硅基 MEMS 加工技术及其标准工艺研究

硅基 MEMS 加工技术及其标准工艺研究
硅基 MEMS 加工技术及其标准工艺研究

国外MEMS发展大致状况介绍 Microsoft Office Word 97 - 2003 文档

1.1 MEMS概况 1.1.1 MEMS的定义 MEMS是微机电系统(Micro-Electro-Mechanical Systems)的英文缩写。MEMS是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的,目前MEMS加工技术还被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。MEMS主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。 MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。MEMS技术正发展成为一个巨大的产业,就象近20年来微电子产业和计算机产业给人类带来的巨大变化一样,MEMS也正在孕育一场深刻的技术变革并对人类社会产生新一轮的影响。目前MEMS市场的主导产品为压力传感器、加速度计、微陀螺仪、墨水喷咀和硬盘驱动头等。大多数工业观察家预测,未来5年MEMS器件的销售额将呈迅速增长之势,年平均增加率约为18%,因此对对机械电子工程、精密机械及仪器、半导体物理等学科的发展提供了极好的机遇和严峻的挑战。 微机电系统MEMS(Micro-Electro-Mechanical Systems)是一种全新的必须同时考虑多种物理场混合作用的研发领域,相对于传统的机械,它们的尺寸更小,最大的不超过一个厘米,甚至仅仅为几个微米,其厚度就更加微小。采用以硅为主的材料,电气性能优良,硅材料的强度、硬度和杨氏模量与铁相当,密度与铝类似,热传导率接近钼和钨。采用与集成电路(IC)类似的生成技术,可大量利用IC生产中的成熟技术、工艺,进行大批量、低成本生产,使性价比相对于传统“机械”制造技术大幅度提高。完整的MEMS是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。 1.1.2 MEMS的相关技术主要有以下几种: 1.微系统设计技术主要是微结构设计数据库、有限元和边界分析、CAD/CAM仿真和模拟技术、微系统建模等,还有微小型化的尺寸效应和微小

MEMS的主要工艺类型与流程

MEMS的主要工艺类型与流程 (LIGA技术简介) 目录 〇、引言 一、什么是MEMS技术 1、MEMS的定义 2、MEMS研究的历史 3、MEMS技术的研究现状 二、MEMS技术的主要工艺与流程 1、体加工工艺 2、硅表面微机械加工技术 3、结合技术 4、逐次加工 三、LIGA技术、准LIGA技术、SLIGA技术 1、LIGA技术是微细加工的一种新方法,它的典型工艺流程如上图所示。 2、与传统微细加工方法比,用LIGA技术进行超微细加工有如下特点: 3、LIGA技术的应用与发展 4、准LIGA技术 5、多层光刻胶工艺在准LIGA工艺中的应用 6、SLIGA技术 四、MEMS技术的最新应用介绍 五、参考文献 六、课程心得

〇、引言 《微机电原理及制造工艺I》是一门自学课程,我们在王跃宗老师的指导下,以李德胜老师的书为主要参考,结合互联网和图书馆的资料,实践了自主学习一门课的过程。本文是对一学期来所学内容的总结和报告。由于我在课程中主讲LIGA技术一节,所以在报告中该部分内容将单列一章,以作详述。 一、什么是MEMS技术 1、MEMS的概念 MEMS即Micro-Electro-Mechanical System,它是以微电子、微机械及材料科学为基础,研究、设计、制造、具有特定功能的微型装置,包括微结构器件、微传感器、微执行器和微系统等。一般认为,微电子机械系统通常指的是特征尺度大于1μm小于1nm,结合了电子和机械部件并用IC集成工艺加工的装置。微机电系统是多种学科交叉融合具有战略意义的前沿高技术,是未来的主导产业之一。 MEMS技术自八十年代末开始受到世界各国的广泛重视,主要技术途径有三种,一是以美国为代表的以集成电路加工技术为基础的硅基微加工技术;二是以德国为代表发展起来的利用X射线深度光刻、微电铸、微铸塑的LIGA( Lithograph galvanfomung und abformug)技术,;三是以日本为代表发展的精密加工技术,如微细电火花EDM、超声波加工。 MEMS技术特点是:小尺寸、多样化、微电子等。 (1)微型化:MEMS体积小(芯片的特征尺寸为纳米/微米级)、质量轻、功耗低、惯性小、谐振频率高、响应时间短。例如,一个压力成像器的微系统,含有1024个微型压力传感器,整个膜片尺寸仅为10mm×10mm,每个压力芯片尺寸为50μm×50μm。 (2)多样化:MEMS包含有数字接口、自检、自调整和总线兼容等功能,具备在网络中应用的基本条件,具有标准的输出,便于与系统集成在一起,而且能按照需求,灵活地设计制造更多化的MEMS。 (3)微电子化:采用MEMS工艺,可以把不同功能、不同敏感方向或致动方向的多个传感器或执行器集成于一体,或形成微传感阵列、微执行器阵列甚至把多种功能的器件集成在一起,形成复杂的微系统。微传感器、微执行器和微电子器件的集成可制造出可靠性、稳定性很高的微电子机械系统。 (4)MEMS技术适合批量生产:用硅微加工工艺在同一硅片上同时可制造出成百上千微型机电装置或完整的MEMS,批量生产可大大降低生产成本。

MEMS加工工艺

MEMS技术的加工工艺 微机械加工工艺分为硅基加工和非硅基加工。下面主要介绍体加工工艺、硅表面微机械加工技术、结合加工、逐次加工、另外单独一章介绍LIGA技术。 下图是微机械加工工艺的流程落图。 (一)体加工工艺 体加工工艺包括去加工(腐蚀)、附着加工(镀膜)、改质加工(掺杂)和结合加工(键合)。 主要介绍腐蚀技术。 腐蚀技术主要包括干法腐蚀和湿法腐蚀,也可分为各向同性腐蚀和各向异性腐蚀。 (1)干法腐蚀是气体利用反应性气体或离子流进行的腐蚀。干法腐蚀可以腐蚀多种金属,也可以刻蚀许多非金属材料;既可以各向同性刻蚀,又可以各向异 性刻蚀,是集成电路工艺或MEMS工艺常用设备。按刻蚀原理分,可分为等离 子体刻蚀(PE:Plasma Etching)、反应离子刻蚀(RIE:Reaction Ion Etching) 和电感耦合等离子体刻蚀(ICP:Induction Couple Plasma Etching)。在 等离子气体中,可是实现各向同性的等离子腐蚀。通过离子流腐蚀,可以实 现方向性腐蚀。 (2)湿法腐蚀是将与腐蚀的硅片置入具有确定化学成分和固定温度的腐蚀液体里进行的腐蚀。硅的各向同性腐蚀是在硅的各个腐蚀方向上的腐蚀速度相 等。比如化学抛光等等。常用的腐蚀液是HF-HNO3腐蚀系统,一般在HF和HNO3 中加H2O或者CH3COOH。与H2O相比,CH3COOH可以在更广泛的范围内稀释而保持

HNO3的氧化能力,因此腐蚀液的氧化能力在使用期内相当稳定。硅的各向异 性腐蚀,是指对硅的不同晶面具有不同的腐蚀速率。比如, {100}/{111}面 的腐蚀速率比为100:1。基于这种腐蚀特性,可在硅衬底上加工出各种各样 的微结构。各向异性腐蚀剂一般分为两类,一类是有机腐蚀剂,包括EPW(乙 二胺,邻苯二酸和水)和联胺等。另一类是无机腐蚀剂,包括碱性腐蚀液, 如:KOH,NaOH,LiOH,CsOH和NH4OH等。 在硅的微结构的腐蚀中,不仅可以利用各向异性腐蚀技术控制理想的几何形状,而且还可以采用自停止技术来控制腐蚀的深度。比如阳极自停止腐蚀、PN结自停止腐蚀、异质自停止腐蚀、重掺杂自停止腐蚀、无电极自停止腐蚀还有利用光电效应实现自停止腐蚀等等。 (二)硅表面微机械加工技术 美国加州大学Berkeley分校的Sensor and Actuator小组首先完成了三层多晶硅表面微机械加工工艺,确立了硅表面微加工工艺的体系。 表面微机械加工是把MEMS的“机械”(运动或传感)部分制作在沉积于硅晶体的表面膜(如多晶硅、氮化硅等)上,然后使其局部与硅体部分分离,呈现可运动的机构。分离主要依靠牺牲层(Sacrifice Layer)技术,即在硅衬底上先沉积上一层最后要被腐蚀(牺牲)掉的膜(如SiO2可用HF腐蚀),再在其上淀积制造运动机构的膜,然后用光刻技术制造出机构图形和腐蚀下面膜的通道,待一切完成后就可以进行牺牲层腐蚀而使微机构自由释放出来。 硅表面微机械加工技术包括制膜工艺和薄膜腐蚀工艺。制膜工艺包括湿法制膜和干式制膜。湿法制膜包括电镀(LIGA工艺)、浇铸法和旋转涂层法、阳极氧化工艺。其中LIGA工艺是利用光制造工艺制作高宽比结构的方法,它利用同步辐射源发出的X射线照射到一种特殊的PMMA感光胶上获得高宽比的铸型,然后通过电镀或化学镀的方法得到所要的金属结构。干式制膜主要包括CVD(Chemical Vapor Deposition)和PVD(Physical Vapor Deposition)。薄膜腐蚀工艺主要是采用湿法腐蚀,所以要选择合适的腐蚀液。 (三)结合技术 微加工工艺中有时需要将两块微加工后的基片粘结起来,可以获得复杂的结构,实现更多的功能。将基片结合起来的办法有焊接、融接、压接(固相结合)、粘接、阳极键合、硅直接键合、扩散键合等方法。 (四)逐次加工 逐次加工是同时加工工艺的补充,常用于模具等复杂形状的加工,其优点是容易制作自

激光微细加工技术及其在MEMS微制造中的应用讲解

SpecialReports 2002年第3期 综述 激光微细加工技术及其在MEMS微制造中的应用LaserMicromachiningandItsApplicationintheMicrofabricationofMEMS 潘开林①②陈子辰②傅建中① (①浙江大学生产工程研究所②桂林电子工业学院) 摘要:文章综述了当前MEMS各类微制造技术,阐述了各种激光微细加工技术的原理、特点,主要包括准 分子激光微细加工技术、激光LIGA技术、激光微细立体光刻技术等,以及它们在MEMS微制造中的应用。 关键词:激光微细加工微机电系统激光LIGA1所示[5]。 表1MEMS主要微制造技术对比 技术 LIGA 1MEMS及其微制造技术概述 微机电系统(ME,,知功能和执行功能,在此基础上可开发出高度智能、高功能密度的新型系统。MEMS器件与系统未来将成为多个领域的核心,其作用与以CPU为代表的集成电路构成当今电子系统的核心一样。鉴于MEMS技术的重要技术经济潜力和战略地位,引起了世界各国的高度重视。MEMS主要是美国学者的称谓,在日本称为微机械,在欧洲称为微系统。此外,微技术在不同的学科与应用领域,还有类似的不同的专业或行业术语,如生物技术领域的基因芯片(DNA芯片)、生物芯片(Bio-Chip),分析化学领域的微全流体分析系统(uTAS)、芯 最小尺寸 +++--(+)-(+)+++ 精度 +++--(+)++-+ 高宽比粗糙度 ++-+-+++++++

++--+-++ 几何自 由度 +-++++++-- 材料范围金属、聚合物、 陶瓷金属、聚合物金属、聚合物、 陶瓷聚合物金属、半导体、 陶瓷金属、半导体非铁金属、聚合物 技术准分子激光微细立体光刻微细电火化 LCVD 金刚石片实验室(LabonChip),与光学集成形成微光机电系统(MOEMS)等。MEMS是从微电子技术发展而来,其微制造技术 注:表中++、+、-、--分别表示很好、好、较差、很差,+-表示不同应用条件下的相对效果,括号内的“+”表示最新研究有所进展。 在目前MEMS微细加工技术的研究与应用中,激光微细加工技术得到了广泛的关注与研究。激光微细加工制造商宣称激光微细加工技术具有:非接触工艺、有选择性加工、热影响区域小、高精度与高重复率、高的零件尺寸与形状的加工柔性等优点。 实际上,激光微细加工技术最大的特点是“直写”加工,简化了工艺,实现了MEMS的快速原型制造。此外,该方法没有诸如腐蚀等方法带来的环境污染问题,可谓“绿色制造”。 在MEMS微制造中主要采用的激光微细加工技术有:激光直写微细加工、激光LIGA、激光微细立体光刻等,下面分别加以介绍。 主要沿用微电子加工技术与设备。微电子加工技术与设备价格昂贵,适合批量生产。由于微电子工艺是平面工艺,在加工MEMS三维结构方面有一定的难度。目前,通过与其它学科的交叉渗透,已研究开发出以下一些特定的MEMS微制造技术。 (1)LIGA技术LIGA和准LIGA技术最大的特点是可制出高径比很大的微构件,但缺点同样突出,成本高。 (2)材料去除加工技术这类技术主要包括准分 子激光微细加工[1~4]、微细电火花加工[5]、以牺牲层技术为代表的硅表面微细加工、以腐蚀技术为主体的体硅加工技术、电子束铣、聚焦离子束铣等。(3)材料淀积加工技术这类技术主要包括激光 7] 辅助淀积(LCVD)、微细立体光刻[6、、电化学淀积等。

MEMS的简介

当今的微机电系统(Micro Electro Mechanical System,简称MEMS)产业重点不断从单 个的微机电系统器件向微机电系统产品转移,而且其中的机械、热、电、静电及电磁间耦合作用与机理日趋复杂,一些传统的工程设计方法(如经验设计法等)无法满足微系统的设计要求。对微机电系统产品开发而言,这种反复尝试的设计方法、长设计周期以及微系统原型机的高昂费用导致了一种效率极为低下的、不切实际的情况。目前,针对微机电系统的现代设计理论与方法已日益受到微机电系统CAD厂商以及高等院校的相关研究机构的重视, 但对微机电系统大规模生产阶段的自动装配系统的研究较少。 微装配作为MEMS产业化过程中的一项重要技术理应受到重视。在研究的过程中,我们查阅了大量国内外各方面的资料,发现迄今为止还没有一本书来系统讲解微装配的过程,于是我们项目组萌生了编写一本介绍微装配的书籍,希望对MEMS感兴趣的人在获取这方 面知识的时候能够比我们来的容易些。 在现代产品设计过程中,装配技术作为检验设计质量的一个重要环节显得越来越重要。而这个过程通常是用各种CAD设计软件来实现的,于是又出现了仿真的问题。 具体到MEMS,微装配与仿真更是一个有机的整体。在设计MEMS时,要检验MEMS的可装配性,于是就要把MEMS系统进行建模仿真。因此,有必要将两者联合起来进行论述。 “国家大学生创新性实验计划”作为教育部、财政部高等学校本科教学质量与教学改革工程的重要组成部分,是培养高素质创新型人才的重要举措之一。该计划的实施,旨在培养大学生从事科学研究和探索未知的兴趣,从而激发大学生的创新思维和创新意识,锻炼大学 生思考问题、解决问题的能力,培养其从事科学研究和创造发明的素质。 2007年,教育部批准了首批60所高校实施该计划项目,西安电子科技大学作为实施该计划项目的高校之一,已经有40个项目被正式列入“国家大学生创新性实验计划”,“MEMS 自动装配系统的虚拟化研究”项目有幸成为其中之一。 本书较为细致地叙述了微装配的基本过程和MEMS建模仿真的一些常用方法,主要介绍了微装配技术与微装配系统、MEMS系统建模与库的建立和宏建模的若干种常用方法,并对虚拟化实现 的相关技术和实现方案给出了概念性描述。对于MEMS基本知识和微加工工艺部分,因 已有较多相关的各类文献资料,本书只作简要叙述。 第一章介绍了MEMS的基本概念和各项特性,使读者对微观世界有一个初步的认识。通过学习本章,首先从微机电系统的定义(包括基本概念、研究内容和应用方向等方面)了解MEMS概况,然后从微加工材料到微器件再到微系统各层级了解所涉及到的材料、力学、尺寸效应等特性,即微观操作相异于宏观世界的主要 原因及核心内容。本章的学习为了使读者逐渐进入微观世界,为以后各章的学习和对微系 统更深层的研究建立一个基础。 第二章把MEMS的系统级划分为工艺级、物理级、器件级和系统级四个层级,四个层级分别交叉对应MEMS的材料特性、结构特性和功能特性。MEMS加工工艺部分扼要地

MEMS加工技术及其工艺设备

MEMS加工技术及其工艺设备 童志义 MEMS是微电子技术与机械,光学领域结合而产生的,是20世纪90年代初兴起的新技术,是微电子技术应用的又一次革命性实验。MEMS很有希望在许多工业领域,包括信息和通讯技术,汽车,测量工具,生物医学,电子等方面成为关键器件,把在Si衬底上的MEMS与IC集成在一起,还可以产生许多新的功能。但是制造MEMS的加工技术主要有三种,第一种是以美国为代表的利用化学腐蚀或集成电路工艺技术对硅材料进行加工,形成硅基MEMS器件;第二种是以日本为代表的利用传统机械加工手段,即利用大机器制造出小机器,再利用小机器制造出微机器的方法;第三种是以德国为代表的LIGA(德文Lithograpie-光刻,Galvanoformung-电铸的Abformung-塑铸三个词的缩写)技术,它是利用X射线光刻技术,通过电铸成型和铸塑形成深层微结构的方法。其中硅加工技术与传统的IC工艺兼容,可以实现微机械和微电子的系统集成,而且该方法适合于批量生产,已经成为目前MEMS的主流技术。 随着电子,机械产品微小化的发展趋势,未来10年,微机械 代半导体产业成为主流产业,为此,日本,美国一些著名企业均开始加强其MEMS组件/模块制造能力。 当前,微机械与MEMS产业已被日本政府列入未来10年保持日本竞争力的产业,虽然目前MEMS组件/模块市场主要集中在一些特殊应用领域,但未来的5~10年内,MEMS组件/模块市场规模将扩大到目前的3倍,MEMS相关系统市场将增长10倍(见表1),因此,掌握组件/模块技术将有利于未来在MEMS市场取得主动权。 微系统的增长包括微电子机械和最近对半导体产业设备和工艺开发具有重大影响的纳米技术。光学式电子束直写光刻与湿法蚀刻硅工艺的结合,促进了早期的MEMS技术的发展。最近,随着感应耦合等离子体刻蚀系统在深度垂直侧壁结构的应用使MEMS在单晶硅的开发成为可能。与此同时,半导体多晶硅的淀积和刻蚀工艺在复杂的多层MEMS系统中也获得成功的应用。而在硅材料和传统刻蚀、淀积工艺之外的一些新的发展趋势正在引起人们更多的关注。 1MEMS加工技术 传统的制造业依赖大量的关键机械设备和有关的工艺,这些设备和工艺已有几十年甚至上百年的历史了。例如铸造、锻造、车削、磨削、钻孔和电镀等均是一个综合的制造环境所必不可少的。这些设备和工艺与大量的其它物理和化学手段及工艺均用作制造环境的基础,它们在半导体产业中均具有其相应的替代技术。光学光刻,耦合等离子刻蚀,金属的溅射涂覆,金属的等离子体增强化学汽相淀积和介质隔离以及在掺杂工艺中的离子注入和衬底处理,现都已成为集成电路制造中的常规工艺。基于电子束制版和光学投影光刻及电子束直写光刻这种基本的图形加工技术现已成为先进的纳米尺寸作图技术的主要角色。上述的这些设备和技术以及一些还未流行的设备的工艺目前正被用于MEMS的纳米技术制造,且成为微时代的微机械加工设备,三维微细加工的主要途径有光刻、准分子激光加工、LIGA、UV-LIGA、体硅加工技术和深度反应离子刻蚀等。

MEMS技术加工工艺与IC工艺区别

MEMS技术加工工艺与IC工艺区别 微机械加工工艺分为硅基加工和非硅基加工。下面主要介绍体加工工艺、硅表面微机械加工技术、结合加工、逐次加工。 下图是微机械加工工艺的流程落图。 (一)体加工工艺 体加工工艺包括去加工(腐蚀)、附着加工(镀膜)、改质加工(掺杂)和结合加工(键合)。主要介绍腐蚀技术。 腐蚀技术主要包括干法腐蚀和湿法腐蚀,也可分为各向同性腐蚀和各向异性腐蚀。 (1)干法腐蚀是气体利用反应性气体或离子流进行的腐蚀。干法腐蚀可以腐蚀多种金属,也可以刻蚀许多非金属材料;既可以各向同性刻蚀,又可以各向异性刻蚀,是集成电路工艺或MEMS工艺常用设备。按刻蚀原理分,可分为等离子体刻蚀(PE:Plasma Etching)、反应离子刻蚀(RIE:ReacTIon Ion Etching)和电感耦合等离子体刻蚀(ICP:InducTIon Couple Plasma Etching)。在等离子气体中,可是实现各向同性的等离子腐蚀。通过离子流腐蚀,可以实现方向性腐蚀。 (2)湿法腐蚀是将与腐蚀的硅片置入具有确定化学成分和固定温度的腐蚀液体里进行的腐蚀。硅的各向同性腐蚀是在硅的各个腐蚀方向上的腐蚀速度相等。比如化学抛光等等。常用的腐蚀液是HF-HNO3腐蚀系统,一般在HF和HNO3中加H2O或者CH3COOH。与H2O相比,CH3COOH可以在更广泛的范围内稀释而保持HNO3的氧化能力,因此腐蚀液的氧化能力在使用期内相当稳定。硅的各向异性腐蚀,是指对硅的不同晶面具有不同的腐蚀速率。比如,{100}/{111}面的腐蚀速率比为100:1。基于这种腐蚀特性,可在硅衬底上加工出各种各样的微结构。各向异性腐蚀剂一般分为两类,一类是有机腐蚀剂,包括EPW(乙二胺,邻苯二酸和水)和联胺等。另一类是无机腐蚀剂,包括碱性腐蚀液,如:KOH,NaOH,LiOH,CsOH和NH4OH等。 在硅的微结构的腐蚀中,不仅可以利用各向异性腐蚀技术控制理想的几何形状,而且还可

MEMS技术发展概述

MEMS技术的研究现状与进展 摘要:介绍了MEMS技术在国内外的发展状况,MEMS的技术特点,主要加工工艺以及加工材料,并对MEMS目前的应用状况作出了分类总结。 关键词:MEMS ;加工工艺;应用状况 The research and development of MEMS technology Abstract: This paper introduces the MEMS development status at home and abroad, the characteristics of MEMS technology, the main processing technology and processing materials, and summarizes the classification of current MEMS applications. Key Words:MEMS ;Processing technology;Processing status 微小型化始终是当代科学技术发展的重要方向。微电子技术的发展,不仅使计算机与信息技术等领域面貌一新,而且在许多领域引发了一场微小型化的革命。以加工微米/纳米机构和系统为目的的微米/纳米技术在此背景下应运而生。一方面,人们利用物理、化学方法将原子和分子组装起来,形成有一定功能的微米/纳米结构;另一方面,人们利用精细加工手段加工出微米/纳米结构。前者导致了纳米生物学、纳米化学等边缘学科的产生;后者在小型机械制造领域开始了一场革命,导致了MEMS技术的出现[1]。 微机电系统(Micro Electro-mechanical Systems,MEMS)一般是指1μm~100μm的微米系统,或者说轮廓尺寸在毫米级,组成元件尺寸在微米数量级的系统。随着产品尺寸的微小化,MEMS的应用范围日益扩大,包括无线传感网络、智能型药丸、芯片上实验室(Chip-On-Lab)等,并广泛应用于汽车、生物医学、通信以及消费类产品[2]。德国Weissler把MEMS称为系统工业发展所需的“维生素”[3]。 MEMS系统主要包括微型传感器、微执行器和相应的处理电路三部分。作为输入信号的自然界各种信息,首先通过传感器转换成电信号,经过信号处理单元后(包括A/D、D/A转换),再通过微执行器对外部世界发生作用。下图给出了MEMS系统与外界相互作用的示意图[4]。

相关文档
最新文档