关于ABAQUS在流固耦合方面的应用

关于ABAQUS在流固耦合方面的应用
关于ABAQUS在流固耦合方面的应用

关于ABAQUS 在流固耦合方面的应用

摘 要:针对ABAQUS 有限元分析软件中的流固耦合功能,简述了其中理想气体状态方程的各参数含义以及流固耦合的分析要点。文章通过ABAQUS 仿真分析和理论数值解的对比,证明了ABAQUS 软件计算理想气体状态方程的可信性,最后介绍其在某型号弹上的分析应用。

关键词: 理想气体方程 流固耦合 ABAQUS

前言

随着有限元技术的发展和用户要求的提高,各大有限元软件都含有流固耦合模块,其主要用于液体、理想气体和JWL 的模拟,本文着重介绍ABAQUS 中理想气体状态方程的功能和应用。为了验证ABAQUS 理想气体状态方程模拟气体压缩的正确性,首先利用其模拟简单的气体压缩过程,并获得该过程中气体的状态变化曲线(仿真曲线);然后通过matlab 求解该模型理论上的气体状态方程,并在Matlab 上获得数值解(理论曲线)。将仿真曲线和理论曲线进行对比,发现二者非常吻合,证明了ABAQUS 模拟理想气体状态的可信性。在此基础上,将其用在某型号弹上的流固耦合分析。

1 理想气体方程的参数含义

在ABAQUS 有限元分析软件中,气体压缩方程为:

()a z p p R ρθθ?+=- (1)

其中:p ?:气体压强的增量,初始增量为零,ODB 文件输出的压强 a p :初始的气体压强,标准大气压为51.01310?Pa

ρ:气体密度,这里设为31.17/kg m

R :气体常数,这里为287

θ:气体温度,初始温度设为20℃,ODB 文件输出的温度 z θ:绝对温度的零值,这里为-273℃

在分析时,需要在定义系统的绝对零度值,如图1所示

图1 定义系统的绝对零度

2 ABAQUS 仿真

建立如图2所示的装配图,气体在一个封闭的环境内受到活塞的压缩。假设整个过程没有任何能量的损失,及活塞气体和活塞之间没有热传递,且活塞以一定的速度向前运动。

图2 气体未压缩和压缩后体积的变化

在设置模型过程中,活塞和气体之间的接触通过inp文件的关键字实现,经过实践证明,这样的定义方式可以有效避免气体的泄露。其定义过程为:*******************为气体分配材料属性**********************

*Initial Conditions, type=VOLUME FRACTION

Set-inner-gas, gas-1.gas-inner, 1.

******************定义气体的欧拉接触面********************

*Surface, type=EULERIAN MATERIAL, name=inner-gassurface

gas-1.gas-inner

******************定义活塞和气体之间的接触******************

*Contact Inclusions

inner-gassurface,Surf-contact-huosai

***************************************************

通过仿真计算后,在压缩终结束时刻,气体的压强和温度如图3和图4所示。

图3 压缩结束时,气体压强p ?

图4压缩结束时,气体温度θ 3 理论计算

上节模拟的气体压缩过程是一个“等熵过程”它的气体状态参数关系为:

2121121

()()k k k p V T p V T -==.................................(2) 其中k 为等熵指数,这里取k=1.4,T 为绝对温度k 。

如图2所示,气体在初始状态下体积3571171V mm =,活塞投影面21698S mm =,代入式(2)后气体压缩理论方程为

1.421571171()5711711689P P h

=-?.................(3) 0.421571171()5711711689T T h

=-?.................(4) 其中h 为活塞投影面与底面的距离,初始条件下280h mm =,初始大气压51 1.010p Pa =?,初始温度127320293T K =+=。结合Abaqus 参数名称,定义气体压强增量P ?和温度θ:

21P P P ?=- (5)

2273T θ=- (6)

4 结果对比

采集967号节点的压强和温度,并绘制曲线(仿真曲线)。结合式(3)、(4)、

(5)、(6),利用Matlab 软件绘制出压强增量P ?和气体温度θ与h 之间的曲线(理论曲线)。将ABAQUS 的仿真结果和理论计算结果进行对比,二者变化曲线如图5和图6所示。

图 5 仿真压强曲线和理论计算压强曲线的对比

图 6 仿真压强曲线和理论计算压强曲线的对比

图5和图6中蓝线表示的是用气体状态方程计算的气体参数曲线,红线表示的是ABAQUS有限元软件仿真模拟的参数曲线,从图可以看出,两条曲线基本是重合的,因此ABAQUS有限元软件在模拟理想气体状态方面具有非常大的可靠性。

5 流固耦合的应用

某型号弹的结构如图7所示,它有弹筒、弹头和筒盖组成,筒内密封有空气。筒盖的材料是一种脆性塑料,弹筒和弹头认为是刚体。当弹头压缩前面的空气并达到一定的气压时,筒盖就会破裂。利用ABAQUS的流固耦合模块,计算出弹头移动多少距离时,筒盖会破损。

图7 结构装配示意图

脆性材料采用Brittle Cracking的失效准则,模拟出筒盖破损的状态如图8所示。

图8 筒盖破损画面

6结论

通过计算比较,ABAQUS有限元软件在模拟理想气体状态方程上,有着很高的可信度,它的模拟结果和理论上的状态方程基本重合。因此在实际操作中,结合材料的变形和失效,它可以模拟多种情况下的流固耦合问题。但是,在流固耦合分析中,应尽量细化网格,否则不能真实的模拟由于边界的变形而导致气体形状的改变。

参考文献

[1] 范仲书,刘亚飞.弹丸空气动力学[M].南京:南京理工大学,1983

[2] 石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006

[3] ABAQUS 帮助文件

基于MpCCI的Abaqus和Fluent流固耦合案例1

CAE联盟论坛精品讲座系列 基于MpCCI的Abaqus和Fluent流固耦合案例 主讲人:mafuyin CAE联盟论坛总监 摘要:通过MpCCI流固耦合接口程序,对某薄壁管道流动中的传热过程进行了Abaqus和Fluent相结合的流固耦合仿真分析。信息介绍了从建模、设置到求解计算和后处理的全过程,对相关研究人员具有参考意义。 1 分析模型 用三维建模软件solidworks建立了一个管径为1m的弯管,结构尺寸如图1a所示,管的结构如图1b所示,流体的模型如图1c所示。值得注意的是,由于拓扑特征的原因,这样的管壁模型无法通过对圆环扫略直接生成,而需先通过对大圆的扫略生成实心的模型(类似于流体模型),然后进行抽壳得到管壁的模型。用同样的方法对大圆半径减去管壁厚度的圆进行扫略得到流体模型。 a. 尺寸关系 b. 管壁结构 c. 流体模型 图1. 几何模型示意图 图2. 流固耦合传热分析模型示意图 内壁面(耦合面) 速度入口 v=6m/s; T in=600K 外壁面 压力出口 P=0Pa;T out=300K

由于管壁结构和流体的热学行为不同,传热系数等都不一样,所以属于典型的流固耦合传热问题,热学模型如图2所示。即管的一端为流体速度入口,一端为压力出口,给定流体外壁面一个初始温度600K,流体入口速度为6m/s,温度为600K,出口相对大气压力为0Pa,出口温度为300K。需要求解流体和管壁的温度场分布情况。 2 流体模型 将图1c的流体模型以Step格式导入Fluent软件通常使用的前处理器Gambit中,如图3a所示。设置求解器为,然后划分体网格,网格尺寸为100mm,类型为六面体单元,一共生成4895个体单元,网格如图3b所示。 a. 导入Gambit软件中的流体模型 b. 流场的网格模型 图3. 流体模型及网格示意图 进行网格划分后,需定义边界条件,在Gambit软件中先分别定义速度入口(VELOCITY_INLET)、压力出口(PRESSURE_OUTLET)和壁面(Wall)三组边界条件,具体参数设置在Fluent软件中进行。然后定义流体属性,名称定义为air,类型为Fluid。这些定义的目的是能够在Fluent软件中识别出这些特征,具体类型和参数都可以在Fluent软件中进行设置和修改。定义完后点击【Export】,选择【Mesh】,选择路径和文件名称并进行输出。 打开Fluent6.3.26或以上的版本,选择3D求解器,点击【File】→【Read】→【Case】,然后选择Gambit中输出的msh文件,即可将网格文件读入Fluent 软件中。读入模型后,进行求解参数和条件的设置。

(完整word版)ABAQUS实例分析

《现代机械设计方法》课程结业论文 ( 2011 级) 题目:ABAQUS实例分析 学生姓名 XXXX 学号 XXXXX 专业机械工程 学院名称机电工程与自动化学院 指导老师 XX 2013年 5 月8 日

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (6) 二、具体步骤 (6) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (23)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生 成一个Abaqus输入文件。提交给Abaqus/Standard或 Abaqus/Explicit。 2.分析计算(Abaqus/Standard或Abaqus/Explicit):在分析计算阶段, 使用Abaqus/Standard或Abaqus/Explicit求解输入文件中所定义的

基于MpCCI的Abaqus和Fluent流固耦合案例

基于MpCCI 的Abaqus 和Fluent 流固耦合案例 mafuyin 摘要:通过MpCCI 流固耦合接口程序,对某薄壁管道流动中的传热过程进行了Abaqus 和Fluent 相结合的流固耦合仿真分析。信息介绍了从建模、设置到求解计算和后处理的全过程,对相关研究人员具有参考意义。 1 分析模型 用三维建模软件solidworks 建立了一个管径为1m 的弯管,结构尺寸如图1a 所示,管的结构如图1b 所示,流体的模型如图1c 所示。值得注意的是,由于拓扑特征的原因,这样的管壁模型无法通过对圆环扫略直接生成,而需先通过对大圆的扫略生成实心的模型(类似于流体模型),然后进行抽壳得到管壁的模型。用同样的方法对大圆半径减去管壁厚度的圆进行扫略得到流体模型。 a. 尺寸关系 b. 管壁结构 c. 流体模型 图1. 几何模型示意图 图2. 流固耦合传热分析模型示意图 内壁面(耦合面) 速度入口 v=6m/s; T in =600K 外壁面 压力出口 P=0Pa ;T out =300K

由于管壁结构和流体的热学行为不同,传热系数等都不一样,所以属于典型的流固耦合传热问题,热学模型如图2所示。即管的一端为流体速度入口,一端为压力出口,给定流体外壁面一个初始温度600K,流体入口速度为6m/s,温度为600K,出口相对大气压力为0Pa,出口温度为300K。需要求解流体和管壁的温度场分布情况。 2 流体模型 将图1c的流体模型以Step格式导入Fluent软件通常使用的前处理器Gambit 中,如图3a所示。设置求解器为,然后划分体网格,网格尺寸为100mm,类型为六面体单元,一共生成4895个体单元,网格如图3b所示。 a. 导入Gambit软件中的流体模型 b. 流场的网格模型 图3. 流体模型及网格示意图 进行网格划分后,需定义边界条件,在Gambit软件中先分别定义速度入口(VELOCITY_INLET)、压力出口(PRESSURE_OUTLET)和壁面(Wall)三组边界条件,具体参数设置在Fluent软件中进行。然后定义流体属性,名称定义为air,类型为Fluid。这些定义的目的是能够在Fluent软件中识别出这些特征,具体类型和参数都可以在Fluent软件中进行设置和修改。定义完后点击【Export】,选择【Mesh】,选择路径和文件名称并进行输出。 打开Fluent6.3.26或以上的版本,选择3D求解器,点击【File】→【Read】→【Case】,然后选择Gambit中输出的msh文件,即可将网格文件读入Fluent 软件中。读入模型后,进行求解参数和条件的设置。 (1)模型缩放:为了便于分析结果数据特征,统一采用国际单位制进行仿真,

ABAQUS顺序热力耦合分析实例

ABAQUS顺序热力耦合分析实例此实例中需要确定一个冷却栅管的温度场分布。温度场的求解采用稳态热分析,在此之后还将进行热应力分析来求出冷却栅管在温度作用下产生的位移和应力分布。由于冷却栅管比较长,并且是轴对称结构,根据上述特点,可以简化有限元分析模型。此实例中使用国际单位制。 1、part中创建轴对称可变形壳体,大致尺寸为1,通过creat line创建一个封闭曲线(0.127,0) (0.304,0)(0.304,0.006)(0.152,0.006)(0.152,0.031)(0.127,0.031)(0.127,0) 使用creat Fillet功能对模型倒角处设置0.005的倒圆角。倒角后,模型并未改变,需要在模型树中,part下的Features右键,Regenerate,最终模型如下图所示。 2、在材料模块中定义密度7800,弹性模量1.93E11,泊松比0.3。所不同的是,热分析还需 要指定热传导系数以及比热。在Thermal里输入参数,热铲刀系数25.96,比热451。 3、创建截面属性以及装备部件,和普通的静力分析设置一样。 4、Step有所不同,分析类型仍为通用分析步,下面要更改为Heat Transfer。在Edit Step窗 口中,使用默认的瞬态分析(Transient),时长设置为3s。切换到Incrementatin进行相应的设置,如下图。

5、Load模块中,设置左边温度为100度,右边及上边温度为20度。Creat BC,类型选择 Other>Temperature。在纯粹的热传导分析方程中,没有位移项,因此不会发生刚体位移,这里也就不需要设置位移边界条件。 6、接下来划分网格,种子尺寸给0.005,单元类型需要在单元族中选择专门用来热分析的 Heat Transfer,查看下面确保使用的单元为DCAX4。使用结构化的全四边形网格划分方法。 7、到此,热分析的设置已经完成,可以提交计算,完成后,查看变量NT11即为节点温度。

ABAQUS实例分析论文

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (5) 二、具体步骤 (5) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (22)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生

ABAQUS流固耦合

当只进行渗流计算时: 1.由于Abaqus中缺乏非耦合的孔压单元,这时可采用耦合单元,但要约束住所有位移的 自由度。 2.渗流材料参数选择。在CAE中都是在(Material-creat-other-pore fluid)选项中。 1)Gel:定义凝胶微粒吸湿膨胀的发育过程,这在一般的岩土分析中应用不多。 2)Moisture swelling:定义由于吸湿饱和所引起的固体骨架体积膨胀(或负吸力引起的 骨架收缩)。 3)(3)Permeability:定义饱和介质的渗透系数,该渗透系数可以在type选项中定义 为各向同性、正交各向异性和各向异性,并且可以根据Void Ratio定义为孔隙比的 函数。在Suboptions中选择Saturation Dependent 参数来指定与饱和度相关性系数 ks(s),缺省设置为ks=s3,而非饱和介质渗透系数k’=ksk 选择Velocity dependence 参数可以激活Forchheimer定律,缺省的是Darcy定律 4)Pore Fluid Expansion:定义固体颗粒与流体体积热变化效应。 5)Porous Bulk Moduli:定义固体颗粒与流体体积模量。 6)Sorption:定义负孔隙压力与饱和度之间的相关性。当type=Absorption时,定义吸 湿曲线,type=Exsorption时定义排水曲线。 3、载荷及边界条件 1)通过(Load-creat-step-fluid-surface pore fluid)选项定义沿着单元表面的外法线方向 的渗流速度vn,当考虑降雨影响时可采用此载荷 2)边界条件(Boundary condition-creat-other-pore pressure)选项定义孔压边界条件,此 时要先假定浸润面的位置,然后定义浸润面上的孔压为零,Abaqus会在后续的分 析计算中自动计算出浸润面的位置。Abaqus默认的是不透水边界。 3)当渗流自由面遇到临空的自由排水面时,需要定义一个特殊的边界条件。此时可 以通过在inp文件中加入*Flow或*Sflow来定义 4)初始条件的定义。初始条件中一般要定义以下几种:*initial condition,type=saturation 初始饱和度initial condition,type=pore pressure 初 始孔压initial condition,type=ratio 初始孔隙比当进行耦合分析时,基本步骤同 上,但要去掉除边界条件之外的约束,同时还要在边界上加上流体压力

ABAQUS金属切削实例

CAE联盟论坛精品讲座系列【二】 ABAQUS金属切削实例 主讲人:fuyun123CAE联盟论坛—ABAQUS版主 背景介绍: 切削过程是一个很复杂的工艺过程,它不但涉及到弹性力学、塑性力学、断裂力学,还有热力学、摩擦学等。同时切削质量受到刀具形状、切屑流动、温度分布、热流和刀具磨损等影响,切削表面的残余应力和残余应变严重影响了工件的精度和疲劳寿命。利用传统的解析方法,很难对切削机理进行定量的分析和研究。计算机技术的飞速发展使得利用有限元仿真方法来研究切削加工过程以及各种参数之间的关系成为可能。近年来,有限元方法在切削工艺中的应用表明,切削工艺和切屑形成的有限元模拟对了解切削机理,提高切削质量是很有帮助的。这种有限元仿真方法适合于分析弹塑性大变形问题,包括分析与温度相关的材料性能参数和很大的应变速率问题。ABAQUS作为有限元的通用软件,在处理这种高度非线性问题上体现了它独到的优势,目前国际上对切削问题的研究大都采用此软件,因此,下面针对ABAQUS的切削做一个入门的例子,希望初学者能够尽快入门,当然要把切削做好,不单单是一个例子能够解决问题的,随着深入的研究,你会发现有很多因素影响切削的仿真的顺利进行,这个需要自己去不断探索,在此本人权当抛砖引玉,希望各位切削的大神们能够积极探讨起来,让我们在切削仿真的探索上更加精确,更加完善。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 切削参数:切削速度300m/min,切削厚度0.1mm,切削宽度1mm 尺寸参数:本例作为入门例子,为了简化问题,假定刀具为解析刚体,因为在切削过程中,一般我们更注重工件最终的切削质量,如应力场,温度场等,尤其是残余应力场,而如果是要进行刀具磨损或者涂层刀具失效的分析的话,那就要考虑建立刀具为变形体来进行分析了。工件就假定为一个长方形,刀具设置前角10°,后角6°,具体尺寸见INP文件。 下面将切削过程按照ABAQUS的模块分别进行叙述,并对注意的问题作出相应的解释。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 建模:建模过程其实没有什么好注意的,对于复杂的模型,我一般用其他三维软件导入进来,注意导入的时候尽量将格式转化为IGES格式,同时要把一些不必要的东西去掉,比如一些尖角,圆角之类的,如果不是分析那个部位的应力集中的话就没必要导入它,如果导入,还要进行一些细化,大大降低了计算的效率。我一般做的是二维切削,模型相对比较简单,所以一般都是直接在ABAQUS中进行建模。由于此处为刚体,要在part里面建立刚体参考点,而且注意不要在装配模块建立参考点,因为有时候ABAQUS找不到装配模块相应的参考点。 1、工件

滚筒洗衣机ABAQUS流固耦合实例分析步骤共24页.docx

例子的来源是Abaqus CLE的官方教程,可是写的太粗线条,我还是搞了两天才做 出了这个例子。其实就是个滚筒洗衣机带着洗衣机里的水一起转的问题。 1. 分别为Eulerian domain和Lagrangian domain建立两个part 建立Lagrangian domain的Part,类型设置为Discrete rigid,并设置Reference Point。 建立Eulerian domain的Part,类型设置为Eulerian,要注意Eulerian domain 和Lagrangian domain要保证有重叠的部分,这是一种弱耦合,数据在两个区域间抛来抛去,所以网格要有重叠部分。这导致在Eulerian domain里有的部分是有材料的,有的地方是没有材料的。为了之后设置材料分布时候方便,要把part实现划出几个辅助的partition。黄色虚线是在划分partition时,为了指明 Extrude/Sweep方向用到的辅助坐标轴。

2. 定义水的材料属性 选择状态方程模型EOS中Us-Up,设置声速c0=1483m/s;密度为1000kg/m3;粘度为0.001kg/ms。并把截面属性赋给Eulerian domain。

3. 把两个Part组装起来

4. 新建一个Step-1 5. 为Eulerian domain和Lagrangian domain划分网格

6. 设置接触 新建一个Contact Property,因为不是普通的面和面的接触,水中的任何的一个部

分可能在流动区域里的任何一个地方和Lagrangian domain接触,设置Tangential Behavior为Rough,赋给水和洗衣机之间的关系。新建一个Interaction,把刚才的Contact Property赋给它。 更重要的是设置接触的两个Surface。其中一个Surface是Lagrangian domain 部分的内侧面,为Geometry类型,另一个Surface是Eulerian domain的全部网格,为Mesh类型。

abaqus与fluent流固耦合

基于MPCC的流固耦合成功案例 基于MPCC的流固耦合成功案例 (一)机翼气动弹性分析 1问题陈述 机翼绕流问题是流固耦合中的经典问题。以前由于缺乏考虑流固耦合的软件,传统的分析方 法是将机翼视为刚体,不考虑其弹性变形,通过CFD软件来计算机翼附近的流场。这个强硬的假设很难准确的描述流场的实际情况。更无法预测机翼的振动。MPCCI是基于代码耦合的 并行计算接口,它可以同时调用结构和流体的软件来实现流固耦合。我们通过MPCCI能很 好的预测真实情况下的机翼绕流问题。采用ABAQU结构分析软件来求解结构在流畅作用下 的变形和应力分布,通过Flue nt软件来计算由于固体运动和变形对整个流场的影响。 2模拟过程分析顺序 MpCC的图形用户界面可以方便的读入结构和流体的输入文件。后台调用ABAQUS口FLUENT 在MPCCI耦合面板中选择耦合面,然后选择在相应耦合面上流体和固体需要交换的量。启动MpCCI进行耦合。

3边界条件设置 图1无人机模型和流体计算模型 结构部分单个机翼跨度在1.5m左右,厚度为0.1m左右。边界条件为机翼端部的固定,三个方向的位移完全固定,另一端完全自由。在固体中除了固定端的面外,其他三个面为耦合面。流体部分采用四面体网格,采用理想气体作为密度模型。流体的入口和出口以及对称性边界 条件如下图所示。 图2固体有限元模型 4计算方法的选择 通过结合ABAQUS口FLUENT使用MPCCI计算流固耦合。在本例中,固体在流场作用下产生很大的变形和运动。在耦合区域,固体结构部分计算耦合面上的节点位移,通过MPCC传输 给FLUENT勺耦合界面,FLUENT计算出耦合区域上的节点力载荷,然后通过MPCCI传给结构

关于ABAQUS在流固耦合方面的应用

关于ABAQUS 在流固耦合方面的应用 摘 要:针对ABAQUS 有限元分析软件中的流固耦合功能,简述了其中理想气体状态方程的各参数含义以及流固耦合的分析要点。文章通过ABAQUS 仿真分析和理论数值解的对比,证明了ABAQUS 软件计算理想气体状态方程的可信性,最后介绍其在某型号弹上的分析应用。 关键词: 理想气体方程 流固耦合 ABAQUS 前言 随着有限元技术的发展和用户要求的提高,各大有限元软件都含有流固耦合模块,其主要用于液体、理想气体和JWL 的模拟,本文着重介绍ABAQUS 中理想气体状态方程的功能和应用。为了验证ABAQUS 理想气体状态方程模拟气体压缩的正确性,首先利用其模拟简单的气体压缩过程,并获得该过程中气体的状态变化曲线(仿真曲线);然后通过matlab 求解该模型理论上的气体状态方程,并在Matlab 上获得数值解(理论曲线)。将仿真曲线和理论曲线进行对比,发现二者非常吻合,证明了ABAQUS 模拟理想气体状态的可信性。在此基础上,将其用在某型号弹上的流固耦合分析。 1 理想气体方程的参数含义 在ABAQUS 有限元分析软件中,气体压缩方程为: ()a z p p R ρθθ?+=- (1) 其中:p ?:气体压强的增量,初始增量为零,ODB 文件输出的压强 a p :初始的气体压强,标准大气压为51.01310?Pa ρ:气体密度,这里设为31.17/kg m R :气体常数,这里为287 θ:气体温度,初始温度设为20℃,ODB 文件输出的温度 z θ:绝对温度的零值,这里为-273℃ 在分析时,需要在定义系统的绝对零度值,如图1所示 图1 定义系统的绝对零度 2 ABAQUS 仿真

Star-ccm+与Abaqus的直接耦合

Abaqus的直接 ccm++与Abaqus 的直接Star--ccm Star 耦合方法 2011.2.22 CDAJ-China技术部 CDAJ China 技术部

Star--ccm ccm++耦合接口方案 Abaqus与Star 系统需求及设置: Star-CCM+506 ?安装Star-CCM+ 5.06或更高版本; ?安装Abaqus6.10-2或更高版本; 设置如下环境变量 ?设置如下环境变量: set SIMULIA_CSE_LIBS=\\exec\lbr; \\External; __;; set PATH=%SIMULIA CSE LIBS%;%PATH%; ?(在UNIX/Linux下)以如下命令启动Star-CCM+ starccm+-ldlibpath$SIMULIA_CSE_LIBS/lib

ccm++耦合接口方案 Star--ccm Abaqus与Star 耦合步骤 分别建立St CCM+模型和Ab模型保证各自单独计算正常 1.分别建立Star-CCM+模型和Abaqus模型,保证各自单独计算正常; 2.在Star-CCM+模型中进行耦合相关设置(方法见后); 3.在Abaqus模型中进行耦合相关设置(方法见后); 4.在Star-CCM+的界面中启动耦合进程; 5.进行耦合计算; 6.结果保存及后处理。

Abaqus 与Star Star--ccm ccm++耦合接口方案Star-CCM+Star CCM+侧进行的设置 ?物理模型中选择co-simulation ; ?在Tools——co-simulaition 中设置跟ABAQUS 直接耦合相关的参数; ?必要的话,设定网格变形(morpher )功能;

相关主题
相关文档
最新文档