含风电场的电力系统无功规划优化

含风电场的电力系统无功规划优化
含风电场的电力系统无功规划优化

风电场综合统计指标计算公式

风电综合统计指标计算公式 1、平均风速 平均风速是指统计周期内风机轮毂高度处瞬时风速的平均值。取统计周期内全场风机或场内代表性测风塔的风速平均值,即 1 1n i i V V n ==∑ 单位:米/秒(/m s ) 式中: V —统计周期内的风电场平均风速,/m s ; n —统计周期内的全场风机的台数或代表性测风塔的个数; i V —统计周期内的单台风机或单个代表性测风塔的平均风速,/m s 。 2、平均温度 平均温度是指统计周期内风机轮毂高度处环境温度的平均值,即 1 1n i i T T n ==∑ 单位:摄氏度(o C ) 式中: T —统计周期内的风电场平均温度,o C ; n —统计周期内的记录次数; i T —统计周期内的第i 次记录的温度值,o C 。 3、平均空气密度 平均空气密度是指统计周期内风电场所处区域空气密度的平均值,即 P RT ρ= 单位:千克/立方米(3 /kg m ) 式中: ρ—统计周期内的风电场平均空气密度,3 /kg m ; P —统计周期内的风电场平均大气压强,a P ; R —气体常数,取287/J kg K ?;

T —统计周期内的风电场开氏温标平均绝对温度,K 。 4、 平均风功率密度 平均风功率密度是指统计周期内风机轮毂高度处风能在单位面积上所产生的平均功率,即 3 1 12n i wp i D V n ρ==∑()() 单位:瓦特/平方米(2 /W m ) 式中: wp D —统计周期内的风电场平均风功率密度,2 /W m ; n —统计周期内的记录次数; ρ—统计周期内的风电场平均空气密度,3/kg m ; 3 i V —统计周期内的第i 次记录平均风速值的立方。 5、有效风速小时数 有效风速小时数是指统计周期内风机轮毂高度处介于切入风速与切出风速之间的风速累计小时数,简称有效风时数,即 n i i V V V V T T == ∑有效风时数 单位:小时(h ) 式中: T 有效风时数 —统计周期内的风电场有效风时数,h ; 0V —风机的切入风速,/m s ; n V —风机的切出风速,/m s ; i V T —统计周期内出现介于切入风速(0V )和切出风速(n V ) 之间的风速小时数,h 。 6、风机可利用率 风机可利用率是指统计周期内除去风机因定期维护或故障时数后剩余时数与总时数除去非设备自身责任停机时数后剩余时数的百分比,即 (1)100%A B T B η-=- ?-可利用率 式中: η可利用率—统计周期内的风电场风机可利用率;

风电场无功补偿方法研究

风电场无功补偿方法研究 摘要:随着风电技术的日益成熟,风力发电凭借其独有的优势,成为非化石燃料发电的重要来源。目前在风电接入电力系统方面,国内外学者进行了大量的探索和研究,并取得了诸多研究成果,但仍然存在着一些问题,如随着风电场规模的逐步扩大和风电容量在电网中的比例的逐渐增加,风电并网运行给区域电网所带来的影响逐渐暴露出来。作为新能源的重要组成部分,风能是一种可再生且无污染的能源,对风能的开发和利用得到了世界各国越来越多的关注和重视,与风电相关的技术和产业正在迅猛发展。文章分析了风电场中的无功补偿技术, 总结了风电场无功补偿的特点,对无功补偿的方式进行了比较,提出了风电场中无功补偿的要点。 关键词:风电场,无功补偿,补偿要点 一.国内风力发电发展概况 我国是一个人口众多,资源相对不足的国家,能源利用方面结构又极不合理。有数据显示,截止到2008 年,尽管我国发电总装机容量达到7.92 亿千瓦,位居世界第二。但其中以煤为主的火电机组占比高达80%,电源结构不合理[8]。同时,由于我国正处在工业化和城镇化加快发展的阶段,能源消耗较高,消费规模不断扩大,特别是目前我们的经济增长方式还是高投入、高消耗、高污染的粗放型,这就加剧了能源的供求矛盾

和对环境的污染。如 2008 年我国的石油对外依存度已达49.8%,我国二氧化硫排放量已居世界第一,二氧化碳排放量为世界第二,能源安全和环境问题正成为制约经济和社会发展的重要瓶颈。有关专家也已指出,随着我国工业化进程的继续深入,经济发展面临的能源、环境压力将会更大,加快发展替代能源已成为当务之急。 由此可见,能源问题已经成为制约经济和社会发展的重要因素,要解决我国的能源问题,一个最好的出路就是发展新的清洁的可再生能源,其中合理的开发和利用风能成为解决问题的一种最有效的方法。国家发改委能源研究所原所长周风起认为:“风电是目前最具有竞争力、最可能实现商业化的可再生能源品种。太阳能目前还太贵,生物质能的产业化还很落后。”此外,利用风力发电的优势还主要表现在:太阳能的有效利用还与天气有关.而风机却不受天气影响可以昼夜不停地工作,而且分布也更为广泛。我国是一个风能资源比较丰富的国家,一直以来,我国风电装机容量在飞速增加的同时,风电并网容量却远远落后于装机量,有数据显示,截至2009 年,在全国各种发电方式总发电量中,风电只占了其中很小的一部分,仅为 0.37%。最近两年我国风电爆发式增长中最为突出的瓶颈已由原来的电价偏低和风机成本高等原因已经被风电场建设和电网建设的不协调、我国开发风电模式和国外不同及部分风机质量达不到并网技术的要求等原因所取代,而这些原因引起的并网困难也导致了我国近三分之一的风机不能并网甚至长期处于闲置状态。由此可以看出,如果不降低风电场并网运行时对电网的影响,那么风力发电很难

电力系统无功优化的研究现状与算法综述

电力系统无功优化的研究现状与算法综述 学号:201431403083 姓名:郭宗书 摘要:对我国电力系统无功优化问题的研究现状和无功优化的一般模型进行了简要介绍,并在一般模型的基础上总结了目前已有的传统算法和现代算法,进一步分析了电力系统无功优化领域存在的问题,较全面地反映了这一科研领域的发展现状。 关键词电力系统无功优化现状算法 0 引言 最近几年来,伴随着我们国家的电力工业不断发展壮大,达到无功优化也已经成为了电力系统控制与运行的重点研究对象。在电力市场条件下,供电电压质量是电力系统电能质量的重要指标之一,而供电电压质量的好坏主要取决于电力系统无功潮流分布是否合理,所以,无功优化是合理分布电力系统无功潮流以及保证系统安全经济运行的有效手段。 所谓的无功优化,就是指在给定的系统结构参数和负荷的情况下,通过对一些特定控制变量进行优化,并在一定的约束条件下,使得系统的一个或者是多个性能的指标都能够实现最佳时的一种无功调节方法。 无功优化问题是从最优潮流的发展中逐渐分化出的一个分支问题。建立在严格的数学模型上的最优潮流模型,首先由法国的电气工程师Carpentier于20世纪60年代初期提出[2,3]。但随着电力市场化需求的不断增长,充分利用电力系统的无功优化手段,既满足客户各种用电需求又能保证系统安全经济运行,成为一直以来国内外电力工作者们致力研究解决的问题。而无功优化问题是一个复杂的非线性规划问题,由于其目标函数与约束条件的非线性、控制变量的离散性同连续性混合等特点,目前尚无一种直接、可行、快速完善的无功优化方法。因此,无功优化问题的核心就在于对非线性函数处理、算法收敛、处理优化问题中的离散变量三个方面。 当下,国内外学者根据不同的需求,建立了不同的无功模型,主要分为考虑网损及电压质量[4,5]、考虑负荷变化影响[6]、考虑分布式电源接入[7]和电力市场环

PSASP电力系统分析综合程序简介

电力系统分析综合程序简介 A Brief Introduction of PSASP? 中国电力科学研究院 2011年5月

目录 PSASP电力系统分析综合程序简介............................................................................................- 1 -PSASP图模一体化平台(7.0版)..............................................................................................- 3 -PSASP潮流计算程序....................................................................................................................- 6 -PSASP暂态稳定计算程序............................................................................................................- 8 -PSASP短路计算程序................................................................................................................. - 10 -PSASP最优潮流和无功优化计算程序..................................................................................... - 12 -PSASP静态安全分析计算程序................................................................................................. - 14 -PSASP网损分析计算程序......................................................................................................... - 15 -PSASP静态和动态等值计算程序............................................................................................. - 16 -PSASP用户自定义模型和程序接口..........................................................................................- 17 -PSASP直接法稳定计算程序..................................................................................................... - 19 -PSASP小干扰稳定分析程序......................................................................................................- 20 -PSASP电压稳定分析程序......................................................................................................... - 22 -PSASP继电保护整定计算程序................................................................................................. - 23 -PSASP线性/非线性参数优化程序 ........................................................................................... - 25 -PSASP谐波分析程序..................................................................................................................- 26 -PSASP分布式离线计算平台..................................................................................................... - 28 -PSASP电网风险评估系统......................................................................................................... - 30 -PSASP暂态稳定极限自动求解程序......................................................................................... - 32 -PSASP负荷电流防冰融冰辅助决策系统................................................................................. - 33 -

风电整定计算说明

风电场整定计算说明 风电场一般由进线、升压变、35kV母线、集电线路、接地变、SVG无功补偿装置、站用变、箱变、风机发电机。所涉及到的电压风机一般有主变高压侧(220kV、110kV),主变低压侧(35kV),SVG连接变低压侧(10kV),箱变低压侧(690V),站用变低压侧(0.4kV)。 一般风电场一次接线图如下所示: 整定计算依据: DL/T 684-2012《大型发电机变压器继电保护整定计算导则》 DL/T 584-2007《3kV~110kV电网继电保护装置运行整定规范》 GB 14285-2006《继电保护和安全自动装置技术规程》 保护装置厂家说明书、设备参数和电气设计图纸 整定计算参考资料: 《大型发电机组继电保护整定计算与运行技术》高春如 《发电厂继电保护整定计算及其运行技术》许正亚 《宁夏电网2015年继电保护整定方案及运行说明》 关于风电场继电保护整定计算与核算,由于目前风电机组短路电流计算模型尚不成熟,现阶段在保护定值计算中都将将风电场当做负荷对待。随着风电、光伏对系统的影响越来越大,因此在电网设备选择、校验和继电保护配置整定时,应该考虑风电对故障时短路电流的影响,为此特制定以下原则: 1风电场输电线保护整定原则:

风电场输电线:指系统与风电场升压变压器高压侧母线连接的输电线路 1.1配置:风电场输电线应为光差保护配置。 整定原则:与其它同电压等级的常规输电线路保护整定原则相同。 1.2 主保护: 两侧主保护正常投入; 1.3 后备保护: 1.3.1 系统侧: 后备保护均投入并带方向;方向由母线指向线路,整定原则按照相应规程执行。 1.3.2 风电场侧110kV 及以上线路: 单回线零序电流保护、距离后备保护考虑与系统侧其它110kV 馈线适当配合后可投入运行,零序I段退出运行,距离I 段可投入,整定原则按照相应规程执行。双馈式异步发电机的暂态波形含有非工频的衰减交流分量,导致距离元件、相突变量方向元件及选相元件等工作不正常,使距离I 段保护会超范围动作,建议以双馈式异步发电机为主的风电场送出线路距离I 段退出运行。 双回线整定原则同系统双回并列短线路负荷侧后备保护整定原则,零序I 段退出。 1.3.3 风电场侧35kV 线路: 速断保护退出;投入限时速断及过电流保护,不带方向,按与风电场升压变高压侧过流保护配合。 1.4 重合闸: 两侧均投入。一侧无电压检定,另一侧同期检定。对未配置线路抽取PT 的,尽快完善设备,以实现有条件重合闸方式。没完善前可暂时退出重合闸。 2 风电场升压变保护整定原则: 风电场升压变:指接入各台风机组的汇集线与系统之间配置的两卷或三卷变压器 2.1 配置: 变压器差动保护;两段式过电流保护,可带方向。 2.1.1 主保护整定原则: 差动保护整定原则按照整定规程整定; 2.1.2 高压侧后备保护: 一段带方向,方向由高压母线指向变压器,考虑与变压器低压侧带方向段过流配合;一段不带方向,作为变压器的总后备,考虑与高压侧出线、低压侧不带方向过流配合,保证升压变低压母线故障时灵敏度≥1.2; 零序保护应作为系统的后备保护,由调度下发。根据《3kV~110kV电网继电保护装置运行规程》DLT584-2007;对于风电等新能源中的主变等与电网配合有关的电力变压器,中性点直接接地的变压器零序电流保护主要作为变压器内部、接地系统母线和线路接地故障的后备保护,一般由两段零序电流保护组成。 变压器零序电流保护中,应有对本侧母线接地故障灵敏度系数不小于1.5的保护段。 对于单侧中性点直接接地变压器的零序电流I段电流定值,按保母线有1.5灵敏度系数整定,动作时间与线路零序电流I段或II段配合,动作后跳母联断路器,如有第二时间,则可跳本侧断路器。 零序电流II段电流和时间定值应与线路零序电流保护最末一段配合,动作后跳变压器各侧断路器,如有两段时间,动作后以较短时间跳本侧(或母联断路器),以较长时间跳变压器各侧断路器。 2.1.3 低压侧后备保护: 一段带方向,方向由变压器指向低压母线,考虑与低压侧出线的速断或限时速断配合,

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整 由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。要使各节点电压维持在额定值是不可能的。所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。 由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。这是维持电力系统电压水平的必要条件。 一、无功功率负荷和无功功率损耗 1.无功功率负荷 无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。 2.电力系统中的无功损耗 (1)变压器的无功损耗。变压器的无功损耗包括两部分。一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为1%~2%。因此励 磁损耗为 0/100Ty TN Q I S V (Mvar)(5-1-1)

另一部分为绕组中的无功损耗。在变压器满载时,基本上等于短路电压k U 的百分值,约 为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TN U S S Q S V (Mvar)(5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。 由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。 (2)电力线路的无功损耗。电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。大于300km 时,线路为电容性的。 二、系统综合负荷的电压静态特性 电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。电力系统综合负荷的电压静态

电力系统的无功优化与无功补偿

电力系统的无功优化和无功补偿 摘要:电力系统的无功优化和无功补偿是提高系统运行电压,减小网损,提高系统稳定水平的有效手段。本文对当前国内外的无功优化和无功补偿进行了总结,对目前无功补偿和优化存在的问题进行了一定的探讨和研究。 关键词:无功优化无功补偿非线性网损电压质量 1前言 随着国民经济的迅速发展,用电量的增加,电网的经济运行日益受到重视。降低网损,提高电力系统输电效率和电力系统运行的经济性是电力系统运行部门面临的实际问题,也是电力系统研究的主要方向之一。特别是随着电力市场的实行,输电公司(电网公司)通过有效的手段,降低网损,提高系统运行的经济性,可给输电公司带来更高的效益和利润。电力系统无功功率优化和无功功率补偿是电力系统安全经济运行研究的一个重要组成部分。通过对电力系统无功电源的合理配置和对无功负荷的最佳补偿,不仅可以维持电压水平和提高电力系统运行的稳定性, 而且可以降低有功网损和无功网损,使电力系统能够安全经济运行。 无功优化计算是在系统网络结构和系统负荷给定的情况下,通过调节控制变量(发电机的无功出力和机端电压水平、电容器组的安装及投切和变压器分接头的调节)使系统在满足各种约束条件下网损达到最小。通过无功优化不仅使全网电压在额定值附近运行,而且能取得可观的经济效益,使电能质量、系统运行的安全性和经济性完美的

结合在一起,因而无功优化的前景十分广阔。无功补偿可看作是无功优化的一个子部分,即它通过调节电容器的安装位置和电容器的容量,使系统在满足各种约束条件下网损达到最小。 2无功优化和补偿的原则和类型 2.1无功优化和补偿的原则 在无功优化和无功补偿中,首先要确定合适的补偿点。无功负荷补偿点一般按以下原则进行确定: 1)根据网络结构的特点,选择几个中枢点以实现对其他节点电压的控制; 2)根据无功就地平衡原则,选择无功负荷较大的节点。 3)无功分层平衡,即避免不同电压等级的无功相互流动,以提高系统运行的经济性。 4)网络中无功补偿度不应低于部颁标准0.7的规定。 2.2无功优化和补偿的类型 电力系统的无功补偿不仅包括容性无功功率的补偿而且包括感性无功功率的补偿。在超高压输电线路中(500kV及以上),由于线路的容性充电功率很大,据统计在500kV每公里的容性充电功率达1.2Mvar/km。这样就必须对系统进行感性无功功率补偿以抵消线路的容性功率。如实际上,电网在500kV的变电所都进行了感性无功补偿,并联了高压电抗和低压电抗,使无功在500kV电网平衡。 3 输配电网络的无功优化(闭式网)

风电场无功补偿相关问题及解决办法

[转载]风电场无功补偿相关问题及解决办法(一) 一般来说,风电场的无功功率需求来自于两个方面:风机与变压器。其中变压器的无功损耗又分为正常运行时的绕组损耗和空载运行时的铁心损耗。无论是否运行,只要变压器与主网联接,铁心的励磁无功损耗总是存在的。 1.风力发电系统简介 随着经济的快速增长和社会的全面进步,我国的能源供应和环境污染问题越来越突出。开发和利用可再生能源的需求更加迫切。风能作为可再生能源中最重要的组成部分和唯一经济的发电方式,由于其清洁无污染、施工周期短、投资灵活、占地少,具有良好的社会效应和经济效益,已受到世界各国政府的高度重视。随着风力发电技术的快速发展和国家在政策上对可再生能源发电的重视,我国风力发电建设已进入了一个快速发展的时期。 我国风资源较丰富,但适合大规模开发风电的地区一般都处于电网末端,由于此处电网网架结构较薄弱,因此大规模风电接入电网后可能会出现电网电压水平下降、线路传输功率超出热极限、系统短路容量增加和系统暂态稳定性改变等一系列问题。随着风电场规模的增大,风电场与电网之间的相互影响越来越大而系统对风力发电系统的要求也越来越严格。对风电系统主要的两个要求是正常运行状态下的无功功率控制和故障状态下的穿越能力。 一般来说,风电场的无功功率需求来自于两个方面:风机与变压器。其中变压器的无功损耗又分为正常运行时的绕组损耗和空载运行时的铁心损耗。无论是否运行,只要变压器与主网联接,铁心的励磁无功损耗总是存在的。 风力发电系统中,风力发电机是能量转换的核心部分,风力发电机系统按照发电机运行的方式来分,主要有恒速恒频风力发电系统和变速恒频风力发电系统两种。 对于恒速恒频发电机组,普遍采用普通异步发电机,这种发电机正常运行在超同步状态,转差率s 为负值,电机工作在发电机状态,且转差率的可变范围很小(s<5%),风速变化时发电机转速基本不变。在正常运行时无法对电压进行控制,不能象同步发电机一样提供电压支撑能力,不利于电网故障时系统电压的恢复和系统稳;发出的电能也随风速波动而敏感波动,若风速急剧变化,感应电机消耗的无功功率随着转速的变化而不断变化。由于恒速恒频发电机组自身不能控制无功交换并且需要吸收一定数量的无功功率,因此通常在机组出口端并联电容器组,但是单纯地依赖常规的补偿电容器是无法满足无功功率补偿要求,可能会引起风电机组发出电能质量问题,如电压闪变、无功波动以及故障条件下的穿越能力。因此,恒速恒频发电机组需要静止无功补偿装置来优化其在正常条件和故障状态下的运行。在工程中通常采用静止无功补偿器SVC或STATCOM来进行无功调节,采用软起动来减小起动时发电机的电流。恒速恒频发电机组适合用于小功率,通常不高于600 kW的系统。

风电场电量计算公式

风电场电量计算公式 单位:MWh 1.关口表计量电量 1)上网电量 251正向A总(A+) 2)用网电量 251反向A总(A-) 3)送网无功 251正向R总(R+) 4)用网无功 251反向R总(R-) 2.发电量:是指每台风力发电机发电量的总和。 1)表底读数 (312A+)+(313A+)+(314A+)+(315A+)+(316A+)+(317A+) 2)日用量 (今日表底读数-昨天表底读数)*350*60*0.001(即*21) 3)月累计今日日用量+昨天月累计 4)年累计今日日用量+昨天年累计 3.上网电量:风电场与电网的关口表计计量的风电场向电网输送的电能。 1)表底读数 251A+ 2)日用量 (今251A+)-(昨251A+) 3)月累计今日日用量+昨天月累计 4)年累计今日日用量+昨天年累计 4.用网电量:风电场与电网的关口表计计量的电网向风电场输送————————————————————————————————————————————————————— 的电能。 1)表底读数 251A- 2)日用量 (今251A-)-(昨251A-)

3)月累计今日日用量+昨天月用量 4)年累计今日日用量+昨天年累计 5.站用电量 1)表底读数 361A+ 2)日用量 (今日表底读数-昨天表底读数)*350*20*0.001(即*7) 3)月累计今日日累计+昨天月累计 4)年累计今日日累计+昨天年累计 注意:现在算出的单位是Mwh,运行日志上的单位是万kWh,要将算出的数小数点前移一位(如:427Mwh=42.7万kWh) *厂用电率:风电场生产和生活用电占全场发电量的百分比。 厂用电率=(厂用电量日值?发电量日值)×100 =(0.161?20.02)×100 *风电场的容量系数:是指在给定时间内该风电场发电量和风电场装机总容量的比值 容量系数=发电量日值?(50×2×24) 等效利用小时数也称作等效满负荷发电小时数。 *风电机等效利用小时数(等效满负荷发电小时数):是指某台风电机发电量折算到该风电机满负荷的运行小时数。 ————————————————————————————————————————————————————— 公式为:风电机等效利用小时数,发电量,额定功率 *风电场等效利用小时数(等效满负荷发电小时数):是指某风电场发电量折算到该场满负荷的运行小时数。

漫谈电力系统无功功率

漫谈电力系统无功功率 目前世界范围内掀起环境保护的热潮,电力系统是一种的特定环境,公用电网中出现的无功功率,是电网本身的运行规律所决定,但它给电网运行带来了许多麻烦。无功功率是一种既不能作有功,但又会在电网中引起损耗,而且又是不能缺少的一种功率。 在实际电力系统中,异步电动机作为传统的主要负荷使电网产生感性无功电流;电力电子装置大多数功率因数都很低,导致电网中出现大量的无功电流。无功电流产生无功功率,给电网带来额外负担且影响供电质量。因此,无功功率补偿(以下简称无功补偿)就成为保持电网高质量运行的一种主要手段之一,这也是当今电气自动化技术及电力系统研究领域所面临发展的一个重大课题,且正在受到越来越多的关注。 设置无功补偿电容器是补偿无功功率的传统方法,目前在国内外均获广泛应用。电容器与网络感性负荷并联,以并联电容器补偿无功功率具有结构简单、经济方便等优点,但其阻抗是固定的,故不能跟踪负荷无功需求的变化,即不能实现对无功功率的动态补偿。 随着电力系统的发展,要求对无功功率进行动态补偿,从而产生了同步调相机(Synchronous Condenser--SC)。它是专门用来产生无功功率的同步电机,在过励磁或欠励磁的情况下,能够分别发出不同大小的容性或感性无功功率。自20世纪2、30年代以来的几十年中,同步调相机在电力系统中作为有源的无功补偿曾一度发挥着主要作用,所以被称为传统的无功动态补偿装置。然而,由于它是旋转电机,运行中的损耗和噪声都比较大,运行维护复杂,而且响应速度慢,难以满足快速动态补

偿的要求。 20世纪70年代以来,同步调相机开始逐渐被静止型无功补偿装置(Static Var Compensator--SVC)所取代,目前有些国家已不再使用同步调相机。早期的静止无功补偿装置是饱和电抗器(Saturated Reactor--SR)型的,1967年英国GEC公司制成了世界上第一批该型无功补偿装置。饱和电抗器比之同步调相机具有静止、响应速度快等优点;但其铁芯需磁化到饱和状态,因而损耗和噪声还是很大,而且存在非线性电路的一些特殊问题,又不能分相调节以补偿负荷的不平衡,所以未能占据主流。电力电子技术的发展及其在电力系统中的应用,将晶闸管的静止无功补偿装置推上了无功补偿的舞台。1977年美国GE公司首次在实际电力系统中演示运行了晶闸管的静止无功补偿装置。1978年此类装置投入实际运行。随后,世界各大电气公司都竟相推出了各具特色的系列产品。近10多年来,占据了静止无功补偿装置的主导地位。于是静止无功补偿装置(SVC)成了专指使用晶闸管的静止无功补偿装置,包括晶闸管控制电抗器(Thyristor ontrolled Reactor--TCR)和晶闸管投切电容器(Thyistor Switched Capactor--TSC),以及这两者的混合装置(TCR+TSC),或者TCR与固定电容器(Fixed Capacitor--FC)或机械投切电容器(Mechanically Switched Capacitor--MSC)混合使用的装置(即TCR+FC、TCR+MSC)等。随着电力电子技术的进一步发展,20世纪80年代以来,一种更为先进的静止型无功补偿装置出现了,这就是采用自换相变流电路的无功补偿,有人称为静止无功发生器(Static Var Generator--SVG),也有人称其为高级静止无功补偿器(Advanced Static Var Compensator--ASVC)或静止调相器

电力系统无功功率优化

电力系统无功功率优化 【摘要】随着我国各种产业的迅速发展,现代电力系统日益扩大,对电网的运行的可靠性要求也越来越高。为了有效提高电力系统输电效率,降低有功网损和减少发电费用,我们需要加强对电力系统运行的经济性研究,合理选择无功补偿方案和补偿容量,通过对电力系统无功电源的合理配置和对无功负荷的最佳补偿,这样不仅能够改善电能的运行环境,给输电公司带来更高的效益和利润,还能提高功率因数,保证电网的电压质量,维持电压水平和提高电力系统运行的稳定性,最终保证了电网的安全、优质、经济运行。我国配电网的规模巨大,因此要想优化电力系统的无功补偿,需要电力部门和用户高度重视,密切配合,分析无功补偿应用技术,选择合适的优化方案。本文先是介绍了无功优化的重要性,接着分析了无功优化的基本思路,无功优化的一般模型和目标函数,阐述了无功功率的动态补偿。 【关键词】电力系统;无功优化;一般模型;目标函数;动态补偿 引言 电压和无功功率的分布有着非常紧密的联系,一般情况下,无功功率是造成电网线路出现有功损耗的主要原因,同时也严重影响着电力系统电压的正确分布。由此可见,根据电网的实际情况,利用现有的无功调节手段,合理的调动无功,在满足安全运行约束的前提下,加强对无功优化的研究,对于提高电压质量、降低系统网损具有重要的意义。无功优化是实现电力系统安全和经济运行的重要手段。 1 无功优化的重要性 随着电力市场改革的不断深化,降低电网损耗,直接决定着电力电网公司的经济效益和供电效率,变得非常重要。降低网损,其主要途径就是要降低电网的无功潮流流动,通过无功优化,可以降低电网有功损耗和电压损耗,优化电网的无功潮流分布,改善电压质量,使用电设备安全可靠地运行。在保证现代电力系统的安全性和经济性方面,无功优化的重要性已经得到全球的关注。因此,电力系统中无功优化的重要性越来越为突出。 2 无功优化的基本思路 无功优化可分为无功运行优化和规划设计优化。其中无功运行优化是利用现有无功补偿装置,通过降低网损的方式,合理调节变压器分接头和发电机端电压,正确分析离线运行方式,实现无功实时或短期控制。而规划设计优化涉及的问题很多,也很复杂,不仅包括多时段,还要充分考虑多运行方式,确定补偿装置的地点、容量和投切时间,扣除补偿投资后的净收益,使得损耗电能减少的收益最大,而年运行费用与投资等年值之和最小。总之,电力系统的无功优化的基本思路,就是在满足电力系统无功负荷的需求下,根据电力系统的有功负荷、有功电

风电场无功补偿相关问题及解决办法

风电场无功补偿相关问题及解决办法 1. 风力发电系统简介 随着经济的快速增长和社会的全面进步,我国的能源供应和环境污染问题越来越突出。开发和利用可再生能源的需求更加迫切。风能作为可再生能源中最重要的组成部分和唯一经济的发电方式,由于其清洁无污染、施工周期短、投资灵活、占地少,具有良好的社会效应和经济效益,已受到世界各国政府的高度重视。随着风力发电技术的快速发展和国家在政策上对可再生能源发电的重视,我国风力发电建设已进入了一个快速发展的时期。 我国风资源较丰富,但适合大规模开发风电的地区一般都处于电网末端,由于此处电网网架结构较薄弱,因此大规模风电接入电网后可能会出现电网电压水平下降、线路传输功率超出热极限、系统短路容量增加和系统暂态稳定性改变等一系列问题。随着风电场规模的增大,风电场与电网之间的相互影响越来越大而系统对风力发电系统的要求也越来越严格。对风电系统主要的两个要求是正常运行状态下的无功功率控制和故障状态下的穿越能力。 一般来说,风电场的无功功率需求来自于两个方面:风机与变压器。其中变压器的无功损耗又分为正常运行时的绕组损耗和空载运行时的铁心损耗。无论是否运行,只要变压器与主网联接,铁心的励磁无功损耗总是存在的。 风力发电系统中,风力发电机是能量转换的核心部分,风力发电机系统按照发电机运行的方式来分,主要有恒速恒频风力发电系统和变速恒频风力发电系统两种。 对于恒速恒频发电机组,普遍采用普通异步发电机,这种发电机正常运行在超同步状态,转差率s 为负值,电机工作在发电机状态,且转差率的可变范围很小(s<5%),风速变化时发电机转速基本不变。在正常运行时无法对电压进行控制,不能象同步发电机一样提供电压支撑能力,不利于电网故障时系统电压的恢复和系统稳;发出的电能也随风速波动而敏感波动,若风速急剧变化,感应电机消耗的无功功率随着转速的变化而不断变化。由于恒速恒频发电机组自身不能控制无功交换并且需要吸收一定数量的无功功率,因此通常在机组出口端并联电容器组,但是单纯地依赖常规的补偿电容器是无法满足无功功率补偿要求,可能会引起风电机组发出电能质量问题,如电压闪变、无功波动以及故障条件下的穿越能力。因此,恒速恒频发电机组需要静止无功补偿装置来优化其在正常条件和故障状态下的运行。在工程中通常采用静止无功补偿器SVC或STATCOM来进行无功调节,采用软起动来减小起动时发电机的电流。恒速恒频发电机组适合用于小功率,通常不高于600 kW的系统。

电力系统无功优化调度研究综述 陆梦龙

电力系统无功优化调度研究综述陆梦龙 发表时间:2017-09-19T12:02:15.953Z 来源:《电力设备》2017年第13期作者:陆梦龙 [导读] 摘要:无功优化是关系到电力系统能否安全经济运行的一个核心问题。电力系统无功优化直接关系到电力公司的经济效益和供电效率。 (国网徐州供电公司江苏徐州 221000) 摘要:无功优化是关系到电力系统能否安全经济运行的一个核心问题。电力系统无功优化直接关系到电力公司的经济效益和供电效率。利用无功优化调度,能够优化电网的无功潮流分布。大大的降低电网的有功损耗和电压的损耗。从根本上缓解电压质量问题,对于电力系统的安全具有重要意义,受到国内外电力学者和研究人员的充分重视。本文对无功优化调度的计算和控制进行了深入讨论,提出了寻优质量,离散变量处理,求解效率动态优化调度及其协同优化方法等关键性问题。 关键词:电力系统;无功优化调度;研究 一、电力系统无功优化问题概述 电力系统无功优化调度问题是指在电力系统无功电源较为充足的情况下,通过调节发电机机端的电压,调整变压器抽头变比,改变无功补偿装置的出力等措施来调整无功潮流。从而使系统电压值能够达到合格值。同时把全网有功损耗降到最小。电力系统无功优化调度问题有时也被称为电力系统无功优化控制,或者电压无功优化控制,无功优化潮流问题等。 电压质量是衡量电力系统电能质量的一个重要指标。在各种电能质量问题中,电压波动过大产生的危害是最大的。它不止会影响电气设备的性能,它会影响到系统的稳定和运行安全。利用无功优化调度,能够优化电网的无功潮流分布。大大的降低电网的有功损耗和电压的损耗。从根本上缓解电压质量问题。保证电气设备的安全运行。无功优化调度在保证现代电力系统的安全性和经济性双面的作用不可小视。 从笔者的观点来看,电力系统无功优化调度,分为静态无功优化调度和动态无功优化调度。静态无功优化调度是指不考虑控制设备是否允许连续调整的情况下,只追求对于电压水平和网损的无功优化。而动态的无功优化调度是指在无功优化过程中,为了适应负荷的动态变化,而加上对控制变量的每日允许操作次数限制的考虑。还要考虑到电力系统各种不同的负荷水平和运行状态下所产生的各种调度结果的相关联系。所以动态优化比静态优化问题要复杂一些。静态优化一般是停留在理论层面的,而动态优化往往是在实际生活中的。 电力系统无功优化调度问题从数学的角度来讲可以类似于一个目标函数和一组约束条件。这个问题具有多目标性,约束条件数量多,非线性不确定性,离散性,多极值性,解的空间缺少连通性等。随着我国电力系统规模的不断扩大,对于无功优化算法的要求也越来越高。如何快速得到最优解。解决不可行问题等都变得十分复杂和困难了。 二、无功优化的几种常用计算方法 无功优化的求解方法主要有非线性规划法,线性规划法,混合整数,动态规划法等常规方法。以及像神经网络法,专家系统方法遗传算法等非常规性方法。这些方法在无功优化的求解方面各有利弊,下面来一一进行分析。 1.非线性规划法。非线性规划法是最先被运用到电力系统无功优化中的一种算法。因为无功优化本身便是具有非线性的特点的。这种算法的优点是既能够保证电力系统的安全性又能够实现他的经济性,还能提高电能质量。非线性规划法的运算操作形式是,首先设定一个目标函数。然后把节点功率平衡作为等式的约束条件。然后再通过引入松弛变量的方法发布董事的约束条件转换成等式的约束条件。那么这个复杂的无功优化问题就转换成了一个非线性代数方程组求解的问题。 2.线性规划法。无功优化虽然是一个非线性问题,但是我们可以对其进行线性化之后再进行研究。通过线性规划的方法对无功优化进行计算,具有加快计算速度,使各种约束条件处理简单化。线性规划法因其较为简单便捷,所以得到了较快的发展。它具有速度快收敛性好算法稳定等优点。但是在进行无功规划优化时需要对目标函数和约束函数进行线性化处理。这便是一个非常容易出问题的环节。如果选取或处理的不合适,很有可能会引发震荡或收敛缓慢。在把无功优化的线性规划模型确定好之后,它的求解方法一般采用具有指数时间复杂性的单纯形法,或者是这一形法的各种变形。美国贝尔实验室于1984年提出内点法。内点法具有迭代次数变化少,鲁棒性和收敛特性较好的特点,很多专家学者在应用中证实它比单纯形法更具有优越性。人们越来越多地开始采用内点法来解决无功优化问题。 3.混合整数算法。非线性和线性规划法虽然各有各自的优点。但是在实际应用中它们都难以反映出变压器分接头变化以及电容器组,电抗器投射的离散特性。为了解决这个问题,便有学者发明了混合整数规划方法。在一般的线性规划问题中,最优解是分数和小数的情况很多,但是对于具体的问题来说,他一般要求某些变量的解必须要是一个整数。把规划中的变量限制为整数,称为整数规划。这个方法能够有效的解决优化计算中变量的离散性问题。它的原理是通过分支定界法,不断的定系缩小范围,使得结果越来越接近于最优解。但是这一算法也存在一些弊端。它的计算时间属于非多项式的类型。随着计算维度的不断增加,计算时间也会快速增长,这样在实际操作中便难以及时有效的反映问题,所以混合整数规划优化算法应当向着更好的适应系统规模,加强实用化这个方面不断发展。 4.人工智能方法。上面提到的三种算法的共同缺陷是他们都存在着无法找到全局最优解的可能性。而且传统的数学优化方法一般都需要依赖于非常精确的数学模型。这就造成了这一问题的复杂性,从而导致它难以被实时控制。基于这一原因和人们受自然界和人类本身的启发。人工智能方法开始逐渐被研究并应用到电力系统无功优化中。例如专家系统,神经网络等都是一些较为具有代表性的人工智能方法。专家系统方法是指在结合上其它方法的基础上,依据专家的经验设置出初始值,然后不断的调整控制参数的大小,选举出一个比较好的解,将专家系统应用于无功优化,有利于结合上运行人员的专业知识,从而增加功能性。人工神经网络又被人称为连接机制模型,它是一个由大量简单元件广泛连接而形成的,被用来模拟人脑行为的一个十分复杂的网络系统。 三、无功优化的领域的关键性问题及发展动态 1.存在的关键性问题。笔者认为目前无功优化领域需要解决的关键性问题有五点。一是选择哪种算法可以求出最优解,二是我们是否能够直接处理离散控制变量,不再采用连续化假设的方法,三是在电网规模不断扩大的同时,优化算法的巡游速度能否赶上实时计算的需求,四是如何解决好控制设备动作次数的限制问题,五是在大规模电网中无功优化调度如何更好的实现对于全局的协调优化控制。 2.国内外关于这些问题的研究现状。就目前国内外的发展情况来看,现在学者们研究的问题大多是针对选择何种优化算法可以求得最优解的,当然,这一研究也取得了较大的成果。而对于不采用连续化假设直接处理离散控制变量来说,只有进化算法和内点算法能够解决这一问题。就目前所存在的算法来看,随着电网规模的不断扩大,优化算法的速度是难以赶上实时计算的需求的,这一点还需要我们不断

相关文档
最新文档