汽车尾气净化用催化剂的研究进展

汽车尾气净化用催化剂的研究进展
汽车尾气净化用催化剂的研究进展

汽车尾气净化催化剂国内外发展分析

汽车尾气净化催化剂国内外发展分析 汽车尾气净化催化剂是控制汽车尾气排放减少污染的最有效手段。按照我国总体规划,到2010年我国汽车尾气排放控制与国际接轨,达到国际水平。 汽车尾气净化催化剂有多种,早期使用普通金属 Cu、Cr、Ni,催化活性差、起燃温度高、易中毒,后来用的贵金属Pt、Pd、Rh等作催化剂具有活性高、寿命长、净化效果好等优点,但由于贵金属价格昂贵,很难推广。 1 国外进展 Catalytic Solution公司(CSI)开发了用于控制汽车排放污染的新型陶瓷氧化物催化剂,这种混合相催化剂(MPC)使用的贵金属比常规汽车排放控制催化剂减少 50%~80%。MPC采用完全不同的设计途径制造,MPC含有几种贵金属和非贵金属氧化物的混合物,大多来自非贵金属的尖晶石和钙钛矿,贵金属和非贵金属组合在同一结构中。CSI从属于丰田和通用汽车公司,本田汽车公司已将CSI 技术应用于2002年款轿车车型中,通用汽车公司的GM汽车可望使用25万台以上。CSI还与福特汽车公司签约在福特汽车上试用该催化剂。除了汽车尾气排放催化剂外,CSI还投资2960万美元开发MPC催化剂用于控制燃气轮机的NOX排放污染。CIS公司开发的纳米大小氧化物汽车排放控制催化剂,用来替代贵金属具有较大的竞争性。 日本研制出一种新型催化材料,它不仅能提高催化能力,还能大大减少汽车废气转换器中贵金属的用量。一般汽车废气转换器的核心部件是上面有大量微孔的陶瓷,表面涂以粉状催化剂。含有钯、铂、铑等贵金属成分的催化剂,能够减少尾气中一氧化碳、氮氧化物等有毒物质的含量。但是由于转换器靠近发动机,高温会使催化剂颗粒结合在一起,减少催化材料总表面积,降低催化能力。 日本原子能研究所称,他们使用一种名为“钙钛矿”的物质作为催化剂,有效防止了颗粒结块现象。含有少量钯的新型催化剂,在发动机产生的废气中工作100多个小时后仍能保持较强的催化能力,且物质微粒没有结块。普通含钯的氧

含钼催化剂研究进展

含钼催化剂研究新进展 摘要含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开 发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献1前言 催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总 产值来自催化技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化 工生产,如合成气制造、基本有机合成和精细化工产品等的的生产。因此,长期以 来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注, 逐渐成为我国钼深加工领域的一个新的发展方向。现仅就我国近年来含钼催化剂的 一些新进展作简要介绍。 2烷烃的化学加工催化剂 2.1烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1 993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂 的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法 制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合 法、固相反应法和微波处理法制备的Mo/HZSM-5催化剂,比一般浸渍法能明显提高 芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面 ,这对甲烷芳构化反应有利,并明显减少积碳的生成。 王军威等用浸渍法、机械混合法和水热法制备了Mo/HZSM-5催化剂,并考察了 钼含量和反应时间对丙烷芳构化反应的影响,深入研究了Mo物种对HZSM-5分子筛结构和酸性的作用。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。 2.2烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究 与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问 题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复 合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。

汽车尾气的危害及净化处理技术

汽车尾气的危害及净化处理技术 摘要:现在社会汽车越来越多,而汽车尾气带来了各种危害环境和人身体健康的问题。面对这些问题,我们要关注对汽车尾气的处理,关注我们的环境,及时采取措施很好的处理汽车尾气问题,让我们可以与环境和谐相处,让我们可以生活得更美好。 关键词:汽车,尾气,污染,环境,治理 现代社会的今天,汽车成为不可缺少的一种交通工具,但同时汽车也是对我们环境和对人身体伤害最大的一种交通工具。而它的污染主要就是尾气。 尾气污染主要是指柴油、汽油等机动车燃料因含有添加剂和杂质,在不完全燃烧时,所排出的一些有害物质对环境及人体的污染和破坏。据研究表明,汽车排放物成分非常复杂,有一百种以上,其主要污染物包括:一氧化碳、二氧化碳、氮氧化物(NOx)和碳氢化合物(HC),此外还有铅尘和烟尘等污染物。具体而言,汽车排放污染物的主要来源是: CO:矿物燃料燃烧后的一种副产物,通常是因空气不足或其他原因造成不完全燃烧时所产生的一种无色、无味气体。一般汽油机排放的一氧化碳比柴油机高。 CO2:矿物燃料燃烧后的一种副产物。是完全燃烧或CO在空气中氧化而来的。

HC:来自汽车燃油的不完全燃烧。 NOx:主要是NO和NO2的混合物,是空气中的N2和O在发动机燃烧室高温高压下反应的产物,压缩比越高,燃烧室的温度越高,生成量越大。 SOx(包括SO2):汽油和柴油中的硫在发动机燃烧室中氧化生成的产物。 Pb(铅):来自汽油中的四乙基铅。汽车用的汽油中,通常加有四乙(基)铅或四甲(基)铅做抗爆剂,这些铅的70%随尾气排入大气。 PM(颗粒物):颗粒物是由于进气不充分或燃烧温度过低造成燃烧不完全形成的。排气中颗粒有三个来源:(1)燃料液相燃烧不完全产生的碳烟颗粒;(2)润滑油燃烧产生的积炭颗粒;(3)燃料中硫生成的SO2、SO3和添加剂的钙生成的CaSO4颗粒。 VCO(易挥发有机化合物):蒸发性气体,是许多不同种类的烃类构成的混合物,来自汽车燃油箱的汽油蒸发。 而这么多污染物中,其中co和铅是对人体伤害最大的两种物质。 而在这点上,农村居民,一般从空气中吸入体内的铅量每天约为一微克;城市居民,尤其是街道两旁的居民会大大超过农村居民。锡进入人体后,主要分布于肝、肾、脾、胆、脑中,以肝、肾中的浓高。几周后,铅由以上组织转移到骨骼,以不溶性磷酸铅形式沉积下来。人体内约90%~95%的铅积存于骨骼中,只有少量铅存在于肝、脾等脏器中。骨中的铅一般较稳定,当食物中缺钙或有感染、外伤、饮酒、服用酸碱类药物而破坏了酸碱平衡时,铅便由骨中转移到血液,引中

汽车尾气净化催化剂

催化科学与技术的里程碑-尾气净化催化剂 陈耀强 四川大学催化材料研究所 汽车尾气的污染 随着经济的发展,汽车产量迅速增长,2013年全球汽车产量达到8280万辆,预计将在2021年突破1亿辆。我国2013年的汽车产量为2212万辆,已连续五年蝉联全球第一。2013全国汽车保有量1.37亿辆车辆从2003年到2013年10年间,我国汽车保有量增长迅速,从2400万辆增长到1.37亿辆,年均增加1100多万辆。在今后相当长的时期内,我国汽车社会发展仍将保持强劲势头。 随着汽车保有量的不断增加,汽车尾气污染物的排放量不断增加。2012年,全国机动车排放污染物4612.1万吨,其中,氮氧化物(NOx)640.0万吨,颗粒物(PM)62.2万吨,碳氢化合物(HC)438.2万吨,一氧化碳(CO)3471.7万吨。汽车尾气污染物的危害不仅体现在排放量大,更重要的体现在尾气污染物的特征和排放部位上。以PM2.5为例说明汽车污染物的特征。PM2.5的危害取决于三个方面:(1)尺寸越小危害越大,(2)化学组成的毒性越大危害越大,(3)数量越大危害越大。 PM2.5的主要来源为汽车,工业排放(以燃煤为主)和扬尘。扬尘的颗粒较大,主要为氧化硅等无机物,有机组分最少,危害小,防控容易。 燃煤和汽车的PM2.5均含有高致癌的多环芳烃(PAHs)及其他有机组分,但燃煤的PM2.5所占比例没有汽车高,颗粒较大,质量比汽车大,但数量远没有汽车的PM2.5多,燃煤和其他工业排放的PM2.5也属于重点控制对象。 汽车尾气的PM2.5的特征为:(1)汽车的PM2.5的粒度为0.04-0.3μm(柴油车0.3μm,汽油车0.1μm ,摩托车0.04μm),可在人体的任何地方造成危害。(2)化学组成的毒性大,含有16种多环芳烃(图4)等高致癌物质和致病物质。(3)数量极大,目前排放PM2.5最少的压缩天然气车每公里排放6000亿个PM2.5,PM2.5的危害是以数量而不是以质量。(4)基本上不沉降,长期累积。汽车尾气的排放部位离地面仅30-50cm左右,在人的呼吸带内,人体吸进去的是未经稀释的高浓度污染物,是一类极其特殊的污染物排放。而其他的污染源(如离城市20公里燃煤电厂)排放经过空间稀释后浓度已降到原始浓度的数万分之一,这是汽车尾气污染危害远大于其他类型的污染的关键所在,对呼吸系统,心,脑血管,神经系统和眼睛造成巨大危害。

金属催化剂的研究进展

金属催化剂的研究进展 1前言 催化技术作为现代化学工业的基础,正日益广泛和深入地渗透于石油炼制、化学、高分子材料、医药等工业以及环境保护产业中,起着举足轻重的作用。长期以来,工业上使用的传统催化剂往往存在着活性低、选择性差等缺点,同时常需要高温、高压等苛刻的反应条件,且能耗大,效率低,不少还对环境造成污染。为此人们在不断努力探索和研究新的高效的环境友好的绿色催化剂[1]。本文重点讲解金属催化剂的作用机理,以及金属催化剂在甲醇气相羰基化合成碳酸二甲酯的应用、茂金属催化剂的应用以及金属催化剂在乙烯环氧化合成环氧乙烷的应用。 2金属催化剂的作用机理 2.1 金属催化剂的吸附作用 众所周知,吸附是非均相催化过程中重要的环节,过渡金属能吸附O2、C2H4、C2H2、CO、H2、CO2、N2等气体,强化学吸附能力与过渡金属的特性有关,是因为过渡金属最外层电子层中都具有d空轨道或不成对d电子,容易与气体分子形成化学吸附键,吸附活化能较小,能吸附大部分气体,需主要的是d轨道半充满或者全充满,较稳定,不易与气体分子形成化学吸附键。由此可知,过渡金属的外层电子结构和d轨道对气体的化学吸附起决定作用,有空穴的d轨道的金属对气体有较强的化学吸附能力,而没有d轨道的金属对气体几乎没有化学吸附能力,由多相催化理论,不能与反应物气体分子形成化学吸附的金属不能作催化剂的活性组分。 催化反应中,金属催化剂先吸附一种或多种反应物分子,从而使后者能够在金属表面上发生化学反应,金属催化剂对某一种反应活性的高低与反应物吸附在催化剂表面后生成的中间物的相对稳定性有关,一般情况下,处于中等强度的化学吸附态的分子会有最大的催化活性,因为太弱的吸附使反应物分子的化学键不能松弛或断裂,不易参与反应;而太强的吸附则会生成稳定的中间化合物将催化剂表面覆盖而不利于脱附[2]。 2.2 金属-载体间的相互作用 我们课题组研究的是甲醇气相氧化羰基化合成碳酸二甲酯,使用的是负载型

催化剂在处理汽车尾气中的应用

稀土催化剂在处理汽车尾气中的应用 通过《绿色化学》这门课程的学习,我对绿色化学有了更为全面的认识。绿色化学涉及生活、生产的方方面面。各国政府及科研机构都对绿色化学高度重视,发展好绿色化学,将对人类未来的生活环境和生活水平产生至关重要的影响。 “绿色化学”由美国化学会(ACS )提出,目前得到世界广泛的响应。其核心是利用化学原理从源头上减少和消除工业生产对环境的污染;反应物的原子全部转化为期望的最终产物。简单的说就是提高原子利用率,防止污染。在防止污染方面,以汽车尾气为例,就是将有毒的CO 、NO x 转化成无毒的CO 2、N 2。 随着交通运输也的发展,汽车尾气已经成为当今世界环境的一个大污染源。 安装催化净化转化器是降低汽车尾气对环境污染的有效方法。用于汽车尾气净化的粗化剂种类较多,期中贵金属(Pt,Pd,Rh)虽然活性高、净化效果好,但价格昂贵。含稀土的催化剂价格低,化学和热稳定性好,活性也较高,尤其抗中毒、寿命长,是一种很有使用价值和发展前景的汽车尾气净化催化剂。 尾气排放 燃油机动车的气态排放物主要由CO 、NO x 和碳氢化合物(HC)组成,有些还含有铅,磷,硫等有毒物质。 含铅汽油经燃烧后,85%左右的铅排入大气中造成铅污染。半个多世纪以来,通过汽车燃烧排入大气中的铅已达数百万吨,成为一种公认的全球性污染。铅对人体的许多器官和系统都会带来不良影响,表现为智力下降、肾损伤、不育症以及高血压等。 危害: CO 对人的神经系统有严重的破坏作用,组织人体血红蛋白向人体组织输送氧气,引起慢性中毒。HC 中含有多种致癌物质。NO x 可能导致呼吸困难、呼吸道感染和哮喘等症。在太阳光的作用下,NO 2分解产生的O 和O 2生成O 3,还进一步与烃类反应形成光化学二次污染,对人类健康造成更大的伤害,同时,NO x 还是形成酸雨和引起气候变化的主要原因。 催化净化器的原理是利用催化剂表面发生的氧化和还原反应,将排气中的CO 和HC 等有害物质氧化为CO 2和H 2O ,将NO x 还原成N 2。 (1)氧化反应 (2)还原反应 稀土在尾气净化催化剂中的作用 通常稀土是以氧化物(CeO 2、Y 2O 3等)的形式加入催化剂中,在保证催化剂活性不变的前提下,可以大幅度减少贵金属的用量,并改善催化剂的性能。 主要作用有4个方面: 1)提高催化剂载体的性能 通常所有的催化剂载体表面有氧化铝涂层,可以提高载体的表面积,有利于催化剂活性成分的分散,以此提高催化剂的活性和寿命。而氧化铝在高温下容易向无活性相转变。加入稀土元素(La 或Y)可使其耐热性能得到明显改善,抑制相2222CO O CO →+O H CO O HC 2222454+→+22222N CO CO NO +→+O H CO N NO HC 222245104++→+O H N NH NO 2236546+→+22332H N NH +→O H N H NO 222222+→+222/1xCO N xCO NO x +→+222H CO O H CO +→+

汽车尾气处理文献综述

文献综述 空气污染特别是由于汽车尾气中有害污染物的大量排放所带来的大气污染问题,随着汽车保有量的不断增加而日趋严重。包括机内净化和机外净化的各种净化方法都得到了广泛的研究。近年来,使用高压放电治理各种有害气体在国内都得到了充分的重视。高压脉冲电源是释放出高压电以电离出汽车尾气中颗粒物处理市场化的关键设备之一。 电容储能是研究比较早、应用比较多的脉冲电源形式,其技术至今已经相对比较成熟。电感储能与电容储能出现的时间相当,但是电感储能是动态储能,实现的技术相对复杂,因此其应用较电容储能偏少。但随着电力电子技术及半导体工业的飞速发展,固态开关的耐压等级和通流能力获得了极大的提高,使其有可能运用到高压脉冲技术中去。而如加速器、雷达发射机、高功率微波和污染控制等领域的高压脉冲技术对高重复频率固体开关的运用需求,也促使人们对固体开关技术在脉冲功率领域中的应用进行了大量的研究。国内有关电感储能功率脉冲技术的研究明显增多,其储能密度高的优势逐渐显现。 在高功率脉冲电源领域,尤其是电感储能功率脉冲电源,世界各国都任处于积极研究之中,也是快速发展的时期。 在此次项目实验中我们小组也采取了高压电路电离的方法,将尾气中带电颗粒物电离出来。高压电路主要技术通过汽车电瓶输出的直流电用电路转换成交流电,然后通过变压器升压成高压交流电,再通过稳压电路输出稳定的高压接在铁丝网上。 汽车尾气的处理除了高压电外还有通过加速或者增添一些化学反应,使尾气中有害物质能通过一系列有机化学反应转换成无害的无机物排入空气中。对这些反应的研究主要集中在催化净化转化器上。而催化剂又是催化净化效果的关键。因此,开发高效实用的催化剂是控制汽车尾气排放至关重要的一环。 20世纪70年代初,汽车尾气催化净化器多为氧化型,使用铂、钯或两者混合的催化剂来提高尾气中HC、CO同O2反应的速度,降低HC、CO的排放量。但随着大气中NOx含量的的增加,人们要求同时净化汽车尾气中的HC、CO、NOx。后来就出现了两段净化法,又称氧化-还原法。随后又于1977年开始采用含有Pt、Pd、Rh三效催化剂并能同时降低HC、CO、NOx的无害三效催化净化器。 目前,国内外汽车尾气净化催化剂多为能够同时催化转化HC、CO与NOx的固体三效催化剂。和许多工业固体催化剂一样,汽车尾气净化催化剂主要由活性组分、载体与助剂3部分组成。汽车用三效催化剂的活性组分主要分为贵金属型、非贵金属型与稀土型。贵金属型的活性组分主要由Pt、Pd和Rh组成。Rh是加速NOx还原的活性组分,虽然Pt和Pd同时对HC、CO、NOx的转化起催化作用,但是对NOx的还原能力低于含Rh催化剂。在3种贵金属中,Pd的价格远低于Pt 和Rh,而且Pd资源较Pt、Rh丰富,其耐热性好,使用Pd催化剂有利于降低成本,提高催化剂的使用寿命。因此,单Pd催化剂便成为三效催化剂发展的一个重要方向。如Kim D H[4,5]等人用溶胶法制备一种以钒与锆为助剂的单钯催化剂,其中n(V)/(Zr)=0.36,Pd、V、Zr的质量分数分别为1%、2%与10%。所得的单钯催化剂具有很高的低温活性、热稳定性与抗SO2毒性,这主要是由于催化剂中V与Zr形成的V)O)Zr键,具有一定的协同作用,这些Zr)O)X键(X为V或Al)与催化剂中的C-Al2O3形成了无定形四面体的配位结构:(M)O)3VO,使Pd在催化剂表面获得很好的分散性。即使是在1 000e以上的高温,由于这种配位键作用,

合成甲醇催化剂研究进展

化学反应工程论文 合成甲醇催化剂的研究进展 摘要:了解甲醇工业的发展现状及前景。从催化剂组成、种类、各组分功能及失活方式对甲醇催化剂进行探究,同时探索甲醇合成的新方法和新工艺,并对甲醇合成催化剂的动力学研究进行总结。 关键词:甲醇合成、催化剂种类、失活、三相床、生物质秸秆、动力学 1.1甲醇工业发展现状 能源问题已经成为制约我国国民经济发展的战略问题。从国家安全角度看,能源资源的稳定供应始终是一个国家特别是依赖进口的国家关注的重点,是国家安全的核心内容。随着中国工业化、城市化进程的加快以及居民消费结构的升级,石油、天然气等清洁高效能源在未来中国能源消费结构中将会占据越来越重要的地位。目前中国石油消费严重依赖进口,石油资源已经和国家安全紧密联系起来,并成为中国能源安全战略的核心o 在我国能源探明储量中,煤炭占94%,石油占5.4%,天然气占0.6%,这种“富煤贫油少气”的能源结构特点,决定了我国能源生产与消费以煤为主的格局将长期占主导地位。国民经济的持续发展,对能源产品尤其是清洁能源的需求持续增长。结合我国以煤为主的能源结构现状,大力发展煤基能源化工成为我国解决能源问题的主要途径。以煤气化为核心的多联产系统则是针对我国面临的能源需求增长、液体燃料短缺、环境污染严重等一系列问题,提出的一条解决我国能源领域可持续发展的重要途径煤经气化后成为合成气,净化以后可用于生产化工原料、液体燃料(合成油、甲醇、二甲醚)和电力。多联产系统所生产的液体燃料,尤其是甲醇和二甲醚可作为煤基车用替代燃料,可以部分缓解我国石油的短缺。同时,甲醇还可以用来生产烯烃和丙烯,以煤化工产品“替代”一部分传统的石油化工产品,对减少石油的消耗量具有重要意义。 甲醇是一种重要的化工原料,又是一种潜在的车用燃料和燃料电池的燃料,因此合成甲醇的研究和探索在国际上一直受到重视。特别是近年来,随着能源危机的出现、C1化学的兴起,作为C1化学重要物质的甲醇,它的应用得到不断的开发,用量猛增,甲醇工业得到了迅猛发展,在世界基础有机化工原料中,甲醇用量仅次于乙烯、丙烯和苯,居第四位。 1.2甲醇发展前景 甲醇作为一种基础化工原料,在化工、医药、轻纺等领域有着广泛的用途。主要用于制造甲醛、氯甲烷、醋酸、甲胺、甲基丙烯酸甲酯、甲酸甲酯(MF)、二甲醚(DME)、碳酸二甲酯(DMC)、对苯二甲酸二甲酯(DMT)、甲基叔丁基醚(MTBE)等一系列有机化工产品。随着甲醇深加工产品的不断增加和化学应用领域的不断开拓,甲醇在许多领域有着广阔的应用前景:

几种新型的汽车尾气净化催化剂.

2005年第10期广东化工51 几种新型的汽车尾气净化催化剂 黎展毅,颜幼平,蔡河山 (广东工业大学环境科学与工程学院,广东广州510090) [摘要]本文主要针对汽车尾气所造成的环境污染问题的必要性和迫切性。,、研究情况以及多种条件下的最佳反应。 [关键词]汽车尾气;;indsofAutomobileExhaustCatalysts LiZhanyi,YanYouping,CaiHeshan (EnvironmentalScienceandEngineeringInstitute,GuangdongUniversityof Technology,Guangzhou510090,China) Abstract:Pollutionfromautomobileexhaustisadifficultproblem.Theexploitationandapplic ationofthenewkindsofcatalystsinautomobileexhaustwerenecessaryandinstant.Thispaperi ntroducedthreekindsofcatalystsinau2tomobileexhaustandthecharacteristics,catalyticprinc iples,thedevelopmentandthebestreactionsunderdifferentconditionsofeachother. Keywords:automobileexhaust;catalysts;catalyse 随着我国国民经济的迅速增长,交通运输业也得到了迅猛的发展,其中最明显的是道路汽车数量的日益增多。随之而来的汽车尾气问题也日益受到了人们的关注。 汽车尾气中所含的一氧化碳(CO)、二氧化碳(CO2)、碳氢化合物(HC)、氮氧化合物(NOx)和颗粒物质(如碳粒等)大量排放至空气中可导致酸雨和化学烟雾。其中在人口超百万的大城市中,NOx污染尤为突出,部分主要交通干道的NOx和CO已严重超标。汽车尾气的排放已构成了空气的严重污染,对人体的健康造成了潜在的危害[1,2]。我国的第一个汽车尾气排放标准GB3842-7-83自1984年4月1日起实施。近几年,随着人们对环境保护的日益重视以及中国加入世界贸易组织(WTO),我国对汽车尾气的排放要求也日渐提高。在分析了美国、日本和欧盟等国家地区的汽车尾气排放标准后,认为欧盟标准较为适合我国的实际情况,并于1993~2000年间出台了一系列的排放标准,后修订为GB18352.1-2000我国第一阶段实施的排放标准(相当于欧1标准),于2004年1月1日起开始实施GB18352.2-2000(欧2标准),实现2010年逐步接近或与国际接轨[3]。故此,研究如何控制和治理众多汽车尾气也成为一个相当迫切的课题。 当前,虽然贵金属催化剂的研究较为成熟,应用也较为普遍,但由于贵金属的储藏量少,价格昂贵,使贵金属催化剂。90年代初,应用于机动车尾

汽车尾气处理(小论文)

汽车尾气处理(小论文) F1115002 5111509040 周于聪【摘要】汽车尾气是大气污染的主要来源之一,而尾气的催化转化是目前处理尾气污染的主要手段。本文简述了尾气的主要污染物及其危害,尾气催化转化的主要过程及其反应方程式,并通过简要计算证明其可行性和温度等相关数据,简单介绍了目前比较广泛使用的催化剂及其今后的一些发展方向。 【关键词】汽车尾气、催化转化,催化剂,尾气处理反应式,尾气处理温度 【引言】随着现代社会的不断发展,人们的生活水平的不断提升,汽车的购买量和使用量快速增长,与之而来的汽车尾气污染问题也愈来愈严重,寻找高效可行的尾气处理技术变得越来越急切。 一、汽车尾气中的主要污染物及其危害 汽车尾气中含有因不完全燃烧产生的碳氢化合物(HC),一氧化碳(CO),氮氧化物(NO X)以及少量的二氧化硫(SO2)和铅化合物等,这些有害物质直接排放对人体及环境会造成严重的后果。 一氧化碳(CO)与人体中的血红蛋白(H b)的亲和力明显高于氧气(O2),一旦人体 吸入较大量的CO,因发生如下反应:H b O2+CO?H b CO+O2,导致人体缺氧,危及生命。 碳氢化合物(HC)本身即具有致癌作用,且会强烈刺激眼睛和呼吸道,在空气中易与氮氧化物(NO X)在太阳光下产生光化学烟雾,造成大气污染,严重时甚至可以使人麻痹中毒。 氮氧化物(NO X)主要是NO和NO2,其中高浓度的NO能引起中枢神经瘫痪及痉挛, NO2能引起人体中毒,易是酸雨的主要成因之一。

倘若汽车尾气不及时有效的处理其严重生态影响和社会影响不堪设想,甚至会阻碍社会的进一步发展。 二、我国汽车尾气的排放现状 据最新的环境保护部报告显示[1]:2009年,全国机动车排放污染物5143.3万吨,其中一氧化碳(CO)4018.8万吨,碳氢化合物(HC)482.2万吨,氮氧化物(NOx)583.3万吨,颗粒物(PM)59.0万吨。汽车是机动车污染物总量的主要贡献者,其排放的CO和HC超过70%,NOx和PM超过90%。 由以上数据可见,汽车尾气处理压力巨大且十分重要,更高效的处理技术将是今后研究的一大方向。 三、汽车尾气的催化转化(三效催化剂为例) 1、三效催化剂的基本原理 通过催化剂的作用,把CO、HC、NO X 分别氧化、还原为对人体健康无害的二氧化碳(CO2)、氮气(N2)和水蒸气(H2O)。 2、三效催化剂的主要反应方程式 CO、HC氧化反应: 2CO+O2=2CO2 2H2+O2=2H2O HC+O2→CO2+ H2 NO的反应: 2CO+2NO=2CO2 +N2 HC+NO→CO2 +N2 2H2 +2NO=2H2O +N2 水蒸气重整反应: HC+H2O→CO +H2 水煤气转换反应: CO+H2O=CO2+H2

钴系催化剂研究进展

钴系催化剂的研究和发展 ---含钼催化剂的研究和发展 摘要:含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献。催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总产值来自初花技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化工生产,如合成气制造,基本有机合成和精细化工产品等的生产。因此,长期以来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注,逐渐成为我国钼深加工领域的一个新的发展方向。 关键字:含钼催化剂、合成醇催化剂 (1)烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合法、固相反应

法和微波处理法制备。Mo/HZSM-5催化剂,比一般浸渍法能明显提高芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo 物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面,这对甲烷芳构化反应有利,并明显减少积碳的生成。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相 比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。(2)烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应 用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。 (3)加氢处理催化剂

汽车尾气催化剂

汽车尾气净化催化剂 环境问题是一个全球问题,要靠全世界每一个人的努力来解决。随着世界经济、科技的不断发展和社会文明的不断进步,人们的物质需求也在一天天增长。汽车是现代社会最普及的交通工具,特别是近年来私家车越来越多,带来了很多问题,其中环境问题是不容忽视的。汽车的使用对环境的污染主要有噪音污染和尾气排放造成的空气污染。在我国,汽车尾气净化是解决尾气排放污染的最有效方法。汽车排放的污染物主要来源于内燃机,其有害成分包括一氧化碳(CO)、碳氢化合物(CH)、氮氧化合物(NOx)、硫氢化合物和臭氧等,其中CO、HC及NOx是汽车污染控制的主要大气污染成分。HC是在局部缺氧或低温条件下烃不完全燃烧而产生,NOx是火花塞点火瞬间高温高压下空气中的N2、O2反应的产物。汽车尾气对人类的健康危害很大,治理汽车排放污染,已成为一项刻不容缓的任务。 一、汽车尾气净化催化剂简介 1.1汽车尾气净化 国外早在20世纪60年代中期对汽车污染控制技术已经进行了研究开发,目前己达到实用阶段。研究表明,通过改善催化剂及其载体的性能和生产工艺,改善汽车内燃机燃烧技术及三效催化剂排气系统的处理可净化这些有害气体。汽车尾气污染控制可以分为机内和机外两种技术。机内净化主要是提高燃油质量和改善燃料在发动机中的燃烧条件,尽可能减少污染物的生成;机外净化的主要方式是安装催化净化器,对有害气体进行处理是机外尾气净化最有效的方法,催化剂又是净化效果的关键。因此开发实用高效的汽车尾气净化催化剂是控制汽车尾气排放的最佳措施之一。 汽车尾气催化净化的目的就是将有害的CO和HC氧化为CO2和H2O,将NOx还原成N2。由于汽车尾气的化学成分很复杂,其转化率除和催化剂的活性有关外,还和反应气是氧化气还是还原气有关,因此催化剂在功能上分为氧化

异戊二烯催化剂研究进展剖析

异戊二烯催化剂研究进展 (一)异戊二烯及其应用简介 异戊二烯(2-methylbutadiene)别名异戊间二烯、2-甲基-1,3-丁二烯,分子式为 C5H8,分子量为68.12,CAS号:78-79-5。异戊二烯在常温下是一种无色易挥发、刺激性油状液体,不溶于水,易溶于乙醇、乙醚、丙酮。与空气形成爆炸性混合物,爆炸极限>1.6%。异戊二烯典型的共轭双键结构,使其化学性质活泼,主要用于生产异戊橡胶,也是苯乙烯- 异戊二烯-苯乙烯共聚物(SIS)和丁基橡胶的第二单体。此外,异戊二烯还广泛应用于农药、 医药、香料、喷雾剂及粘结剂等方面。随着乙烯工业的快速发展和对合成橡胶、合成树脂的 需求增大,异戊二烯作为一种重要的化工原料,其生产技术及利用受到世界各国的普遍重视 [1-3]。 聚异戊二烯大多采用铁系、钛系、稀土、矾系、镍系、铬系、钼系等配位聚合催化体系制备。聚异戊二烯具有1,4-链节、1,2-链节和3,4-链节结构。其中钛系和钒系催化体系可制备以反式-1,4-链节为主的聚异戊二烯[4],稀土系可制备以顺式-1,4-链节为主的聚异戊二烯[5-6],铁系催化体系可制备以3,4-链节为主的聚异戊二烯[7]。而钼系催化体系引发异戊二烯聚合时产物以3,4结构和1,2结构的为主[8] (二)主要催化剂类型 1.铁系催化剂 1964 年,Noguchi等[9]最先报道了铁元素 Ziegler-Natta型催化剂的双烯烃聚合研 究,但是催化活性较低。其主要原因在于铁化合物易于被烷基铝还原成无聚合活性低价化合 物。加入给电子体能够稳定铁活性中心,使其不被过度还原,从而提高催化体系的活性。因 而,给电子体化合物的研究一直以来是该类催化体系的研究重点。其中,含氮杂环类化合物 以及腈类化合物具有高的聚合活性,并且能够制得高分子量、高立构规整性的聚合物。 铁催化体系中的含氮杂环类化合物由单独作为第三组分添加到催化体系中,逐渐发展并改 进为以配体的方式与铁元素形成配合物。1988年,孙箐等[10]采用 Fe(acac)3/Al(i- Bu) 3(三异丁基铝)/含氮配体(1,10-邻菲罗啉2,2'-联吡啶等)催化体系在苯中合成了3,4 -结构含量为 70% 、结晶性的聚异戊二烯,但聚合物凝胶含量高,且含氮配体影响聚合物 的分子量。1994年,Halasa[11对该催化体系进行了改进,通过在聚合体系中加入少量水 与烷基铝反应,形成桥联的有机铝氧烷,提高了催化活性,并使凝胶状况得以改善,但聚合 温度对聚合物的3,4-结构含量影响较大。2000年初,Bazzini[12]和 Ricci[13]以MAO(甲 基铝氧烷)为助催化剂,分别开展了( Bipy)2FeEt2和( Bipy)2FeCl2催化异戊二烯聚合的研 究,得到以3,4-结构为主的聚异戊二烯,但聚合温度严重影响聚合活性和聚合物的微观

汽车尾气净化催化剂研究现状及发展前景

催化化学论文 论文题目:汽车尾气净化催化剂研究现状及发展前景 学院:化学与化工学院 专业:化学 班级:化学131班 学号:1308110289 学生姓名:石军 2016年6月6日

汽车尾气净化催化剂研究现状及发展前景 摘要:汽车排放的尾气是严重的大气污染源之一,尾气中含有大量的NO x、碳氢化合物(HC)及CO,尾气污染不仅影响了大气环境,对于人类的身体健康也非常不利,汽车尾气净化催化剂是减少汽车尾气中污染物的有效方法之一,安装汽车尾气净化设备可以有效降低尾气的污染,净化催化剂可以将这些有害物质的绝大部分转化为无害的N2、CO2和H20。本文主要就汽车尾气净化催化剂研究状况和发展前景进行论述。 关键词:汽车尾气;净化;催化剂;现状;发展前景 正文 1.汽车尾气的成分 汽车尾气包含100多种成分。主要有一氧化碳(CO)、碳氢化合物(HC)、 氮氧化合物(NO X )、硫化物(SO X )、细微颗粒物、二氧化碳(CO 2 )、甲醛(HCHO) 和丙烯醛(CH 2 =CHCHO)等。每年汽车排放的主要污染为25亿吨CO、4.5亿吨HC和2.2 亿吨NO X 。这些排放物严重地影响大气和生活环境。汽车尾气是大气污染的主要来源之一, 汽车尾气净化器催化是控制汽车污染的重要手段。因此本文综述了汽车尾气净化催化剂及其载体的研究进展, 包括催化剂及其载体的分类及研究进展。提出了汽车尾气净化催化剂的研究发展方向。

2.汽车尾气净化的概况 随着我国经济的飞速发展,汽车作为一种现代化的交通工具正逐年增加,国家环保部发布的《2012年中国机动车污染防治年报》称,我国已连续3年成为世界机动车产销第一大国。机动车污染已成为我国空气污染的重要来源,是造成雾霾和光化学烟雾污染的重要原因,因此机动车污染防治的紧迫性日益凸显。 在影响污染物排放的诸多因素中,进人气缸的汽油质量F与空气质量A之比 A/F是最显著的因素。为了完全燃烧,理论上所需的化学计量比略有不同,一般为A/F=14.7左右。当A/F>14.7时,称为富氧燃烧,此时,CO与HC的排放浓度减少,但NOx的浓度增加;当A/F<14.7时,称为贫氧燃烧,此时NOx的排放浓度减少,而CO与HC的浓度增加。使用催化剂转化三者时,其转化效率与尾气中残余的氧浓度亦即A/F比密切相关。理论A/F比附近的一个狭窄区间( 称为“操作窗口”)应用三效催化剂,可使排气中NOx、HC和CO达到很高的转化率。 汽车尾气净化技术主要包括两个方面:机内净化和机外净化。机内净化主要是改善发动机燃烧状况,以降低有害物质的生成。如:改进进气系统,供油系统和燃烧室结构等。这些技术与汽车发动机设计及制造水平密切相关。很显然,机内净化只能减少有害气体的生成,而不能除去已经生成的有害气体。机外净化是在尾气排出气缸进入大气之前,利用转化装置将其中的有害成分转化为无害气体。尾气转化装置包括: (1)热反应器。向排气口喷入新鲜空气,并加强排气管保温, 利用尾气本身的热量使CO、HC继续氧化,转化为相对无害的CO 2和H 2 O。(2) 催化反 应器。利用催化剂将CO、HC和NOx转化为CO 2、H 2 0和N 2 。由于汽油燃烧过程中,有 害气体的生成不可避免,热反应器对CO、HC的转化效率有限,且不能对NO X 进行转化。因此,催化净化是解决尾气污染最根本有效的方法。 国外发达国家已经广泛研究高效三效催化剂,提出了欧Ⅲ、欧Ⅳ标准,正向超低排放甚至零排放发展,国内新排放法规已颁布并正在实施,但由于国内三效催化剂研究起步较晚,国产三效催化剂没有大规模的应用,国产净化催化剂产业前景十分广阔。汽车尾气催化剂的研究开发涉及到化工、发动机、液体力学、新材料等很多学科,但其中催化剂的研究和制备是关键,特别是开发与研究国内资源丰富的含稀土车用催化剂,减少国内资源贫乏的贵金属用量,寻找到稀土与贵金属复合催化净化汽车尾气的规律,是今后研究的主要方向。

汽车尾气污染的净化处理技术

3.6 结果分析 实验证明电感耦合等离子体原子发射光谱法(ICP-AES )是测定管模粉中,锆、钡、铈三种元素快速、有效的方法。 参考文献:[1]https://www.360docs.net/doc/fd11201461.html,ng ’s Handbook of chemistry11th ed.1976.[2] Robert D.Braun,Introduction to Insrtumental Analysis,McGraw-Hill Book company,1987. [3] 美、英等.高频电感耦合等离子光源分析[M].北京:地质出版社,1982,87. [4]朱明华.仪器分析[M].北京:高等教育出版社,1983.[5]林树昌,曾泳淮编.分析化学:仪器分析部分[M].北京:高等教育出版社,1994,4. [6]万家亮.现代光谱分析手册[M].武汉:华中师范大学出版社,1987,196. 汽车尾气排放已经成为我国大中型城市环境污染的主要污染源之一,汽车排放尾气中的污染物主要有一氧化碳(CO )、碳氢化合物(HC )、氮氧化合物(NO x )、黑烟、油雾、刺激性臭气甲醛(HCHO )、丙烯醛(CH 2CHCHO )、二氧化碳(CO 2)、硫化物、铅化物等[1]。汽车尾气排放的污染物给我们赖以生存的大气环境造成了严重的影响,对人体健康产生了严重的危害[2]。因此,必须采取有效措施,减少或消除汽车尾气的排放量,并对尾气进行净化处理,还我们一个洁净的大气环境。 1汽车尾气净化技术 所谓汽车尾气净化就是采取种种有效措施,减 少污染物的排放或使排放废气中CO 、HC 、NO x 等污染物,分别被氧化或还原,生成无毒的CO 2、H 2O 和 N 2 [3] 。为了减少汽车尾气排放,采取的途径主要有两 种,一是在不改变燃料种类的情况下采用清洁燃烧技术(即机内净化)与尾气净化技术(即机外净化);二是利用绿色环保燃料来减少汽车尾气中有害物的排放。 1.1机内净化技术 机内净化技术主要是提高燃料质量和改善燃 料在发动机内的燃烧条件,尽可能地减少污染物的生成[4],其措施有:改进燃烧室结构,改进供油系统,改进进气系统,使燃油燃烧更充分,改进点火系统等。 目前国外已运用的机内净化方法主要有:延迟点火法,废气再循环装置(ECR ),控制燃烧装置(CSS ),清洁空气装置(CAP )以及低温等离子体技术。 而传统的机内净化技术主要包括改进发动机的内部结构,采用电控燃油喷射系统,废气再循环系统等,但是这些措施对设备的要求较为苛刻,成本过高,而且净化的效果也不理想。 低温等离子技术[5,6]用于机内净化,主要是将空气在送入内燃机燃烧室之前等离子化,使空气中含有充足的原子氧和臭氧及其他激发态的氧,从而大 汽车尾气污染的净化处理技术 周逸潇1,许庆峰1,2,杨丽1,张宝贵1 (1.南开大学环境科学与工程学院,天津300071;2.天津中国人民解放军军事交通学院,天津300161) 摘要:本文综述了汽车尾气污染净化处理技术,包括机内净化和机外净化,介绍了三元催化技术、低温等离子体技术,并叙述了纳米技术的应用,最后对新的净化技术提出展望。关键词:汽车尾气;净化;催化;等离子体;纳米技术 doi:10.3969/j.issn.1008-1267.2009.06.020 中图分类号:TQ314.248 文献标志码:A 文章编号:1008-1267(2009)06-0054-03 收稿日期:2009-06-25 作者简介:周逸潇(1985-),女,硕士研究生,主要研究方向环境化学。 第23卷第6期2009年11月 Vol.23No.6Nov.2009 天津化工 Tianjin Chemical Industry !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!·环境保护·

聚酯催化剂的研究进展

聚酯催化剂的研究进展 摘要综述了聚酯催化剂的研究进展。包括锑系催化剂,锗系催化剂,钛系催化剂以及其他类型的催化剂的催化效果及其应用情况。 关键词:聚酯催化剂缩聚反应 用于聚酯生产缩聚反应的催化剂种类繁多,主要有锑系、锗系、钛系、锡系等。由于锑系催化剂在缩聚过程中能大大促进缩聚反应,而对热降解反应的促进程度较小,因此目前聚酯工业普遍采用锑系催化剂,主要品种有三氧化二锑、醋酸锑以及近年来开始受到广泛关注的乙二醇锑。此外,用于酯交换反应的锰、锌、钙、钴、铅等金属的醋酸盐对缩聚反应也有一定的催化作用。 催化剂是聚酯生产中的重要环节,对于新型聚酯催化剂的研究从未停止过。对于缩聚反应有催化作用的化合物种类繁多几乎囊括了除卤族元素和惰性元素的所有元素。但是目前主要研究的是Sb,Ge,Ti等系列的化合物。 项目Sb系催化剂Ge系催化剂Ti系催化剂 催化剂浓度/μg.g-1 150-350 20-120 10-100 所产PET性能 价格低廉过高较贵 色相浅灰色白色淡黄雾度性能中等很好很好 乙醛生成很好很好差 结晶速度中等很好很好 热稳定性很好中等差 氧稳定性中等差差 Sb系催化剂活性适中,价格低廉,在聚酯工业中使用最为普遍;Ge系催化剂价格昂贵,目前应用比较少;Ti系催化剂活性最高,一般用于PBT,PTT,PCT的生产。近些年来,围绕进一步提高催化活性,减少催化剂对环境的污染等方面,许多聚酯生产厂家及催化剂生产厂家做了大量的研究工作,涌现了一大批极具潜力的新型催化剂。 1锑系催化剂 比较吉玛,钟纺,杜邦等典型聚酯工艺,发现90%以上的聚酯工业都使用锑系催化剂,我国迄今引进的聚酯装置也主要采用锑系催化剂,主要品种为Sb2O3和Sb(AC)3。吉玛装置一般采用Sb(AC)3,钟纺,杜邦装置一般采用Sb2O3。此外,乙二醇锑作为传统Sb系催化剂的升级换代产品,也开始得到生产企业的关注。 醋酸锑 与Sb2O3相比Sb(AC)3具有以下优点:(1)Sb(AC)3在乙二醇中的溶解性好,能够更加迅速的催化反应;(2)Sb2O3作催化剂时使用量较大,可能引起金属梯还原使产品色相发灰;(3)Sb(AC)3中无不溶性杂质避免了管道阻塞的发生。 我国对Sb(AC)3的研制较晚。1979年大连有机化工厂开始研制,1984年试生产,采

相关文档
最新文档