圆锥曲线的切线方程及切点弦方程的应用

圆锥曲线的切线方程及切点弦方程的应用
圆锥曲线的切线方程及切点弦方程的应用

圆锥曲线的切线方程及切点弦方程的应用

引例 给定圆222)()(r b y a x =-+-和点),(00y x P ,证明:

(1)若点P 在圆上,则过点P 的圆的切线方程为200))(())((r b y b y a x a x =--+--;

(2)若点P 在圆外,设过点P 所作圆的两条切线的切点分别为B A ,,则直线AB 的方程为

200))(())((r b y b y a x a x =--+--。

高考链接

1、 (2011江西)若椭圆22221x y a b +=的焦点在x 轴上,过点(1,1

2)作圆22+=1x y 的切线,切点分别为A,B ,直线AB

恰好经过椭圆的右焦点和上顶点,则椭圆方程是 【答案】22

154

x y += 2、(2013山东)过点(3,1)作圆

22

(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .230x y +-= B .230x y --= C .430x y --= D .430x y +-= 【答案】A

3、过点)4,3(P 作圆1:2

2

=+y x O 的两条切线,切点分别为B A ,,点)0,0)(,(>>b a b a M 在直线AB 上,则b

a 2

1+的最小值为 。6411+

4、过椭圆14

92

2=+y x 上点P 作圆2:22=+y x O 的两条切线,切点分别为B A ,,过B A ,的直线l 与x 轴y 轴分别交于点Q P ,两点,则POQ ?的面积的最小值为 。

3

2

5、已知椭圆)1(12222>>=+b a b y a x ,圆2

22:b y x O =+,过椭圆上任一与顶点不重合的点P 引圆O 的两条切线,

切点分别为B A ,,直线AB 与x 轴y 轴分别交于点N M ,,则=+2

2

22|

|||OM b ON a 。22b a 探究1 给定椭圆122

22=+b

y a x 和点),(00y x P ,证明:

(1)若点P 在椭圆上,则过点P 椭圆的切线方程为

12020=+b

y

y a x x ; (2)若点P 在椭圆外,设过点P 所作椭圆的两条切线的切点分别为B A ,,则直线AB 的方程为

12020=+b

y

y a x x 。

1、(2012福建)如图,椭圆22

22:1(0)x y E a b a b

+=>>的左焦点为1F ,右焦点为2F ,离心率12e =.过1F 的直线交椭圆于

,A B 两点,且2ABF ?的周长为8.

(Ⅰ)求椭圆E 的方程.

(Ⅱ)设动直线:l y kx m =+与椭圆E 有且只有一个公共点P ,且与直线

4x =相较于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为

直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.

2、(2009安徽)点00(,)P x y 在椭圆22

221(0)x y a b a b

+=>>上,00cos ,sin ,0.2x a y b πβββ==<<直线2l 与直线

00

122

:

1x y l x y a b +=垂直,O 为坐标原点,直线OP 的倾斜角为α,直线2l 的倾斜角为γ. (I )证明: 点P 是椭圆22

221x y a b

+=与直线1l 的唯一交点;

(II )证明:tan ,tan ,tan αβγ构成等比数列。

解:(I )(方法一)由00221x y x y a b +=得22

020

(),b y a x x a y =-代入椭圆22221x y a b +=,

得2222

20024222000

21()(1)0b x b x b x x a a y a y y +-+-=.

将00cos sin x a y b ββ

=??=?代入上式,得2222cos cos 0,x a x a ββ-?+=从而cos .x a β= 因此,方程组22

22

002

211

x y a b x y x y a b ?+=????+=??有唯一解00x x y y =??=?,即直线1l 与椭圆有唯一交点P.

(方法二)显然P 是椭圆与1l 的交点,若Q 111(cos ,sin ),02a b βββπ≤<是椭圆与1l 的交点,代入1l 的方程

cos sin 1x y a b

ββ+=,得11cos cos sin sin 1,ββββ+= 即11cos()1,,ββββ-==故P 与Q 重合。

(方法三)在第一象限内,由22

221x y a b

+=可得222200,,b b y a x y a x a a =-=-

椭圆在点P 处的切线斜率2000222

0(),bx b x k y x a y a a x '==-

=--

切线方程为20

0020

(),b x y x x y a y =--+即00221x x y y a b +=。

因此,1l 就是椭圆在点P 处的切线。根据椭圆切线的性质,P 是椭圆与直线1l 的唯一交点。 探究2

给定抛物线)0(22>=p py x 和点),(00y x P ,证明:

(1)若点P 在抛物线上,则过点P 椭圆的切线方程为000=--py py x x ;

(2)若点P 在抛物线外,设过点P 所作抛物线的两条切线的切点分别为B A ,,则直线AB 的方程为

000=--py py x x 。

链接高考:

1、(2012辽宁)已知P ,Q 为抛物线2

2x y =上两点,点P ,Q 的横坐标分别为4,-2,过P 、Q 分别作抛物线的切线,两切线交于A ,则点A 的纵坐标为__________. 【答案】-4

2、(2013广东)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为32

2

.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.

(Ⅰ) 求抛物线C 的方程;

(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; 【答案】(Ⅰ) 设抛物线C 的方程为24x cy =,由

02

32

2

2

c --=

结合0c >,解得1c =. 所以抛物线C 的方程为2

4x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =

,求导得12

y x '= 设()11,A x y ,()22,B x y (其中221212,44

x x y y ==),则切线,PA PB 的斜率分别为112x ,212x ,

所以切线PA 的方程为()1112x y y x x -=-,即2

11122

x x y x y =

-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=

因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.

曲线的切线方程

导数的几何意义、曲线的切线方程: 一、框架 1.命题分析:本题型在高考解答题主要是在第(1)问中出现,也有可能在选择题或填空题中出现,若为解答题,主要考点为:(1)导数的几何意义;(2)直线与函数图象相切的条件。 2.几何意义:函数()x f 在0x 处的导数就是曲线()x f y =在点()()00,x f x 处的切线的斜率,即斜率为()0'x f . 3.物理意义:函数()s f t =在0t 处的导数就是曲线()s f t =在0t 时刻的速度. 4.曲线)(x f y =上在点())(,00x f x 处的切线方程为))(()(00'0x x x f x f y -=-. 5.切线方程的求解方程问题: 第一步:判切点:求曲线的切线方程时先分清是“在点处”的切线方程还是“过点”的切线方程。切点已知直接求,切点未知设切点; 第二步:求斜率(导数):通常若切点为())(,00x f x ,则在该点处曲线的斜率为()0'x f ; 第三步:用公式:所对应的曲线)(x f y =上在点())(,00x f x 处的切线方程为))(()(00'0x x x f x f y -=-。 6.利用切线方程(或切线的性质)判断参数的值(或取值范围) 第一步:求斜率(导数):求出函数()x f y =在0=x x 处的导数()0'x f ,即函数()x f y =的图象在点 ())(,00x f x 处切线的斜率; 第二步:列关系式:根据已知条件,列出关于参数的关系式; 第三步:求解即可得出结论。 7.注意点:求曲线的切线方程时先分清是“在点处”的切线方程还是“过点”的切线方程。切点已知直接求,切点未知设切点。 二、方法诠释 类型一:在某点的切线方程 例1.求曲线y =x 3-2x +1在点(1,0)处的切线方程。 解: y ′=3x 2-2,∴k =y ′|x =1=3-2=1,∴切线方程为y =x -1. 类型二:过某点(某点不在曲线上)的切线方程 例2.求过点(2,0)且与曲线y =x 3相切的直线方程. 解:点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意, 所求直线方程的斜率k =x 3 0-0x 0-2=y ′|x =x 0=3x 2 0,即x 30x 0-2 =3x 20,解得x 0=0或x 0=3. 当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0; 当x 0=3时,得切点坐标是(3,27),斜率k =27,则所求直线方程是y -27=27(x -3), 即27x -y -54=0. 综上,所求的直线方程为y =0或27x -y -54=0. 类型三:过某点(某点在曲线上)的切线方程,例如例3的第(2)问 例3.(1)求曲线f (x )=x 3-3x 2+2x 在原点(0,0)处的切线方程。 (2)求过原点(0,0)且与曲线f (x )=x 3-3x 2+2x 相切的切线方程. 解:(1)f ′(x )=3x 2-6x +2,设切线的斜率为k ,k =f ′(0)=2,f (0)=0,所求的切线方程为y =2x . (2)当切点是原点时k =f ′(0)=2,f (0)=0,所求的切线方程为y =2x . 当切点不是原点时,设切点是(x 0,y 0)(x 0≠0),则有y 0=x 30-3x 20+2x 0,k =f ′(x 0)=3x 2 0-6x 0+2,①又k =y 0x 0 =x 2 0-3x 0+2,② 由①②得x 0=32,k =y 0x 0=-14. 所以所求曲线的切线方程为y =2x 或y =-14x . 三、巩固训练

圆的切点弦方程

圆的切点弦方程 222001.,(,)x y r M x y +=已知圆的方程求经过圆上一点的切线方程。 22220000(,)x y r M x y xx yy r +=+=【结论1】过圆上一点的切线方程:。 【方法】1.设出直线,再求解; 2.利用轨迹思想,用向量或平面几何知识求解。 【问题】对于坐标平面内任一点),(00y x M ,直线L :200r y y x x =+与圆O :222r y x =+究竟是什么关系呢下面我们进行探究: 一、当点M 在圆O 上时,直线L 是圆的切线。 二、当点M 在圆O 外时, 1.直线L 不是圆O 的切线,下面证明之: ∵圆心O 到L 的距离为2 22y x r d += ,由),(00y x M 在圆O 外,得r y x >+2 020 ∴ r d <,故直线L 与圆O 相交. 2.此时直线L 与过点M 的圆的切线又是什么关系呢 首先研究L 的特征: 易知:OM ⊥L 。 2 2 0r x = 2,OA ON OM ∴=?(N 为L 与OM 的交点) 从而OA ⊥MA ,MA 为圆的一条切线, 故直线L 为过点M 的圆的两条切线的两个切点所在的直线。 事实上(另证), 如图1,设过点M 的圆O 的两条切线为L 1,L 2,切点分别为A 、B, 则直线MA:2 11r y y x x =+,直线MB:2 22r y y x x =+. ∵点M 的坐标),(00y x 满足直线MA 与MB 的方程,

∴?????=+=+2 01022 0101r y y x x r y y x x , 由此可见A 、B 的坐标均满足方程2 00r y y x x =+, 由于两点确定一条直线 ∴直线AB 的方程为2 00r y y x x =+。 所以此时的直线L 是经过点P 的切点弦AB 所在直线的方程,而不是圆O 的切线。 【注】上述点M 、直线L 实质上是射影几何中的极点和极线。 特别的,当M 在圆上时,极线即为切线。 三、当点M 在圆O 内时, 1.直线L 也不是圆O 的切线。下面给出证明: ∵圆心O 到L 的距离为2 22y x r d += ,由),(00y x M 在圆O 内,得r y x <+2 020 ∴ r d > 故直线L 与圆O 相离. 2.此时直线L 与圆的切线的关系又如何呢 首先研究L 的特征: 由上述探讨过程易知, 直线L ⊥OM , 此外,L 一定过点P (P 为两切线的交点,AB ⊥OM ), 从而L 就在图2中过点P 且与AB 平行的位置处。 事实上(另证), ∵直线L 的斜率00y x k l -=,而直线OM 的斜率0 0x y k om =, ∴OM L ⊥ 一方面,过点M 与OM 垂直的直线0L 方程为,0)()(0000=-+-y y y x x x 即2 02 000y x y y x x +=+

圆锥曲线的切点弦方程培训资料

2011年江西高考一道试题解法的推广──圆锥曲线的切点弦方程 圆锥曲线问题是高考的重点,曲线的切线又是近几年的热点,这类题对学生的要求比较高,充分考查学生的逻辑思维能力,本文在对江西高考试题分析的基础上归纳总结出圆、椭圆、抛物线、双曲线的切点弦方程的求法。 背景知识 已知圆()222:0C x y r r +=>,点()00,A x y 是圆C 上一点,求以点A 为切点的切线方程. 分析:易知以()00,A x y 为切点的直线方程为:()2000xx yy r r +=> (2011年江西高考理科第14题) 问题1:若椭圆22221x y a b +=的焦点在x 轴上,过点11,2?? ??? 作圆221x y +=的切线,切点分别为A B 、,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是__________. 解:设()()1122,,,A x y B x y ∵点A B 、在圆221x y +=上,则 过点()11,A x y 的切线方程为111:1L x x y y +=. 过点()22,B x y 的切线方程为222:1L x x y y +=. 由于12,L L 经过点11,2?? ???则1122111,122 x y x y +=+=. 故()()1122,,,x y x y 均为方程112 x y + =的解。 ∴经过A B 、两点的直线方程1:12AB x y +=. 设椭圆22 221x y a b +=的右焦点为(),0c ,上顶点为()0,b . 由于直线AB 经过椭圆右焦点和上顶点。 1,12 b c ∴==即2b = 2225a b c ∴=+= 故椭圆方程为22 154 x y +=.

圆锥曲线的切线问题

圆锥曲线的切线问题 圆锥曲线的切线问题有两种处理思路:思路 1,导数法,将圆锥曲线方程化为函数 y =f (x) ,利用导数法求出函数y =f (x) 在点(x 0 , y ) 处的切线方程,特别是焦点在y 轴 上常用此法求切线;思路 2,根据题中条件设出切线方程,将切线方程代入圆锥切线方程,化为关于x(或y)的一元二次方程,利用切线与圆锥曲线相切的充要条件为判别式?= 0 ,即可解出切线方程,注意关于x (或y)的一元二次方程的二次项系数不为 0 这一条件,圆锥曲线的切线问题要根据曲线不同,选择不同的方法. 类型一 导数法求抛物线切线 例1 【2017 课表1,文 20】设A,B为曲线C:y= x 4 (1)求直线A B的斜率; 上两点,A与B的横坐标之和为 4. (2)设M为曲线C上一点,C在M处的切线与直线A B平行,且A M⊥B M,求直线A B的方程. 类型二椭圆的切线问题 2

5 + = > > 例 2(2014 广东 20)(14 分)已知椭圆C : x a 2 y 2 + = 1(a > b > 0) 的一个焦点为( 5, 0) , b 2 离心率为 . 3 (1) 求椭圆 C 的标准方程; (2) 若动点 P (x 0 , y 0 ) 为椭圆外一点,且点 P 到椭圆 C 的两条切线相互垂直,求点 P 的轨 迹方程. 类型三 直线与椭圆的一个交点 例 3.【2013 年高考安徽卷】已知椭圆 C : x a 2 y 2 b 2 1(a b 0) 的焦距为 4 , 且过点 (Ⅰ)求椭圆 C 的方程; (Ⅱ)设Q (x 0 , y 0 )(x 0 y 0 ≠ 0) 为椭圆C 上一点,过点Q 作 x 轴的垂线,垂足为 E .取点 A (0, 2 2) ,连接 AE ,过点 A 作 AE 的垂线交 x 轴于点 D .点G 是点 D 关于 y 轴的对称点, 作直 线QG ,问这样作出的直线QG 是否与椭圆 C 一定有唯一的公共点?并说明理由. 【解析】(1)因为椭圆过点 P ( 2,3) ∴ 2 + 3 = 1 a 2 b 2 且a 2 = b 2 + c 2 P ( 2,3) . 2 2

用导数求切线方程的四种类型

用导数求切线方程的四种类型 浙江 曾安雄 求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线 方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =. 下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+ D.45y x =- 解:由2 ()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为 (1)3(1)y x --=--,即32y x =-+,因而选B. 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+= D.210x y --= 解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴. 由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D. 评注:此题所给的曲线是抛物线,故也可利用?法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0?=,得1b =-,故选D. 类型三:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.

圆的切点弦方程的九种求法

圆的切点弦方程的解法探究 在理解概念熟记公式的基础上,如何正确地多角度观察、分析问题,再运用所学知识解决问题,是解题的关键所在。本文仅通过一个例题,圆的部分的基本题型之一,分别从不同角度进行观察,用不同的知识点和九种不同的解法,以达到介绍如何观察、分析、解决关于圆的切点弦的问题。 一、预备知识: 1、在标准方程 2 22)()r b y a x =-+-(下过圆上一点),00y x P (的切线方程为: 200))(())r b y b y a x a x =--+--(( ; 在一般方程02 2 =++++F Ey Dx y x (042 2>-+F E D ) 下过圆上 一点),00y x P (的切线方程为: 02 20 000=++++++F y y E x x D yy xx 。 2、两相交圆01112 2=++++F y E x D y x (0412 12 1>-+F E D )与 022222=++++F y E x D y x (0422 22 2>-+F E D ) 的公共弦所在的直线方程为:0)()()(212121=-+-+-F F y E E x D D 。 3、过圆02 2 =++++F Ey Dx y x (042 2>-+F E D )外一点 ),11y x P (作圆的切线,其切线长公式为:F Ey Dx y x PA ++++=112121||。 4、过圆02 2 =++++F Ey Dx y x (042 2>-+F E D )外一点 ),11y x P (作圆的切线,切点弦AB 所在直线的方程为:211))(())r b y b y a x a x =--+--(((在圆的标准方程下的形式); 0221 111=++++++F y y E x x D yy xx (在圆的一般方程下的形式) 。 二、题目 已知圆04422 2=---+y x y x 外一点P (-4,-1),过点P 作圆 的切线PA 、PB ,求过切点A 、B 的直线方程。 三、解法 解法一:用判别式法求切线的斜率 如图示1,设要求的切线的斜率为k (当切线的斜率存在时),那么过点P (-4,-1)的切线方程为:)]4([)1(--=--x k y 即 014=-+-k y kx 由 ???=---+=-+-0 4420 142 2y x y x k y kx 消去y 并整 理得 0)12416()268()1(2222=+-+--++k k x k k x k ① 令 0)12416)(1(4)268(2 2 2 2 =+-+---=?k k k k k ② 解②得 0=k 或8 15= k

圆锥曲线的切点弦方程培训资料

2011年江西高考一道试题解法的推广一圆锥曲线的切点弦方程 圆锥曲线问题是高考的重点,曲线的切线又是近几年的热点,这类题对学生的要求比较高,充分考查学生的逻辑思维能力,本文在对江西高考试题分析的基础上归纳总结出圆、椭圆、抛物线、双曲线的切点弦方程的求法。 背景知识 I I 2 2 2 已知圆C:x y r r 0 ,点A x o,y o是圆C上一点,求以点A为切点的切线方程. 分析:易知以A x o, y o为切点的直线方程为:xx o yy o r2r 0 (2oii年江西高考理科第14题) 2 2 i 问题1:若椭圆笃爲1的焦点在x轴上,过点1,丄作圆x2 y21的切线,切 a b 2 点分别为A B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是___________ . 解:设A x1,y1 ,B x2, y2 ???点A B在圆x2 y21上,则 过点A为,屮的切线方程为L「X1X y1y 1. 过点B x2,y2的切线方程为L2: x2x y2y 1. 1 1 1 由于L1, L2经过点1, 则捲y1 1x y 1. 2 2 2 1 故刘,如,x2,y2均为方程x y 1的解。 1 经过A、B两点的直线方程AB : x — y 1 . 2 2 2 设椭圆务与1的右焦点为c,o,上顶点为o,b . a b 由于直线AB经过椭圆右焦点和上顶点。 K c 1,- 1 即b 2 2 2,22 a b c 5 2 2 故椭圆方程为—1. 5 4

由此题的解题方法,可得到如下推广: 结论一:(圆的切点弦方程) 线MN 的方程为:ax by r 2. x 2 问题2 :过椭圆一 4 2 y 1外一点P 1,2作椭圆的两切线,切点为M 、N 求直线MN 3 的方程. 1 a b 0外一点P X o ,y 0作椭圆的两切线,切点为 M 、N 则直线MN 的方程为:X o 2X 耳 1 a b 2 问题3:过抛物线y 4x 外一点P 1, 2作抛物线两切线,切点分别为 M 、N , 求直线MN 的方程。 解:设 M 为,% , N x 2, y 2 贝U 过 M 、N 的 切线方 程为 %y 2 x X 1 ,y 2y 2 x x ? 由于过M 、N 的切线都经过P 1, 2则 2y 1 2 X 1 1 ,2y 2 2 X 2 1 ???直线MN 的方程为 2y 2 X 1即X y 1 结论三:(抛物线的切点弦方程) 过抛物线y 2px p 0外一点P x 0, y 0作两切线,切点为 M 、N ,则直 线MN 的方程为yy 0 p x x 0 x_j X %y 1,X 2X 1 4 3 4 3 由于两切线都过P 1,2, 则小 %y 1 ① X 2X y 2y 1 ② 2y . 4 3 4 3 x N , 所以直线MN 的方程为: 这两式表示直线 — 1经过M 、 4 3 N 的切线方程分别为; 结论二:(椭圆的切点弦方 程) 过圆x y 2 r 2 r 0,外一点P a,b 作圆的两切线,切点为 M 、N ,则直 解:设 M ^,y 1 ,N x 2,y 2 则过 M 、 2 2 过椭圆冷厶 a 2 b 2

切线方程与切点弦方程

切线方程与切点弦方程 一、圆的切线方程 一、圆的方程为:(x - a)2+ (y - b)2= r2 1. 已知:圆的方程为:(x - a)2+ (y - b)2= r2, 圆上一点P(x0, y0)。 求过点P的切线方程 解:圆心C(a, b);直线CP的斜率:k1 = ( y0- b) / ( x0- a) 因为直线CP与切线垂直, 所以切线的斜率:k2 = -1/k1 = - (x0 - a) / (y0 - b) 根据点斜式, 求得切线方程: y - y0 = k2 (x - x0) y - y0 = [- (x0 - a) / (y0 - b)] (x - x0) 整理得:(x - x0)(x0 - a) + (y - y0)(y0 - b) = 0 (切线方程公式) 展开后: x0x - ax + ax0 + y0y - by + by0 - x02- y02= 0 (1) 因为点P在圆上, 所以它的坐标满足方程: (x0 - a)2+ (y0 - b)2= r2 化简: x02- 2ax0 + a2+ y02- 2by0 + b2= r2 移项: - x02- y02= -2ax0 - 2by0 + a2+ b2- r2(2) 由(2)代入(1), 得:x0x - ax + ax0 + y0y - by + by0 + (-2ax0 - 2by0 + a2+ b2- r2) = 0 化简:(x0x - ax - ax0 + a2) + (y0y - yb- by0 + b2) = r2 整理:(x0 - a)(x - a) + (y0 - b)(y - b) = r2 变式-1 已知:圆的方程为:(x - a)2+ (y - b)2= r2, 圆外一点P(x0, y0) 二、对于圆的一般方程:x2+ y2+ Dx + Ey + F = 0, 过圆上的点的切线方程. 2.已知:圆的方程为:x2+ y2+ Dx + Ey + F = 0, 圆上一点P(x0, y0) 解:圆心C( -D/2, -E/2 ) 直线CP的斜率:k1 = (y0 + E/2) / (x0 + D/2) 因为直线CP与切线垂直, 所以切线的斜率:k2 = -1/k1 = - (x0 + D/2) / (y0 + E/2) 根据点斜式, 求得切线方程: y - y0 = k2 (x - x0) y - y0 = [- (x0 + D/2) / (y0 + E/2)] (x - x0) 整理得:x0x + y0y + Dx/2 + Ey/2 - Dx0/2 - Ey0/2 -x02- y02= 0 (3) 因为点P在圆上, 所以它的坐标满足方程: x02+ y02+ Dx0 + Ey0 + F = 0 移项: - x02- y02= Dx0 + Ey0 + F (4)

圆锥曲线的切线方程及切点弦方程的应用

圆锥曲线的切线方程及切点弦方程的应用 张生 引例 给定圆2 22)()(r b y a x =-+-和点),(00y x P ,证明: (1)若点P 在圆上,则过点P 的圆的切线方程为2 00))(())((r b y b y a x a x =--+--; (2)若点P 在圆外,设过点P 所作圆的两条切线的切点分别为B A ,,则直线AB 的方程为2 00))(())((r b y b y a x a x =--+--。 高考链接 3. (2011江西)若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12 )作圆22 +=1x y 的切线, 切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 【答案】22 154 x y += (2013山东)过点(3,1)作圆 22 (1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( ) A .230x y +-= B .230x y --= C .430x y --= D .430x y +-= 【答案】A 过点)4,3(P 作圆1:2 2 =+y x O 的两条切线,切点分别为B A ,,点)0,0)(,(>>b a b a M 在直线AB 上,则b a 2 1+的最小值为 。6411+ 过椭圆14 92 2=+y x 上点P 作圆2:22=+y x O 的两条切线,切点分别为B A ,,过B A ,的直线l 与x 轴y 轴分别交于点Q P ,两点,则POQ ?的面积的最小值为 。 3 2 已知椭圆)1(12222>>=+b a b y a x ,圆2 22:b y x O =+,过椭圆上任一与顶点不重合的点P

高考★圆锥曲线★的基本公式推导

圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x 2换成xx 0,y 2 换成yy 0,x 换成(x+x 0)/2,y 换成(y+y 0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 12222=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=+b yy a xx 。 ③椭圆122 22=+b y a x 与直线0=++C Bx Ax 相切的条件是022222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 12222=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=-b yy a xx 。 ③椭圆122 22=-b y a x 与直线0=++C Bx Ax 相切的条件是02 2222=--C b B a A 【1-3】抛物线的切线方程: 物线 px y 22 = 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线 px y 22 =外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22 =与直线0=++C Bx Ax 相切的条件是AC pB 22 = 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为)(00x x k y y -=-, 联立方程,令 0=?,得到k 的表达式, 再代入原始式,最后得切线方程式1)()(22 02202020=+=+b y a x b yy a xx (注: k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、),(22y x ,中点P ),(00y x

高考★圆锥曲线★的基本公式推导(学长整合版)

圆锥曲线的几大大题特征公式:焦半径、准线、弦长、切线方程、弦中点公式、极线方程 令狐采学 /*另外,针对“计算不好”的同学,本人提供“硬解定理”供大家无脑使用。具体的请参考本目录下的【硬解定理的推导和使用】文章。*/ 圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x2换成xx0,y2换成yy0,x 换成(x+x0)/2,y 换成(y+y0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 122 22=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 120 20=+b yy a xx 。 ③椭圆 12 2 22=+b y a x 与直线0=++C Bx Ax 相切的条件是 022222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 122 22=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是

120 20=-b yy a xx 。 ③椭圆 12 2 22=-b y a x 与直线0=++C Bx Ax 相切的条件是 022222=--C b B a A 【1-3】抛物线的切线方程: 物线 px y 22= 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线px y 22=外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22=与直线0=++C Bx Ax 相切的条件是AC pB 22= 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为 )(00x x k y y -=-, 联立方程,令0=?,得到k 的表达式,再代入原 始式,最后得切线方程式1)()(22 02202020=+=+b y a x b yy a xx (注:k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、 ),(22y x ,中点 P ),(00y x 则有???????=+=+) 2(.1)1(,122 22 2222 1221 b y a x b y a x ?)2()1(-,得.022 22122221=-+-b y y a x x 22 12121212a b x x y y x x y y -=++?--∴ 又.22,0 0021211212x y x y x x y y x x y y k MN ==++--= 2 200a b x y k MN -=?∴ (弦中点公式的椭圆基本表达式。双曲线则是

过一点求曲线的切线方程的三种类型

过一点求曲线的切线方程的三种类型 舒云水 过一点求曲线的切线方程有三种不同的类型,下面举例说明﹒ 1.已知曲线)(x f y =上一点))(,(00x f x P ,求曲线在该点处的切线方程﹒ 这是求曲线的切线方程的基本类型,课本上的例、习题都是这种类型﹒其求法为:先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率,后写出切线方程)(0x f y -=)(0x f ')(0x x -,并化简﹒ 例1 求曲线33)(23+-=x x x f 在点)1,1(P 处的切线方程﹒ 解:由题设知点P 在曲线上, ∵x x y 632-=',∴曲线在点)1,1(P 处的切线斜率为3)1(-='f ,所求的切线方程为)1(31--=-x y ,即43+-=x y ﹒ 2. 已知曲线)(x f y =上一点))(,(11x f x A ,求过点A 的曲线的切线方程﹒ 这种类型容易出错,一般学生误认为点A 一定为切点,事实上可能存在过点A 而点A 不是切点的切线,如下面例2,这不同于以前学过的圆、椭圆等二次曲线的情况,要引起注意,这类题型的求法为:设切点为))(,(00x f x P ,先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率(用0x 表示),写出切线方程 )(0x f y -=)(0x f ')(0x x -,再将点A 坐标),(11y x 代入切线方程得)(01x f y -=)(0x f ')(01x x -,求出0x ,最后将0x 代入方程

)(0x f y -=)(0x f ')(0x x -求出切线方程﹒ 例2 求过曲线x x y 23-=上的点)1,1(-的切线方程﹒ 解:设切点为点)2,(0300x x x -,232-='x y ,切线斜率为2320-x , 切线方程为))(23()2(020030x x x x x y --=--﹒ 又知切线过点)1,1(-,把它代入上述方程,得 )1)(23()2(100030x x x x --=---﹒ 解得10=x ,或2 10-=x ﹒ 所求切线方程为)1)(23()21(--=--x y ,或)21)(243()181(+-=+--x y ,即02=--y x ,或0145=-+y x ﹒ 上面所求出的两条直线中,直线02=--y x 是以)1,1(-为切点的切线,而切线0145=-+y x 并不以)1,1(-为切点,实际上它是经过了点)1,1(-且以)87,21(-为切点的直线,如下图所示﹒这说明过曲线上一点的切线,该点未必是切点﹒ 3. 已知曲线)(x f y =外一点))(,(11x f x A ,求过点A 作的曲线的切线方程﹒ 这种类型的题目的解法同上面第二种类型﹒ 例3 过原点O 作曲线6324+-=x x y 的切线,求切线方程﹒(2009年全国卷Ⅰ文21题改编 )

圆的切点弦方程

2 圆的切点弦方程 1已知圆的方程x 2 y 2 r 2,求经过圆上一点 M (x °,y °)的切线方程。 【方法】1.设出直线,再求解; 2. 利用轨迹思想,用向量或平面几何知识求解。 究竟是什么关系呢下面我们进行探究: ???点M 的坐标(X o , y o )满足直线MA 与 MB 的方程, 、当点M 在圆 O 上时,直线L 是圆的切线。 二、当点M 在圆 O 外时, 1.直线 L 不是圆 O 的切线, F 面证明之: ???圆心 O 到L 的距离为d .2 2 ,由M (X o , y o )在圆O 外,得 一 x °2 X y 2 y o r ,故直线L 与圆0相交. 2.此时直线L 与过点M 的圆的切线又是什么关系呢 首先研究L 的特征: 易知: OM L 。 r 2 2 r 2 2 y o 2 OA ON OM ,(N 为 L 与 OM 的交点) 从而OA MA MA 为圆的一条切线, 故直线L 为过点M 的圆的两条切线的两个切点所在的直线。 事实上(另证), 如图1,设过点M 的圆O 的两条切线为L i ,L 2,切点分别为 A B, 则直线MA IXM y^ r 2,直线 MB:X 2X y 2y r 2 【结论1】过圆x 2 y 2 r 2上一点M (X 。,y 。)的切线方程 :XX o yy o r 。 【问题】对于坐标平面内任一点 M (x o , y o ),直线L : X o X y o y 2 2 r 与圆O : x

2 X i X。y』o r … 2, X2X0 y i y o r 由此可见A B的坐标均满足方程x0x y0y r2, 由于两点确定一条直线 ???直线AB的方程为X o X y o y r2。 所以此时的直线L是经过点P的切点弦AB所在直线的方程,而不是圆0的切线。 【注】上述点M直线L实质上是射影几何中的极点和极线。 特别的,当M在圆上时,极线即为切线。 三、当点M在圆0内时, 1.直线L也不是圆0的切线。下面给出证明: 2 ___________________________________________________________ ???圆心0到L的距离为d , r,由M(X o,y°)在圆0内,得Jx°2 y。2 r ..X2 y2 d r故直线L与圆0相离. 丿 2.此时直线L与圆的切线的关系又如何呢y V L o 首先研究L的特征: 由上述探讨过程易知, 直线L 0M 图2 此外,L 一定过点P ( P为两切线的交点,AB 0M, 从而L就在图2中过点P且与AB平行的位置处。 事实上(另证), ???直线L的斜率k i 匹,而直线0M勺斜率k om 山, y o X o ? L 0M 一方面,过点M与OM垂直的直线L0方程为(x x0)x0 (y y0)y0 0, 即X0X y°y X02y。2

课题∶圆锥曲线的切线方程和切点弦方程

课题:圆锥曲线的切线方程和切点弦方程 主讲人: 安庆一中 李治国 教学目标: (1).掌握圆锥曲线在某点处的切线方程及切点弦方程。 (2).会用切线方程及切点弦方程解决一些问题。 (3)通过复习渗透数形结合、类比的思想,逐步培养学生分析问题和解决问题的能力。 (4) 掌握曲线与方程的关系。教学重点: 切线方程及切点弦方程的应用 教学难点: 如何恰当使用切线方程及切点弦方程 教学过程: 1. 引入: 通过09年安徽省高考题及近几年各省考察圆锥曲线的实例引出本节课。 2. 知识点回顾: 1. 2. 3. 4. 圆锥曲线切线的几个性质: 性质1 过椭圆的准线与其长轴所在直线的交点作椭圆的两条切线,则切点弦长等于该椭圆的通径.同理:双曲线,抛物线也有类似的性质 性质2 过椭圆的焦点F 1的直线交椭圆于A ,B 两点,过A ,B 两点作椭圆的切线交 于点P ,则P 点的轨迹是焦点 的对应的准线,并且 同理:双曲线,抛物线也有类似的性质 3. 例题精讲: 练习1: 抛物线 与直线 围成的封闭的图形的面积为 ,若直线l 与抛物线相 切,且平行于直线 ,则直线l 的方程为 例1: 设抛物线 的焦点为F ,动点P 在直线 22200 (,)x y r M x y +=过圆 上一点 的切线方程:200xx yy r +=00221xx yy a b +=22 0022(,)1x y P x y a b +=设为椭圆上的点,则过该点的切线方程为:22 0022 (,)1x y P x y a b -=设为双曲线上的点,则过该点的切线方程为:00221xx yy a b -=00(,)2P x y px =2设为抛物线y 上的点,则过该点的切线方程为:00() yy p x x =+1PF AB ⊥1F :20 l x y --=2:C y x =2(0)y ax a =>1x =43260x y -+=

圆锥曲线的切线切点弦总结归纳(转换坐标系法)

圆锥曲线的切线、切点弦推论总结归纳 1、椭圆切线推论:已知椭圆C 方程22 221x y a b +=(a>b>0),C 上一点P (00,y x ),过点P 且与C 相 切的切线L 方程为:12020=+b y y a x x 。 122 22=+b y a x '2'2()()1x y += 推导:如图所示,当切线'L 斜率存在且不为0时(即切线L 斜率存在且不为0),设'OP 、'L 的斜率 分别为1k ,2k , 0 01000 0y ay b k x bx a -==-,由圆的切线性质易知'OP ⊥'L ,即121k k ?=-,∴0210 1bx k k ay -==-,∴由点斜式易得'L 方程为:''0000()y bx x y x b ay a - =--,又 '',x y x y a b ==,∴ 0000()y bx x y x b b ay a a -=--,即 为椭圆切线L 方程,化简如下:0000y y bx x x b ay a --=-?,000022()()y y y x x x b a --=-,22 00002222x x y y x y a b a b +=+,又 点P(00,y x )是椭圆上一点,∴22 00 221x y a b +=,即切线L 方程化简后为:0022x x y y a b +=1; 易知当切线L 斜率为0时,P (0,b ±),切线L 方程为:y b =±,满足上式;当切线L 斜率不存在时,P (,0a ±)切线L 方程为:x a =±,也满足上式。综上,推导完毕。 L b y y = ' y P (00,y x ) x O 转换坐标系 令b y y a x x = ='', ),( 0'b y a x P O a x x = ' ' L

圆锥曲线的切线方程

圆锥曲线的切线 方程 点击此处添加副标题 作者:鲜海东微信:xhd1438488322

11),(1),()0(13))(())((),())(())((),(),()()(2),(),(1202022220020200022 222000020000002222000020000222=+=+=+=+=--+--=--+--=-+-=+=+=+b y y a x x M b y a x y x M b y y a x x y x M b a b y a x r b y b y a x a x M y x M r b y b y a x a x y x M y x M r b y a x r y y x x M y x M r y y x x y x M r y x 弦所在直线方程为:点的引切线有两条,过两切的外部时,过在椭圆当切线方程为:上一点>>:过椭圆结论所在直线方程: 点切线有两条:切点弦在圆外,过若切线方程:则过一点 为圆上,若的方程::若圆心不在原点,圆结论。 弦所在直线方程为,过两切点的 点引切线有且只有两条在圆外时,过当。 的切线方程为上一点:经过圆结论

。两点的直线方程为、所以过两切点,满足直线现观察以上两个等式,发、以有是两条切线的交点,所。又因、: 两点的切线方程分别为、可知过由为引两条切线,切点分别外一点>>()设过椭圆(即由点斜式得切线方程为,得求导,得的两边对)大学隐函数求导)(证明: 11),(),,(.11),(11)1().,(),,(),()0121),(,02211(20202020221120220220120100222221212211002222202000202 0020202222 22=+=+=+=+=+=+=+=+--==--==='='+=+b y y a x x B A b y y a x x y x B y x A b y y a x x b y y a x x y x M b y y a x x b y y a x x B A y x B y x A y x M b a b y a x b y y a x x x x y a x b y y y a x b x x y b y y a x x b y a x

圆锥曲线的切线方程和切点弦方程

课题:圆锥曲线的切线方程和切点弦方程 教学目标: (1).掌握圆锥曲线在某点处的切线方程及切点弦方程。 (2).会用切线方程及切点弦方程解决一些问题。 (3)通过复习渗透数形结合、类比的思想,逐步培养学生分析问题和解决问题的能力。 (4) 掌握曲线与方程的关系。 教学重点: 切线方程及切点弦方程的应用 教学难点: 如何恰当使用切线方程及切点弦方程 教学过程: 1. 引入: 通过09年安徽省高考题及近几年各省考察圆锥曲线的实例引出本节课。 2. 知识点回顾: 1. 2. 3. 4. 圆锥曲线切线的几个性质: 性质1 过椭圆的准线与其长轴所在直线的交点作椭圆的两条切线,则切点弦长等于 该椭圆的通径.同理:双曲线,抛物线也有类似的性质 性质2 过椭圆的焦点F 1的直线交椭圆于A ,B 两点,过A ,B 两点作椭圆的切线交 于点P ,则P 点的轨迹是焦点 的对应的准线,并且 同理:双曲线,抛物线也有类似的性质 3. 例题精讲: 练习1: 抛物线 与直线 围成的封闭的图形的面积为 ,若直线l 与抛物线相切,且平行于直线 ,则直线l 的方程为 例1: 设抛物线 的焦点为F ,动点P 在直线 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.求△APB 22200 (,)x y r M x y +=过圆 上一点 的切线方程:200xx yy r +=00221xx yy a b +=220022(,)1x y P x y a b +=设为椭圆上的点,则过该点的切线方程为:22 0022(,)1x y P x y a b -=设为双曲线上的点,则过该点的切线方程为: 00221xx yy a b -=00(,)2P x y px =2设为抛物线y 上的点,则过该点的切线方程为: 00() yy p x x =+1PF AB ⊥1F :20 l x y --=2:C y x =2(0)y ax a =>1x =43 260x y -+=

相关文档
最新文档