eviews教程第25章时间序列截面数据模型

eviews教程第25章时间序列截面数据模型
eviews教程第25章时间序列截面数据模型

(3) 对转换后变量使用OLS (X 包括常数项和回归

量x ) (25.12) 其中。 EViews在输出中给

出了由(3)得到的的参数估计。使用协方差矩阵的标准估计量计算

标准差。 EViews给出了随机影响的估计值。计算公式为:

(25.13) 得到的是的最优线性无偏预测值。最后,

EViews给出了加权和不加权的概括统计量。加权统计量来自(3)中的

GLS估计方程。未加权统计量来自普通模型的残差,普通模型中包括

(3)中的参数和估计随机影响:

(25.14) 三、截面加权当残差具有截面异方差性和

同步不相关时最好进行截面加权回归:

(25.15) EViews进行FGLS,并且从一阶段Pool最小

二乘回归得出。估计方差计算公式为:

(25.16) 其中是OLS的拟合值。估计系数值和协方差矩阵

由标准GLS估计量给出。四、SUR加权当残差具有截

面异方差性和同步相关性时,SUR加权最小二乘是可行的GLS估计量:

(25.17) 其中是同步相关的对称阵:

(25.18) 一般项,在所有的t时为常

数。 EViews估计SUR模型时使用的是由一阶段Pool

最小二乘回归得到:

(25.19) 分母中的最大值函数是为了解决向下加权协方差项产

生的不平衡数据情况。如果缺失值的数目可渐进忽略,这种方法生成可逆的的一致估计量。模型的参数估计和参数协方差矩阵计算使用标准的GLS公式。五、怀特(White)协方差估计在Pool估计中可计算怀特的异方差性一致协方差估计(除了SUR和随机影响估计)。EViews使用堆积模型计算怀特协方差矩阵:(25.20) 其中K是估计参数总数。这种方差估计量足以解释各截面成员产生的异方差性,但不能解释截面成员间同步相关的可能。 * * 第二十五章时间序列/截面数据模型在经典计量经济学模型中,所利用的数据(样本观测值)的一个特征是,或者只利用时间序列数据(time series),或者只利用截面数据(cross section)。我们经常遇到在同一时间包含不同截面成员信息的数据,或在若干时间区间观测到相关的一些截面成员的数据。例如许多欧洲国家的GDP时间序列数据,或者是一段时间不同地区的失业状态数据。我们称这些数据为联合利用时间序列/截面数据(Pooled time series,cross section)。有的书中也称这类数据为面板数据(panel data),指在时间序列上取多个截面,在这些截面上同时选取样本观测值所构成的样本数据。处理时间序列/截面数据的EViews对象称为一个Pool。EViews提供了许多专用工具处理Pool数据,包括数据管理,选择时间序列长度和截面成员的多少,以及进行数据估计。本章将主要介绍怎样建立Pool数据以及定义和处理Pool对象。§25.1 Pool对象 Pool对象的核心是建立用来表示截面成员的名称表。为明显起见,名称要相对较短。例如,国家作为截面成员时,

可以使用USA代表美国,CAN代表加拿大,UK代表英国。定义了Pool的截面成员名称就等于告诉了EViews,模型的数据结构。在上面的例子中,EViews会自动把这个Pool理解成对每个国家使用单独的时间序列。必须注意,Pool对象本身不包含序列或数据。一个Pool对象只是对基本数据结构的一种描述。因此,删除一个Pool 并不会同时删除它所使用的序列,但修改Pool使用的原序列会同时改变Pool中的数据。一、创建Pool对象在本章中,使用的是一个研究投资需求的例子,包括了五家企业和三个变量的20个年度观测值的时间序列:5家企业:3个变量: CM:通用汽车公司 I :总投资CH:克莱斯勒公司 F :前一年企业的市场价值 GE:通用电器公司 S :前一年末工厂存货和设备的价值WE:西屋公司US:美国钢铁公司要创建Pool对象,选择Objects/New Object/Pool…并在编辑窗口中输入截面成员的识别名称:对截面成员的识别名称没有特别要求,但必须能使用这些识别名称建立合法的EViews序列名称。此处推荐在每个识别名中使用“_”字符,它不是必须的,但把它作为序列名的一部分,可以很容易找到识别名称。二、观察或编辑Pool定义要显示Pool中的截面成员识别名称,单击工具条的Define按钮,或选择View/Cross-Section Identifiers。如果需要,也可以对识别名称列进行编辑。三、使用Pool和序列 Pool中使用的

数据都存在普通EViews序列中。这些序列可以按通常方式使用:可以列表显示,图形显示,产生新序列,或用于估计。也可以使用Pool 对象来处理各单独序列。四、序列命名在Pool中使用序列的关键是序列命名:使用基本名和截面识别名称组合命名。截面识别名称可以放在序列名中的任意位置,只要保持一致即可。例如,现有一个Pool对象含有识别名_JPN,_USA,_UK,想建立每个截面成员的GDP的时间序列,我们就使用“GDP”作为序列的基本名。可以把识别名称放在基本名的后面,此时序列名为GDP _JPN,GDP_USA,GDP_UK;或者把识别名称放在基本名的前面,此时序列名为JPN_GDP,USA_GDP,UK_GDP。把识别名称放在序列名的前面,中间或后面并没什么关系,只要易于识别就行了。但是必须注意要保持一致,不能这样命名序列:JPNGDP,GDPUSA,UKGDP1,因为EViews无法在Pool对象中识别这些序列。五、Pool 序列一旦选定的序列名和Pool中的截面成员识别名称相对应,就可以利用这些序列使用Pool了。其中关键是要理解Pool序列的概念。一个Pool序列实际就是一组序列, 序列名是由基本名和所有截面识别名构成的。Pool序列名使用基本名和“?”占位符,其中“?”代表截面识别名。如果序列名为GDPJPN,GDPUSA,GDPUK,相应的Pool序列为GDP?。如果序列名为JPNGDP,USAGDP,UKGDP,相应的Pool序列为 ?GDP。当使用一个Pool序列名时,EViews 认为将准备使用Pool序列中的所有序列。EViews会自动循环查找所有截面识别名称并用识别名称替代“?”。然后会按指令使用这些替

代后的名称了。Pool序列必须通过Pool对象来定义,因为如果没有截面识别名称,占位符“?”就没有意义。§25.2 输入Pool数据有很多种输入数据的方法,在介绍各种方法之前,首先要理解时间序列/截面数据的结构,区别堆积数据和非堆积数据形式。时间序列/截面数据的数据信息用三维表示:时期,截面成员,变量。例如:1950年,通用汽车公司,投资数据。使用三维数据比较困难,一般要转化成二维数据。有几种常用的方法。一、非堆积数据存在工作文件的数据都是这种非堆积数据,在这种形式中,给定截面成员、给定变量的观测值放在一起,但和其他变量、其他截面成员的数据分开。例如,假定我们的数据文件为下面的形式:其中基本名I代表企业总投资、F代表前一年企业的市场价值、S代表前一年末工厂存货和设备的价值。每个企业都有单独的I、F、S数据。 EViews会自动按第四章介绍的标准输入程序读取非堆积数据。并把每个截面变量看作一个单独序列。注意要按照上述的Pool命名规则命名。确认后EViews会打开新建序列的堆积式数据表。我们看到的是按截面成员堆积的序列,Pool序列名在每列表头,截面成员/年代识别符标识每行:二、堆积数据选择View/Spreadsheet(stacked data),EViews会要求输入序列名列表 Pool数据排列成堆积形式,一个变量的所有数据放在一起,和其他变量的数据分开。大多数情况下,不同截面成员的数据从上到下依次堆积,每一列代表一个变量:我们称上表数据是以截面成员堆积的,单击Order+/-实现堆积方式转换,也可以按

日期堆积数据:每一列代表一个变量,每一列内数据都是按年排列的。如果数据按年排列,要确保各年内截面成员的排列顺序要一致。三、手工输入/剪切和粘贴可以通过手工输入数据,也可

Eviews时间序列分析实例

Eviews 时间序列分析实例 时间序列是市场预测中经常涉及的一类数据形式, 绍。通过第七章的学习,读者了解了什么是时间序列, 、指数平滑法实例 所谓指数平滑实际就是对历史数据的加权平均。它可以用于任何一种没有明显函数规 律,但确实存在某种前后关联的时间序列的短期预测。 由于其他很多分析方法都不具有这种 特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。 (―)一次指数平滑 一次指数平滑又称单指数平滑。它最突出的优点是方法非常简单, 甚至只要样本末期的 平滑值,就可以得到预测结果。 一次指数平滑的特点是: 能够跟踪数据变化。 这一特点所有指数都具有。 预测过程中添 加最新的样本数据后, 新数据应取代老数据的地位, 老数据会逐渐居于次要的地位, 直至被 淘汰。这样,预测值总是反映最新的数据结构。 一次指数平滑有局限性。第一,预测值不能反映趋势变动、季节波动等有规律的变动; 第二,这种方法多适用于短期预测, 而不适合作中长期的预测;第三, 由于预测值是历史数 据的均值,因此与实际序列的变化相比有滞后现象。 指数平滑预测是否理想,很大程度上取决于平滑系数。 Eviews 提供两种确定指数平滑 系数的方法:自动给定和人工确定。 选择自动给定,系统将按照预测误差平方和最小原则自 动确定系数。如果系数接近 1,说明该序列近似纯随机序列,这时最新的观测值就是最理想 的预测值。 出于预测的考虑,有时系统给定的系数不是很理想, 用户需要自己指定平滑系数值。平 滑系数取什么值比较合适呢? 一般来说,如果序列变化比较平缓,平滑系数值应该比较小, 比如小于0.1; 如果序列变化比较剧烈, 平滑系数值可以取得大一些, 如0.3?0.5。若平滑系 数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预 测。 [例1]某企业食盐销售量预测。现在拥有最近连续 30个月份的历史资料(见表 I ), 试预测下一月份销售量。 表 某企业食盐销售量 单位:吨 解:使用对数据进行分析,第一步是建立工作文件和录入数据。有关操作在本 理和一些分析实例。本节的主要内容是说明如何使用 Eviews 软件进行分析。 本书第七章对它进行了比较详细的介 并接触到有关时间序列分析方法的原

eviews 时间序列模型

成都空气污染指数API的建模与预测 20085728 刘童超 【目录】 1..数据来源与数据预处理 (2) 1.1数据来源 (2) 1.2离群点和缺失值的检验..................................................................... 错误!未定义书签。 2.直观分析和相关分析 (4) 2.1直观分析和特征分析 (4) 2.2相关分析 (6) 2.3平稳性检验 (7) 3.liu(t)序列的零均值处理 (8) 3.1数据的零均值化 (8) 3.2零均值过程的检验 (8) 4.模型的识别和初步定阶 (8) 5.模型的参数估计 (9) 6.模型的检验 (10) 6.1参数的显著性检验 (10) 6.2模型的适用性检验 (11) 7.模型的预测 (12) 7.1对序列liu1(t)的预测 (12) 7.2对序列liu(t)的预测 (12) 【附录及参考文献】 (13) 附录1.零均值化处理后的数据 (13) 参考文献: (14)

1..数据来源与数据预处理 1.1数据来源 原始数据见附件,我们需要的数据见下表:

此处一共160个数据,其中1~150用来建立模型,我们称为样本,151~160用来检验预测值与真实值的误差,我们成为检验值。其中的时间的意义是:t=1代表日期2010-5-30,t=2代表日期2010-5-31,t=3代表日期2010-6-1,以此类推,t=160代表日期2010-11-4。 数据中的API 为空气污染指数,我国目前采用的空气污染指数(API )分为五个等级,API ≤50,说明空气质量为优,相当于国家空气质量一级标小准;50300表明空气质量极差,已严重污染。 由SPSS 分析出来的结果见表1-2 由表1-2可以看出,数据个数为150个,没有缺失值。t X =66.41,t S =18.07 数值与平均值的距离见图1-1 图1- 1 由图1-1可以看出,对任意时间t ,t 1t X X +-都在-t S 与t S 之间,所以我们可以得

eviews时间序列分析实验

实验一ARMA 模型建模 一、实验目的 学会检验序列平稳性、随机性。学会分析时序图与自相关图。学会利用最小二乘法等方法对ARMA 模型进行估计,以及掌握利用ARMA 模型进行预测的方法。学会运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。 二、基本概念 1平稳时间序列: 定义:时间序列{zt}是平稳的。如果{zt}有有穷的二阶中心矩,而且满足: (a)ut= Ezt =c; (b)r(t,s) = E[(zt-c)(zs-c)] = r(t-s,0) 则称{zt}是平稳的。 2 AR 模型: AR 模型也称为自回归模型。它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测。具有如下结构的模型称为P 阶自回归模型,简记为AR(P)。 x t = 0 + 1x t-1 + 2x t-2 + + p x t- p + t p0 E(t) = 0,Var(t) = 2 ,E(t s) = 0,s t Ex = 0,s t 3 MA 模型: MA 模型也称为滑动平均模型。它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。具有如下结构的模型称为Q 阶移动平均回归模型,简记为MA(q)。 x t= +t-1t-1 -2t-2 - -q t-q q0 E() = 0,Var( ) = 2, E( ) = 0, s t 4 ARMA 模型: ARMA模型:自回归模型和滑动平均模型的组合,便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA。具有如下结构的模型称为自回归移动平均回归模型,简记为ARMA(p,q)。 x t= 0 + 1x t-1 + + p x t- p+ t- 1t-1 - - q t-q

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事!

Long long ago,有多long?估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义?当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。 好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢? 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 ?描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。

从大数据到大分析

从大数据到大分析 From Big Data to HPA
Dr. Sunstone Zhang (张磊博士) Principal Consultant, SAS China Sunstone.Zhang@https://www.360docs.net/doc/f711634441.html,
Copyright ? 2012, SAS Institute Inc. All rights reserved.

?
大数据与高性能分析 电信网络分析与优化 成功案例
议程
? ?
Copyright ? 2012, SAS Institute Inc. All rights reserved.

您是否曾经……
? 分析受到数据量的限制,不能充分利用所有数据? ? 受限于分析能力而无法获得复杂问题的答案? ? 因为时限要求而不得不采用某项简单的建模技术? ? 对模型精度进行妥协,因为没有足够的时间来执行多次迭 代?
Copyright ? 2012, SAS Institute Inc. All rights reserved.

大数据时代已经来临
VOLUME VARIETY
数据量
数据量 多样性 价值
VELOCITY 增长速度 VALUE
现在
未来
Copyright ? 2012, SAS Institute Inc. All rights reserved.

SAS? 高性能 分析 大数据上的大分析
Copyright ? 2012, SAS Institute Inc. All rights reserved.

eviews教程第25章时间序列截面数据模型

eviews教程第25章时间序列截面数据模型 (3) 对转换后变量使用OLS (X 包括常数项和回归 量x ) (25.12) 其中。 EViews在输出中给 出了由(3)得到的的参数估计。使用协方差矩阵的标准估计量计算 标准差。 EViews给出了随机影响的估计值。计算公式为: (25.13) 得到的是的最优线性无偏预测值。最后, EViews 给出了加权和不加权的概括统计量。加权统计量来自(3)中的 GLS 估计方程。未加权统计量来自普通模型的残差,普通模型中包括 (3)中的参数和估计随机影响: (25.14) 三、截面加权当残差具有截面异方差性和 同步不相关时最好进行截面加权回归: (25.15) EViews进行FGLS ,并且从一阶段Pool 最小 二乘回归得出。估计方差计算公式为: (25.16) 其中是OLS 的拟合值。估计系数值和协方差矩阵 由标准GLS 估计量给出。四、SUR 加权当残差具有截 面异方差性和同步相关性时,SUR 加权最小二乘是可行的GLS 估计量: (25.17) 其中是同步相关的对称阵: (25.18) 一般项,在所有的t 时为常 数。 EViews估计SUR 模型时使用的是由一阶段Pool 最小二乘回归得到: (25.19) 分母中的最大值函数是为了解决向下加权协方差项产 生的不平衡数据情况。如果缺失值的数目可渐进忽略,这种方法生成 可逆的的一致估计量。模型的参数估计和参数协方差矩阵计 算使用标准的GLS 公式。五、怀特(White )协方差估计在Pool 估计中可计算怀特的异方差性一致协方差估计(除了SUR 和 随机影响估计)。EViews 使用堆积模型计算怀特协方差矩阵: (25.20) 其中K 是估计参数总数。这种方差估计量足以解释各截面 成员产生的异方差性,但不能解释截面成员间同步相关的可能。 * * 第二十五章时间序列/截面数据模型在经典计量经济学模型 中,所利用的数据(样本观测值)的一个特征是,或者只利用时间序

eviews面板数据实例分析

1、已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp,不变价格)与人均收入(ip,不变价格)居民,利用数据(1)建立面板数据(panel data)工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。 年人均消费(consume)与人均收入(income)数据以及消费者价格指数(p)分别见表9、1,9、2与9、3。 表9、1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据人均消费1996 1997 1998 1999 2000 2001 2002 CONSUMEAH 3607、43 3693、55 3777、41 3901、81 4232、98 4517、65 4736、52 CONSUMEBJ 5729、52 6531、81 6970、83 7498、48 8493、49 8922、72 10284、6 CONSUMEFJ 4248、47 4935、95 5181、45 5266、69 5638、74 6015、11 6631、68 CONSUMEHB 3424、35 4003、71 3834、43 4026、3 4348、47 4479、75 5069、28 CONSUMEHLJ 3110、92 3213、42 3303、15 3481、74 3824、44 4192、36 4462、08 CONSUMEJL 3037、32 3408、03 3449、74 3661、68 4020、87 4337、22 4973、88 CONSUMEJS 4057、5 4533、57 4889、43 5010、91 5323、18 5532、74 6042、6 CONSUMEJX 2942、11 3199、61 3266、81 3482、33 3623、56 3894、51 4549、32 CONSUMELN 3493、02 3719、91 3890、74 3989、93 4356、06 4654、42 5342、64 CONSUMENMG 2767、84 3032、3 3105、74 3468、99 3927、75 4195、62 4859、88 CONSUMESD 3770、99 4040、63 4143、96 4515、05 5022 5252、41 5596、32 CONSUMESH 6763、12 6819、94 6866、41 8247、69 8868、19 9336、1 10464 CONSUMESX 3035、59 3228、71 3267、7 3492、98 3941、87 4123、01 4710、96 CONSUMETJ 4679、61 5204、15 5471、01 5851、53 6121、04 6987、22 7191、96 CONSUMEZJ 5764、27 6170、14 6217、93 6521、54 7020、22 7952、39 8713、08 表9、2 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均收入(元)数据人均收入1996 1997 1998 1999 2000 2001 2002 INCOMEAH 4512、77 4599、27 4770、47 5064、6 5293、55 5668、8 6032、4 INCOMEBJ 7332、01 7813、16 8471、98 9182、76 10349、69 11577、78 12463、92 INCOMEFJ 5172、93 6143、64 6485、63 6859、81 7432、26 8313、08 9189、36 INCOMEHB 4442、81 4958、67 5084、64 5365、03 5661、16 5984、82 6679、68 INCOMEHLJ 3768、31 4090、72 4268、5 4595、14 4912、88 5425、87 6100、56 INCOMEJL 3805、53 4190、58 4206、64 4480、01 4810 5340、46 6260、16 INCOMEJS 5185、79 5765、2 6017、85 6538、2 6800、23 7375、1 8177、64 INCOMEJX 3780、2 4071、32 4251、42 4720、58 5103、58 5506、02 6335、64 INCOMELN 4207、23 4518、1 4617、24 4898、61 5357、79 5797、01 6524、52 INCOMENMG 3431、81 3944、67 4353、02 4770、53 5129、05 5535、89 6051 INCOMESD 4890、28 5190、79 5380、08 5808、96 6489、97 7101、08 7614、36 INCOMESH 8178、48 8438、89 8773、1 10931、64 11718、01 12883、46 13249、8 INCOMESX 3702、69 3989、92 4098、73 4342、61 4724、11 5391、05 6234、36 INCOMETJ 5967、71 6608、39 7110、54 7649、83 8140、5 8958、7 9337、56 INCOMEZJ 6955、79 7358、72 7836、76 8427、95 9279、16 10464、67 11715、6 表9、3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数物价指数1996 1997 1998 1999 2000 2001 2002 PAH 109、9 101、3 100 97、8 100、7 100、5 99

Eviews时间序列分析实例.

Eviews时间序列分析实例 时间序列是市场预测中经常涉及的一类数据形式,本书第七章对它进行了比较详细的介绍。通过第七章的学习,读者了解了什么是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。本节的主要内容是说明如何使用Eviews软件进行分析。 一、指数平滑法实例 所谓指数平滑实际就是对历史数据的加权平均。它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期预测。由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。 (-)一次指数平滑 一次指数平滑又称单指数平滑。它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到预测结果。 一次指数平滑的特点是:能够跟踪数据变化。这一特点所有指数都具有。预测过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。这样,预测值总是反映最新的数据结构。 一次指数平滑有局限性。第一,预测值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期预测,而不适合作中长期的预测;第三,由于预测值是历史数据的均值,因此与实际序列的变化相比有滞后现象。 指数平滑预测是否理想,很大程度上取决于平滑系数。Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。选择自动给定,系统将按照预测误差平方和最小原则自动确定系数。如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的预测值。 出于预测的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。平滑系数取什么值比较合适呢?一般来说,如果序列变化比较平缓,平滑系数值应该比较小,比如小于0.l;如果序列变化比较剧烈,平滑系数值可以取得大一些,如0.3~0.5。若平滑系数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预测。 [例1]某企业食盐销售量预测。现在拥有最近连续30个月份的历史资料(见表l),试预测下一月份销售量。 表1 某企业食盐销售量单位:吨 解:使用Eviews对数据进行分析,第一步是建立工作文件和录入数据。有关操作在本

Eviews面板大数据之固定效应模型

Eviews 面板数据之固定效应模型 在面板数据线性回归模型中,如果对于不同的截面或不同的时间序列,只是模型的截距项是不同的,而模型的斜率系数是相同的,则称此模型为固定效应模型。固定效应模型分为三类: 1.个体固定效应模型 个体固定效应模型是对于不同的纵剖面时间序列(个体)只有截距项不同的模型: 2 K it i k kit it k y x u λβ==++∑ (1) 从时间和个体上看,面板数据回归模型的解释变量对被解释变量的边际影响均是相同的,而且除模型的解释变量之外,影响被解释变量的其他所有(未包括在回归模型或不可观测的)确定性变量的效应只是随个体变化而不随时间变化时。 检验:采用无约束模型和有约束模型的回归残差平方和之比构造F 统计量,以检验设定个体固定效应模型的合理性。F 模型的零假设: 01231:0N H λλλλ-===???== ()1 (1,(1)1)(1) RRSS URSS N F F N N T K URSS NT N K --= ---+--+ RRSS 是有约束模型(即混合数据回归模型)的残差平方和,URSS 是无约束模型ANCOVA 估计的残差平方和或者LSDV 估计的残差平方和。 实践: 一、数据:已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp ,不变价格)和人均收入(ip ,不变价格)居民,利用数据(1)建立面板数据(panel data )工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。年人均消费(consume )和人均收入(income )数据以及消费者价格指数(p )分别见表1,2和3。 表1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据

Eviews时间序列分析

时间序列分析实验指导 A

统计与应用数学学院

随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。 这套实验教学指导书具有以下特点: ①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。 ②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。 这套实验教学指导书在编写的过程中始终得到财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢! 限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。 统计与数学模型分析实验中心 2007年2月

实验一EVIEWS中时间序列相关函数操作................. -1 -实验二确定性时间序列建模方法 ........................ -10 -实验三时间序列随机性和平稳性检验. (21) 实验四时间序列季节性、可逆性检验.................. -25 -实验五ARMA模型的建立、识别、检验................ -34 - 实验六ARMA模型的诊断性检验...................... -37 -实验七ARMA模型的预测............................ -38 -实验八复习ARMA建模过程 .......................... -40 -实验九时间序列非平稳性检验........................ -42 -

R语言时间序列函数整理_光环大数据培训

https://www.360docs.net/doc/f711634441.html, R语言时间序列函数整理_光环大数据培训 【包】 library(zoo) #时间格式预处理 library(xts) #同上 library(timeSeires) #同上 library(urca) #进行单位根检验 library(tseries) #arma模型 library(fUnitRoots) #进行单位根检验 library(FinTS) #调用其中的自回归检验函数 library(fGarch) #GARCH模型 library(nlme) #调用其中的gls函数 library(fArma) #进行拟合和检验 【基本函数】 数学函数 abs,sqrt:绝对值,平方根 log, log10, log2 , exp:对数与指数函数 sin,cos,tan,asin,acos,atan,atan2:三角函数 sinh,cosh,tanh,asinh,acosh,atanh:双曲函数 简单统计量 sum, mean, var, sd, min, max, range, median, IQR(四分位间距)等为统计量,sort,order,rank与排序有关,其它还有ave,fivenum,mad,quantile,stem等。

https://www.360docs.net/doc/f711634441.html, #具体说明见文档1 #转成时间序列类型 x = rnorm(2) charvec = c(“2010-01-01”,”2010-02-01”) zoo(x,as.Date(charvec)) #包zoo xts(x, as.Date(charvec)) #包xts timeSeries(x,as.Date(charvec)) #包timeSeries #规则的时间序列,数据在规定的时间间隔内出现 tm = ts(x,start = c(2010,1), frequency=12 ) #12为按月份,4为按季度,1为按年度 zm = zooreg(x,start = c(2010,1), frequency=12 ) #包zoo xm = as.xts(tm) #包xts sm = as.timeSeries(tm) #包timeSeries #判断是否为规则时间序列 is.regular(x) #排序 zoo()和xts()会强制变换为正序(按照时间名称) timeSeries不会强制排序;其结果可以根据sort函数排序,也可以采用rev()函数进行逆序;参数recordIDs,可以给每个元素(行)标记一个ID,从而可以找回原来的顺序 #预设的时间有重复的时间点时

利用eviews实现时间序列的平稳性检验与协整检验

在对时间序列Y、X1进行回归分析时需要考虑Y与X1之间是否存在某种切实的关系,所以需要进行协整检验。 1.1利用eviews创建时间序列Y、X1: 打开eviews软件点击file-new-workfile,见对话框又三块空白处workfile structuretype处又三项选择,分别是非时间序列unstructured/undate,时间序列dated-regularfrequency,和不明英语balance panel。选择时间序列dated-regular frequency。在datespecification中选择年度,半年度或者季度等,和起始时间。右下角为工作间取名字和页数。 点击ok。 在所创建的workfile中点击object-new object,选择series,以及填写名字如Y,点击OK。 将数据填写入内。 1.2对序列Y进行平稳性检验: 此时应对序列数据取对数,取对数的好处在于可将间距很大的数据转换为间距较小的数据。 具体做法是在workfile y的窗口中点击Genr,输入logy=log(y),则生成y的对数序列logy。 再对logy序列进行平稳性检验。 点击view-United root test,test type选择ADF检验,滞后阶数中lag length 选择SIC检验,点击ok得结果如下: Null Hypothesis: LOGY has a unit root Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=1) t-StatisticProb.* Augmented Dickey-Fuller test statistic- 2." ."09959 Test critical values:1% level- 4."602226 5% level- 3."026225 10% level - 2."0013 当检验值Augmented Dickey-Fuller test statistic的绝对值大于临界值绝对值时,序列为平稳序列。 若非平稳序列,则对logy取一阶差分,再进行平稳性检验。直到出现平稳序列。假设Dlogy和DlogX1为平稳序列。 1.3对Dlogy和DlogX1进行协整检验 点击窗口quick-equation estimation,输入DLOGY C DLOGX1,点击ok,得到运行结果,再点击proc-make residual series进行残差提取得到残差序列,再对残差序列进行平稳性检验,若残差为平稳序列,则Dlogy与Dlogx1存在协整关系。

EViews面板数据模型估计教程

EViews 6.0 beta在面板数据模型估计中的应用 来自免费的minixi 1、进入工作目录cd d:\nklx3,在指定的路径下工作是一个良好的习惯 2、建立面板数据工作文件workfile (1)最好不要选择EViews默认的blanaced panel 类型 Moren_panel (2)按照要求建立简单的满足时期周期和长度要求的时期型工作文件

3、建立pool对象 (1)新建对象 (2)选择新建对象类型并命名 (3)为新建pool对象设置截面单元的表示名称,在此提示下(Cross Section Identifiers: (Enter identifiers below this line )输入截面单元名称。,建议采用汉语拼音,例如29个省市区的汉语拼音,建议在拼音名前加一个下划线“_”,如图

关闭建立的pool对象,它就出现在当前工作文件中。 4、在pool对象中建立面板数据序列 双击pool对象,打开pool对象窗口,在菜单view的下拉项中选择spreedsheet (展开表) 在打开的序列列表窗口中输入你要建立的序列名称,如果是面板数据序列必须在序列名后添加“?”。例如,输入GDP?,在GDP后的?的作用是各个截面单元的占位符,生成了29个省市区的GDP的序列名,即GDP后接截面单元名,再在接时期,就表示出面板数据的3维数据结构(1变量2截面单元3时期)了。

请看工作文件窗口中的序列名。展开表(类似excel)中等待你输入、贴入数据。 (1)打开编辑(edit)窗口

(2)贴入数据 (3)关闭pool窗口,赶快存盘见好就收6、在pool窗口对各个序列进行单位根检验 选择单位根检验 设置单位根检验

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

eviews时间序列分析实验

实验一ARMA 模型建模 一、实验目的 学会检验序列平稳性、随机性。学会分析时序图与自相关图。学会利用最小二乘法等方法对ARMA 模型进行估计,以及掌握利用ARMA 模型进行预测的方法。学会运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。 二、基本概念 1 平稳时间序列: 定义:时间序列{zt}是平稳的。如果{zt}有有穷的二阶中心矩,而且满足: (a )ut= Ezt =c; (b )r(t,s) = E[(zt-c)(zs-c)] = r(t-s,0) 则称{zt}是平稳的。 2 AR 模型: AR 模型也称为自回归模型。它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测。具有如下结构的模型称为P 阶自回归模型,简记为AR(P)。 ? ???? ??

11222 0()0(),()0,t t t t q t q q t t t s x E Var E s t εμεθεθεθεθεεσεε---?=+----? ≠??===≠?L , 4 ARMA 模型: ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA 。具有如下结构的模型称为自回归移动平均回归模型,简记为ARMA(p,q)。 ? ???? ??

横截面大数据、时间序列大数据、面板大数据

横截面数据、时间序列数据、面板数据 横截面数据:(时间固定) 横截面数据是在同一时间,不同统计单位相同统计指标组成的数据列。横截面数据是按照统计单位排列的。因此,横截面数据不要求统计对象及其范围相同,但要求统计的时间相同。也就是说必须是同一时间截面上的数据。 如: 时间序列数据:(横坐标为t,纵坐标为y) 在不同时间点上收集到的数据,这类数据反映某一事物、现象等随时间的变化状态或程度。 如: 面板数据:(横坐标为t,斜坐标为y,纵坐标为z) 是截面数据与时间序列数据综合起来的一种数据类型。其有时间序列和截面两个维度,当这类数据按两个维度排列时,是排在一个平面上,与只有一个维度的数据排

在一条线上有着明显的不同,整个表格像是一个面板,所以把panel data译作“面板数据”。 举例: 如:城市名:北京、上海、重庆、天津的GDP分别为10、11、9、8(单位亿元)。这就是截面数据,在一个时间点处切开,看各个城市的不同就是截面数据。 如:2000、2001、2002、2003、2004各年的北京市GDP分别为8、9、10、11、12(单位亿元)。这就是时间序列,选一个城市,看各个样本时间点的不同就是时间序列。 如:2000、2001、2002、2003、2004各年中国所有直辖市的GDP分别为: 北京市分别为8、9、10、11、12; 上海市分别为9、10、11、12、13; 天津市分别为5、6、7、8、9; 重庆市分别为7、8、9、10、11(单位亿元)。 这就是面板数据。 关于面板数据的统计分析

启动Stata11.0,Stata界面有4个组成部分,Review(在左上角)、Variables (左下角)、输出窗口(在右上角)、Command(右下角)。首先定义变量,可以输入命令,也可以通过点击Data----Create new Variable or change variable。 特别注意,这里要定义的变量除了因素1、因素2、……因素6、盈余管理影响程度等,还要定义年份和公司名称两个变量,这两个变量的数据类型(Type)最好设置为int(整型),公司名称不要使用中文名称或者字母等,用数字代替。定义好变量之后可以输入数据了。数据可以直接导入(File-Import),也可以手工录入或者复制粘贴(Data-Data Edit(Browse)),手工录入数据和在excel中的操作一样。 以上面说的为例,定义变量 year、 company、 factor1、 factor2、 factor3、factor4、 factor5、 factor6、 DA。

EViews6.0在面板数据模型估计中的操作

EViews 6.0在面板数据模型估计中的实验操作 1、进入工作目录cd d:\nklx3,在指定的路径下工作是一个良好的习惯 2、建立面板数据工作文件workfile (1)最好不要选择EViews默认的blanaced panel 类型 Moren_panel (2)按照要求建立简单的满足时期周期和长度要求的时期型工作文件

3、建立pool对象 (1)新建对象 (2)选择新建对象类型并命名 (3)为新建pool对象设置截面单元的表示名称,在此提示下(Cross Section Identifiers: (Enter identifiers below this line )输入截面单元名称。建议采用汉语拼音,例如29个省市区的汉语拼音,建议在拼音名前加一个下划线“_”,如图

关闭建立的pool对象,它就出现在当前工作文件中。 4、在pool对象中建立面板数据序列 双击pool对象,打开pool对象窗口,在菜单view的下拉项中选择spreedsheet (展开表) 在打开的序列列表窗口中输入你要建立的序列名称,如果是面板数据序列必须在序列名后添加“?”。例如,输入GDP?,在GDP后的?的作用是各个截面单元的占位符,生成了29个省市区的GDP的序列名,即GDP后接截面单元名,再在接时期,就表示出面板数据的3维数据结构(1变量2截面单元3时期)了。

请看工作文件窗口中的序列名。展开表(类似excel)中等待你输入、贴入数据。 (1)打开编辑(edit)窗口

(2)贴入数据 (3)关闭pool窗口,赶快存盘见好就收6、在pool窗口对各个序列进行单位根检验 选择单位根检验 设置单位根检验

大数据分析的流程浅析

数据采集,就是使用某种技术或手段,将数据收集起来并存储在某种设备上,这种设备可以是磁盘或磁带。区别于普通的数据分析,大数据分析的数据采集在数据收集和存储技术上都是不同的。具体情况如下: 1.大数据收集过程 在收集阶段,大数据分析在时空两个方面都有显著的不同。在时间维度上,为了获取更多的数据,大数据收集的时间频度大一些,有时也叫数据采集的深度。在空间维度上,为了获取更准确的数据,数据采集点设置得会更密一些。 以收集一个面积为100平方米的葡萄园的平均温度为例。小数据时代,由于成本的原因,葡萄园主只能在葡萄园的中央设置一个温度计用来计算温度,而且每一小时观测一次,这样一天就只有24个数据。而在大数据时代,在空间维度上,可以设置100个温度计,即每个1平方米一个温度计;在时间维度上,每隔1分钟就观测一次,这样一天就有144000个数据,是原来的6000倍。 有了大量的数据,我们就可以更准确地知道葡萄园的平均温度,如果加上时间刻度的话,还可以得出一个时间序列的曲线,结果看起来使人很神往。 2.大数据的存储技术 通过增加数据采集的深度和广度,数据量越来越大,数据存储问题就凸现。原来1TB的数据,可以使用一块硬盘就可以实现数据的存储,而现在变成了6000TB,也就是需要6000块硬盘来存放数据,而且这个数据是每天都是增加的。这个时候计算机技术中的分布式计算开始发挥优势,它可以将6000台甚至更多的计算机组合在一起,让它们的硬盘组合成一块巨大的硬盘,这样人们就不用再害怕大数据了,大数据再大,增加计算机就可以了。实现分布式计算的软件有很多,名气最大的,目前市场上应用最广的,就是hadoop技术了,更精确地说应该是叫hadoop框架。 hadoop框架由多种功能性软件组成,其自身只是搭建一个和操作系统打交道的平台。其中最核心的软件有两个,一个是hdfs分布式文件系统,另一个是mapreduce分布式计算。hdfs分布式文件系统完成的功能就是将6000台计算机组合在一起,使它们的硬盘组合成一块巨大的硬盘,至于数据如何在硬盘上存放和读取,这件事由hadoop和hdfs共同完成,不用我们操心,这就如我们在使用一台计算机时只管往硬盘上存放数据,而数据存放在硬盘上的哪个磁道,我们是不用关心的。 mapredce分布式计算则就实现让6000台计算机一起协同工作起来,hadoop 在设计mapredce时,最基本的思想就是让分析师不用操心程序设计问题,这些问题需要和最底层的程序打交道的,且只有优秀的程序员才能解决的,而是让大数据分析师专注于业务流程进行简单的mapredce程序编写,也就是说大数据分

相关文档
最新文档