无法与国际公约的效力相比 (三)国内法