方差分析中的Post hoc检验

方差分析中的Post hoc检验
方差分析中的Post hoc检验

Post Hoc Tests in ANOVA

This handout provides information on the use of post hoc tests in the Analysis of Variance (ANOVA). Post hoc tests are designed for situations in which the researcher has already obtained a significant omnibus F-test with a factor that consists of three or more means and additional exploration of the differences among means is needed to provide specific information on which means are significantly different from each other.

For example, the data file “posthoc.por” (available on the web site), contains two factors, gender and experience and one dependent measure, spatial ability score errors. Applying the GLM-Unianova procedure in SPSS produces the following ANOVA source table:

Tests of Between-Subjects Effects

Inspection of the source table shows that both the main effects and the interaction effect are significant. The gender effect can be interpreted directly since there are only two levels of the factor. Interpretation of either the Experience main effect or the Gender by Experience interaction is ambiguous, however, since there are multiple means in each effect. We will delay testing and interpretation of the interaction effect for a later handout. The concern now is how to determine which of the means for the four Experience groups (see table below) are significantly different from the others.

The first post hoc, the LSD test. T he original solution to this problem, developed by Fisher, was to explore all possible pair-wise comparisons of means comprising a factor using the equivalent of multiple t-tests. This procedure was named the Least Significant Difference (LSD) test. The least significant difference between two means is calculated by:

_________

LSD = t o 2MSE / n*

where t is the critical, tabled value of the t-distribution with the df associated with MSE, the

denominator of the F statistic and n* is the number of scores used to calculate the means of critical interest. In our example, t at " = .05, two-tailed, with df = 32 is 2.0369, MSE from the source table above is 0.975, and n* is 10 scores per mean.

_________ __________

LSD = t o 2MSE / n* = 2.0369 o 2 (.975 / 10 = 0.6360

So the LSD or minimum difference between a pair of means necessary for statistical significance is 0.636.

In order to compare this critical value or difference for all our means it is useful to organize the means in a table. First, the number of pair-wise comparisons among means can be calculated using the formula: k(k-1)/2, where k = the number of means or levels of the factor being tested. In our present example, the experience factor has four levels so k = 4 and there are k(k-1)/2 = 4(3)/2 = 6unique pairs of means that can be compared.

Experience with Mechanical Problems

The table we will construct is a table showing the obtained means on the rows and columns and subtracted differences between each pair of means in the interior cells producing a table of absolute mean differences to use in evaluating the post hoc tests. To construct the table follow these steps: 1) rank the means from largest to smallest, 2) create table rows beginning with the largest mean and going through the next-to-smallest mean, 3) create table columns starting with the smallest mean and going through the next-to-largest mean, 4) compute the absolute difference between each row and column intersection/mean. In the present example this results in the table of absolute mean differences below:

2.1 2.7

3.6

4.3 2.2 1.6 0.7

3.6 1.5 0.9

2.7 0.6

Now applying our LSD value of .636 to the mean differences in the table, it can be seen that all differences among the means are significant at " = .05 except the last difference between the

means of 2.1 and 2.7. Unfortunately, the p-values associated with these multiple LSD tests are inaccurate. Since the sampling distribution for t assumes only one t-test from any given sample, substantial alpha slippage has occurred because 6 tests have been performed on the same sample.

c

The true alpha level given multiple tests or comparisons can be estimated as 1 - (1 - " ) , where c = the total number of comparisons, contrasts, or tests performed. In the present example

c6

1 - (1 - " ) = 1 - (1 - .05)= .2649. Given multiple testing in this situation, the true value of alpha is approximately .26 rather than .05.

A number of different solutions and corrections have been developed to deal with this problem and produce post hoc tests that correct for multiple tests so that a correct alpha level is maintained even though multiple tests or comparisons are computed. Several of these approaches are discussed below.

Tukey’s HSD test. Tukey’s test was developed in reaction to the LSD test and studies have shown the procedure accurately maintains alpha levels at their intended values as long as statistical model assumptions are met (i.e., normality, homogeneity, independence). Tukey’s HSD was designed for a situation with equal sample sizes per group, but can be adapted to unequal sample sizes as well (the simplest adaptation uses the harmonic mean of n-sizes as n*). The formula for Tukey’s is:

_________

HSD = q o MSE / n*

where q = the relevant critical value of the studentized range statistic and n* is the number of scores used in calculating the group means of interest. Calculation of Tukey’s for the present example produces the following:

_________ ________

HSD = q o MSE / n* = 3.83 o .975 / 10 = 1.1957

The q value of 3.83 is obtained by reference to the studentized range statistic table looking up the q value for an alpha of .05, df = < = 32, k = p = r = 4. Thus the differences in the table of mean differences below that are marked by the asterisks exceed the HSD critical difference and are significant at p < .05. Note that two differences significant with LSD are now not significant.

2.1 2.7

3.6

4.3 2.2* 1.6* 0.7

3.6 1.5* 0.9

2.7 0.6

Scheffe’s test. Scheffe’s procedure is perhaps the most popular of the post hoc procedures, the most flexible, and the most conservative. Scheffe’s procedure corrects alpha for all pair-wise or simple comparisons of means, but also for all complex comparisons of means as well. Complex comparisons involve contrasts of more than two means at a time. As a result, Scheffe’s is also the

least statistically powerful procedure. Scheffe’s is presented and calculated below for our pair-wise situation for purposes of comparison and because Scheffe’s is commonly applied in this situation, but it should be recognized that Scheffe’s is a poor choice of procedures unless complex comparisons are being made.

For pair-wise comparisons, Scheffe’s can be computed as follows:

o(k -1) F o MSE (1/n + 1/n)

critical12

In our example:

o(3)(2.9011) o .975 (.1 + .1) = 2.9501 = 1.3027

And referring to the table of mean differences above, it can be seen that, despite the more stringent critical difference for Scheffe’s test, in this particular example, the same mean differences are significant as found using Tukey’s procedure.

Other post hoc procedures. A number of other post hoc procedures are available. There is a Tukey-Kramer procedure designed for the situation in which n-sizes are not equal. Brown-Forsythe’s post hoc procedure is a modification of the Scheffe test for situations with heterogeneity of variance. Duncan’s Multiple Range test and the Newman-Keuls test provide different critical difference values for particular comparisons of means depending on how adjacent the means are. Both tests have been criticized for not providing sufficient protection against alpha slippage and should probably be avoided. Further information on these tests and related issues in contrast or multiple comparison tests is available from Kirk (1982) or Winer, Brown, and Michels (1991).

Comparison of three post hoc tests. As should be apparent from the foregoing discussion, there are substantial differences among post hoc procedures. The procedures differ in the amount and kind of adjustment to alpha provided. The impact of these differences can be seen in the table of critical values for the present example shown below:

Critical Difference

LSD0.6360

Tukey 1.1957

Scheffe 1.3027

The most important issue is to choose a procedure which properly and reliably adjusts for the types of problems encountered in your particular research application. Although Scheffe’s procedure is the most popular due to its conservatism, it is actually wasteful of statistical power and likely to lead to Type II errors unless complex comparisons are being made. When all pairs of means are being compared, Tukey’s is the procedure of choice. In special design situations, other post hoc procedures may also be preferable and should be explored as alternatives.

? Stevens, 1999

生物统计学重要知识点

生物统计学重要知识点 (说明:下列知识点为考试内容,没涉及的不需要复习。注意加粗的部分为重中之重,一定要弄懂。大家要进行有条理性的复习,望大家考出好成绩!) 第一章概论(容易出填空题和名词解释) 1、生物统计学的目的、内容、作用及三个发展阶段 2、生物统计学的基本特点 3、会解释总体、个体、样本、样本容量、变量、参数、统计数、效应和互作 4、会区分误差(随机误差和系统误差)与错误以及产生的原因 5、会区分准确度和精确度 第二章试验资料的整理与特征数的计算(容易出填空和名词解释) 1、随机抽样必须满足的两个条件 2、能看懂次数分布表和次数分布图,会计算全距、组数、组距、组限和组中值 3、会求平均数(算数、加权和几何)、中位数、众数,算术平均数的重要特性 4、会求极差、方差、标准差和变异系数,理解标准差的性质 第三章概率与概率分布(选择、填空和计算) 1、理解事件、频率及概率,事件的相互关系,加法定理和乘法定理的运用 2、概率密度函数曲线的特点和大数定律 3、二项分布、泊松分布和正态分布的概率函数和标准分布图像特征,会计算概率值 4、理解分位数的概念,弄清什么时候用单尾,什么时候用双尾 5、样本平均数差数的分布 第四章统计推断(计算) 1、无效假设和备择假设、显著水平、双尾检验和单尾检验、假设检验的两类错误,会根据 小概率原理做出是否接受无效假设的判断 2、总体方差已知和未知情况下如何进行U检验 3、一个样本平均数的t检验(例4.5) 成组数据平均数比较的t检验(例4.6和4.7) 4、一个样本频率的假设检验(例4.11),知道连续性矫正 5、参数的区间估计(置信区间)和点估计

生物统计学考试题及答案

生物统计学考试题及答案

重庆西南大学 2012 至 2013 学年度第 2 期 生物统计学 试题(A ) 试题使用对象: 2011 级 专 业(本科) 命题人: 考试用时 120 分钟 答题方式采用: 一:判断题;(每小题1分,共10分 ) 1、正确无效假设的错误为统计假设测验的第一类错误。( ) 2、标准差为5,B 群体的标准差为12,B 群体的变异一定大于A 群体。( ) 3、一差异”是指仅允许处理不同,其它非处理因素都应保持不变。( ) 4、30位学生中有男生16位、女生14位,可推断该班男女生比例符合1∶1(已 知84.321,05.0=χ)。 ( ) 5、固定模型中所得的结论仅在于推断关于特定的处理,而随机模型中试验结论则将用于推断处理的总体。( ) 6、率百分数资料进行方差分析前,应该对资料数据作反正弦转换。( ) 7、比较前,应该先作F 测验。 ( ) 8、验中,测验统计假设H 00:μμ≥ ,对H A :μμ<0 时,显著水平为5%,则测验的αu 值为1.96( ) 9、行回归系数假设测验后,若接受H o :β=0,则表明X 、Y 两变数无相关关系。( ) 10、株高的平均数和标准差为30150±=±s y (厘米),果穗长的平均数和标准差为s y ±1030±=(厘米),可认为该玉米的株高性状比果穗性状变异大。 ( ) 二:选择题;(每小题2分,共10分 ) 1分别从总体方差为4和12的总体中抽取容量为4的样本,样本平均数分别为3和2,在95%置信度下总体平均数差数的置信区间为( )。

A 、[-9.32,11.32] B 、[-4.16,6.16] C 、[-1.58,3.58] D 、都不是 2、态分布不具有下列哪种特征( )。 A 、左右对称 B 、单峰分布 C 、中间高、两头低 D 、概率处处相等 3、一个单因素6个水平、3次重复的完全随机设计进行方差分析,若按最小显著差数法进行多重比较,比较所用的标准误及计算最小显著差数时查表的自由度分别为( )。 A 、 2MSe/6 , 3 B 、 MSe/6 , 3 C 、 2MSe/3 , 12 D 、 MSe/3 , 12 4、已知),N(~x 2σμ,则x 在区间]96.1,[σμ+-∞的概率为( )。 A 、0.025 B 、0.975 C 、0.95 D 、0.05 5、 方差分析时,进行数据转换的目的是( )。 A. 误差方差同质 B. 处理效应与环境效应线性可加 C. 误差方差具有正态性 D. A 、B 、C 都对 三、简答题;(每小题6分,共30分 ) 1、方差分析有哪些步骤? 2、统计假设是?统计假设分类及含义? 3、卡方检验主要用于哪些方面? 4、显著性检验的基本步骤? 5、平均数有哪些?各用于什么情况? 四、计算题;(共4题、50分) 1、进行大豆等位酶Aph 的电泳分析,193份野生大豆、223份栽培大豆等位基因型的次数列于下表。试分析大豆Aph 等位酶的等位基因型频率是否因物种而不同。( 99 .52 05.0,2=χ, 81 .7205.0,3=χ)(10分) 野生大豆和栽培大豆Aph 等位酶的等位基因型次数分布 物 种 等位基因型 1 2 3 野生大豆 29 68 96

t检验u检验卡方检验F检验方差分析

统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:t检验有单样本t检验,配对t检验和两样本t检验。 单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。 配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。 u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t分布),当x为未知分布时应采用秩和检验。 F检验又叫方差齐性检验。在两样本t检验中要用到F检验。 从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。 其中要判断两总体方差是否相等,就可以用F检验。 简单的说就是检验两个样本的方差是否有显着性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。 在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。

卡方检验 是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。 方差分析 用方差分析比较多个样本均数,可有效地控制第一类错误。方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。 其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。我们要学习的主要内容包括 单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA): 用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。完全随机设计(completely random design)不考虑个体差异的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计。在实验研究中按随机化原则将受试对象随机分配到一个处理因素的多个水平中去,然后观察各组的试验效应;在观察研究(调查)中按某个研究因素的不同水平分组,比较该因素的效应。 两因素方差分析即配伍组设计的方差分析(two-way ANOVA): 用途:用于随机区组设计的多个样本均数比较,其统计推断是推断各样本所代表的各总体均数是否相等。随机区组设计考虑了个体差异的影响,可分析处理因素和个体差异对实验效应的影响,所以又称两因素实验设计,比完全随机设计的检验效率高。该设计是将受试对象先按配比条件配成配伍组(如动物实验时,可按同窝别、同性别、体重相近进行配伍),每个配伍组有三个或三个以上受试对象,再按随机化原则分别将各配伍组中的受试对象分配到各个处理组。值得注意的是,同一受试对象不同时间(或部位)重复多次测量所得到的资料称为重复测量数据(repeated measurement data),对该类资料不能应用随机区组设计的两因素方差分析进行处理,需用重复测量数据的方差分析。 方差分析的条件之一为方差齐,即各总体方差相等。因此在方差分析之前,应首先检验各样本的方差是否具有齐性。常用方差齐性检验(test for homogeneity of variance)推

在EXCEL中实现多总体方差的Bartlett齐性检验

在EXCEL中实现多总体方差的Bartlet t齐性检验 在体育教学和运动训练等的科学实验中,对影响体育教学成绩及运动竞赛的成绩的原因的探究,一直是当代体育科研中研究的主线。例如,在运动训练中,为更加有效地提高运动成绩,通常需要考察不同的运动强度、不同的运动量和不同的运动持续时间等因素对不同的专项运动成绩的影响,目的是为了找出适合不同专项的运动强度、运动量、运动持续时间的较佳组合。又如,我们从运动系体操专业的学生中随机抽取条件相似的20 名学生随机分成4组,每组5人,由 4 位教师施以不同的教学方法,教20 个具有相当难度的体操动作,并规定每个动作的计分标准,试教一学期后举行测试,测得各组得分,见下表。现假定每组的得分服从正态分布,则这 4 种教学方法的效果间是否有显著性差异的问题就是我们迫切需要了解的。 如果仅仅从上例每组的总分上看,显然四种不同的教法带来了四种不同的学生得分,分值上肯定有差异,但这种差异主要是由随机误差引起的,还是主要是由于教学方法的不同而引起的,即是否有显著性差异的统计结论,还须经统计检验后才能得出。若用两个样本间均数差异的显著性检验方法来处理本类问题的话,需要做6次检验。若这样的试验安排共有N组,则需要做N (N-1)/2 次两两比较,这一方面,显然太麻烦了,另一方面,

当设定两两比较时,犯第一类错误的概率 a =0.05,则N个独立 样本两两比较时,每次比较不犯第一类错误的概率为0.95N(N-1) /2,相应犯第一类错误的概率为1-0.95N(N-1) /2,远远大于 事先设定的0.05。因此,多个均数比较时不宜采用我们熟知的t 检验作两两比较,应采用一种新的统计处理方法来实现。 解决这一类问题的方法是方差分析。它最早由英国统计学家费舍( R.A.Fisher )在1923 年提出,最初用于生物学和农业试验方面,后于1946年由斯内德克(G.W.Snedecor)进一步加以完善。为纪念费舍的杰出贡献,又把它称为 F 检验。现在它在体育领域中也得到了广泛的应用。 方差分析是在总体服从正态分布且方差齐性的假设下展开的,在满足总体正态性但方差不齐时,此法不可用,而只能改用方差不齐时两均数差异的显著性检验的方法来进行两两均数间的比较。因此,这里很有必要来考虑方差的齐性检验的问题。本文主要介绍在EXCEL中如何来实现多总体方差的Bartlett 齐性检验的自动计算。 1 Bartlett 方差齐性检验的方法 Bartlett 法是一种可在各水平重复测定次数不等时用来检验方差齐性的方法,虽然,当各水平重复测定次数相等时,可用Cochran 提供的检验方法,但Bartlett 法同样适用。 2在EXCEL中进行Bartlett 方差齐性检验的方法 2.1工作表的安排 在用Bartlett 法进行方差齐性检验时,为使计算相对自动化,

方差齐性检验的原理

统计学搜索整理汇总——方差齐性检验的原理 LXK的结论:齐性检验时F越小(p越大),就证明没有差异,就说明齐,比如F=1.27,p>0.05则齐,这与方差分析均数时F越大约好相反。 LXK注:方差(MS或s2)=离均差平方和/自由度(即离均差平方和的均数) 标准差=方差的平方根(s) F=MS组间/MS误差=(处理因素的影响+个体差异带来的误差)/个体差异带来的误差 ================= F检验为什么要求各比较组的方差齐性? ——之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。 在方差分析的F检验中,是以各个实验组内总体方差齐性为前提的,因此,按理应该在方差分析之前,要对各个实验组内的总体方差先进行齐性检验。如果各个实验组内总体方差为齐性,而且经过F检验所得多个样本所属总体平均数差异显著,这时才可以将多个样本所属总体平均数的差异归因于各种实验处理的不同所致;如果各个总体方差不齐,那么经过F 检验所得多个样本所属总体平均数差异显著的结果,可能有一部分归因于各个实验组内总体方差不同所致。 简单地说就是在进行两组或多组数据进行比较时,先要使各组数据符合正态分布,另外就是要使各组数据的方差相等(齐性)。 ----------------- 在SPSS中,如果进行方差齐性检验呢?命令是什么? 方差分析(Anaylsis of Variance, ANOVA)要求各组方差整齐,不过一般认为,如果各组人数相若,就算未能通过方差整齐检验,问题也不大。 One-Way ANOVA对话方块中,点击Options…(选项…)按扭, 勾Homogeneity-of-variance即可。它会产生Levene、Cochran C、Bartlett-Box F等检验值及其显著性水平P值,若P值<于0.05,便拒绝方差整齐的假设。 顺带一提,Cochran和Bartlett检定对非正态性相当敏感, 若出现「拒绝方差整齐」的检测结果,或因这原因而做成。 --------------- 用spss处理完数据的显示结果中,F值,t值及其显著性(sig)都分别是解释什么的? 答案 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝

生物统计学简答题

1. 什么是生物统计学?生物统计学的主要容和作用是什么? 生物统计学是用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料,是研究生命过程中以样本来推断总体的一门学科。 生物统计学主要包括试验设计和统计分析两大部分的容。其基本作用表现在以下4个方面:1.提供整理和描述数据资料的科学方法,确定某些性状和特性的数量特征。2.判断试验结果的可靠性。3.提供由样本推断总体的方法。4.提供试验设计的一些重要原则。 2. 随即误差与系统误差有何区别?随机误差也称为抽样误差或偶然误差,它是由于试验中许多无法控制的偶然因素所造成的试验结果与真实结果之间的误差,是不可避免的,随机误差可以通过试验设计和精心管理设法减小,而不能完全消除。 系统误差也称为片面误差,是由于试验处理以外的其他条件明显不一致所产生的带有倾向性或定向性的偏差。系统误差主要由一些相对固定的因素引起,在某种程度上是可控制的。 3. 准确性与精确性有何区别? 准确性指在调查和实验中某一实验指标或性状的观测值和真实值接近程度。精确性指调查和实验中同一实验指标或性状的重复观察值彼此接近的程度。准确性是说明测定值和真实值之间符合程度的大小;精确性是反映多次测定值的变异程度。 4. 平均数与标准差在统计分析中有何用处?他们各有哪些特性?平均数的用处:①平均数指出了一组数据的中心位置,标志着资料所代表性状的数量水平和质量水平;②作为样本或资料的代表数据与其他资料进行比较。平均数的特征:①离均差之和为零;②离均差平方和为最小。 标准差的用处:①标准差的大小,受实验后调查资料中的多个观测值的影响,如果观测值之间的差异大,离均差就越大;②在计算标准差是如果对观察值加上一个或减去一个a,标准差不变;如果给各观测值乘以或除以一个常数a,所得的标准差就扩大或缩小a倍;③在正态分布中,X+-S的观测值个数占总个数的68.26%,X-+2s的观测值个数占总个数的95.49%,x-+3s 的观测值个数占总个数的99.73%。标准差的特征:①表示变量分布的离散程度;②标准差的大小可以估计出变量的次数分布及各类观测值在总体中所占的比例;③估计平均数的标准差;④进行平均数区间估计和变异数的计算。 5. 什么是正态分布?什么是标准正太分布?正态分布曲线有什么特点?μ和σ对正态分布曲线有何影响?

STATA 第四章 t检验和单因素方差分析命令输出结果说明

第四章 t检验和单因素方差分析命令与输出结果说明 ·单因素方差分析 单因素方差分析又称为Oneway ANOVA,用于比较多组样本的均数是否相同,并假定:每组的数据服从正态分布,具有相同的方差,且相互独立,则无效假设。 :各组总体均数相同。 原假设:H 在STATA中可用命令: oneway 观察变量分组变量[, means bonferroni] 其中子命令bonferroni是用于多组样本均数的两两比较检验。 例:测定健康男子各年龄组的淋巴细胞转化率(%),结果见表,问:各组的淋巴细胞转化率的均数之间的差别有无显著性? 健康男子各年龄组淋巴细胞转化率(%)的测定结果: 11-20 岁组:58 61 61 62 63 68 70 70 74 78 41-50 岁组:54 57 57 58 60 60 63 64 66 61-75 岁组:43 52 55 56 60 用变量x 表示这些淋巴细胞转化率以及用分组变量group=1,2,3分别表示 则用 STATA 命令: oneway x group, mean bonferroni | Summary of x group | Mean ① -------------+------------ 1 | 66.5 2 | 59.888889 3 | 53.2 ------+------------ Total | 61.25 ②

Analysis of Variance Source SS df MS F Prob > F ------------------------------------------------------------------------------- Between groups 616.311111③ 2 ④ 308.155556⑤ 9.77⑥ 0.0010⑦Within groups 662.188889⑧ 21⑨ 31.5328042⑴ ------------------------------------------------------------------------------- Total 1278.50 23 55.586956 (2)Bartlett's test for equal variances:chi2(2) = 2.1977 (3)Prob>chi2=0.333 Comparison of x by group (Bonferroni) Row Mean- | Col Mean | 1 2 -------------- --|-------------------------------------- 2 | -6.61111 (4) | 0.054 (5) | 3 | -13.3 (6) -6.68889(8) | 0.001 (7) 0.134 (9) ①对应三个年龄组的淋巴细胞转化率的均数;②三组合并在一起的总的样本 均数;③组间离均差平方和;④组间离均差平方和的自由度;⑤组间均方和(即: ⑤=③/④);⑧组内离均差平方和;⑨组内离均差平方和的自由度;(1)组内均 方和(即:(1)=⑧/⑨);⑥为F 统计值(即为⑤/(1));⑦为相应的p值;(2) 为方差齐性的Bartlett检验;(3)方差齐性检验相应的p值;(4)第二组的淋 巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(5)第二和 第一组均数差的显著性检验所对应p 值;(6)第三组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(7)第三和第一组均数差的显著 性检验所对应的 p 值;(8)第三组的淋巴细胞转化率样本均数—第二组的淋巴 细胞转化率的样本均数的差;(9)第三和第二组均数差的显著性检验所对应的p 值。 由上述结果可知:三组方差无显著地齐性,因此若三组数据近似服从正态 分布,无效假设Ho检验所对应的p值<0.01,可以认为这三组均数有显著差异。 由 Bonferroni统计检验结果表明:第一组淋巴细胞转化率显著地高于第三组淋 巴细胞转化率(p<0.005),其它各组之间均数无显著性差异。

方差齐性检验

一、方差齐性检验 1、 data abc; do a=1 to 4; do i=1 to 4; Input x @@; Output; end; end; t=_n_; /*自动生成序号变量t*/ cards; 19 23 21 13 21 24 27 20 20 18 19 15 22 25 27 22 ; Proc gplot data=a; /*绘图—按文件a作散点图*/ Plot x*t; /*纵坐标为x,横坐标为t*/ proc print a; proc anova; class a; model x=a; means a/hovtest; run; 2、 data d0; Input x @@; t=_n_; cards; 58 86 92 95 93 97 90 72 67 39 51 63 77 57 57 59 45 45 80 38 36 39 85 94 ; proc print; var t x; proc gplot data=d0; plot x*t; symbol c=red i=join v=star; run; data d1; do a=1 to 4; do i=1 to 6; Input y @@; output; end; end; cards; 58 86 92 95 93 97 90 72 67 39 51 63 77 57 57 59 45 45 80 38 36 39 85 94 ; proc anova; class a; model y=a; means a/hovtest; proc print; var a y; run; data d0; Input y @@; t=_n_; do a=1 to 4; do i=1 to 6; Input x @@; output; end; end; cards; 58 86 92 95 93 97 90 72 67 39 51 63 77 57 57 59 45 45 80 38 36 39 85 94 ; proc print; var t x; proc gplot data=d0; plot x*t; symbol c=red i=join v=star; run; proc anova; class a; model x=a; means a/hovtest; run;

t检验与方差分析

第六章数值变量资料的统计分析 数值变量资料又称计量资料,通常是指每个观察单位某项指标量的大小,一般具有计量单位。这类资料按分析的内容一般可分为两种:一种是比较几种处理之间的效应,简单地讲就是比较各处理组观察值均数、方差的大小;另一种是寻找指标间的关系,即某个(或某些)指标的取值是否受其它指标的影响。本章主要介绍不同设计类型的数值变量资料的比较。 §6.1 样本均数与总体均数比较的 t 检验 t检验亦称 student's t 检验,主要用于下列三种情况:(1)样本均数与总体均数比较;(2)配对数值变量资料的比较;(3)两样本均数的比较。 Stata用于样本均数与总体均数比较的 t 检验的命令是: ttest 变量名= #val 这里,#val 表示总体均数。 命令中可以选用 if 语句和 in 语句对要分析的内容加一些条件限制。 对已知样本含量、均数和标准差的资料,欲将其与某总体均数进行比较,Stata 还提供了更为简洁的命令是: ttesti #obs #mean #sd #val 这里,#obs 表示样本含量,#mean 表示样本均数,#sd 表示样本标准差, #val 表示总体均数。 §6.2 两样本均数比较的t检验 一、配对设计t检验 医学研究中常将受试对象配成对子,对每对中的两个受试对象分别给予两种不同的处理,观察两种处理的结果是否一致,称为配对(设计)研究。有时以同一个受试对象先后给予两种不同的处理,观察两种处理的结果是否相同,这种配对称为自身配对。配对设计的优点是能消除或部分消除个体间的差异,使比较的结果更能真实地反映处理的效应。 配对t检验首先计算每对结果之差值,再将差值均数与0作比较。如两种处理的效应相同,则差值与0没有显著性差异。 检验假设 H0为:两种处理的效应是相同,或总体差值均数为 0。 stata用于配对样本t检验的命令是: Ttest变量1=变量2 这里,这里“变量 1”和“变量 2”是成对输入的配对样本。 ttest 命令容许使用[if 表达式]和[in范围]条件限制。 或者: gen d=0 ttest d=0 二、成组设计t检验

T检验及其与方差分析的区别

T检验及其与方差分析的 区别 Last revision on 21 December 2020

T检验及其与方差分析的区别 假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。 t 检验:1.单因素设计的小样本(n<50)计量资料 2.样本来自正态分布总体 3.总体标准差未知 4.两样本均数比较时,要求两样本相应的总体方差相等 ?根据研究设计t检验可由三种形式: –单个样本的t检验 –配对样本均数t检验(非独立两样本均数t检验) –两个独立样本均数t检验 (1)单个样本t检验 ?又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差 别。 ?已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。 ?单样t检验的应用条件是总体标准未知的小样本资料( 如n<50),且服从正态分布。(2)配对样本均数t检验 ?配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。

?配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。 ?应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。 ?配对设计处理分配方式主要有三种情况: ①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对; ②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例资料; ③自身对比(self-contrast)。即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。 (3)两独立样本t检验 两独立样本t 检验(two independent samples t-test),又称成组t 检验。 ?适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。 ?完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理,分析比较处理的效应。或分别从不同总体中随机抽样进行研究。 ?两独立样本t检验要求两样本所代表的总体服从正态分布N(μ1,σ12)和N(μ2,σ 2),且两总体方差σ12、σ22相等,即方差齐性(homogeneity of variance, 2 homoscedasticity)。 ?若两总体方差不等,即方差不齐,可采用t’检验,或进行变量变换,或用秩和检验方法处理。 t 检验中的注意事项 1.假设检验结论正确的前提作假设检验用的样本资料,必须能代表相应的总

SPSS17.0在生物统计学中的应用-实验五、方差分析报告 六、简单相关与回归分析报告

SPSS在生物统计学中的应用 ——实验指导手册 实验五:方差分析 一、实验目标与要求 1.帮助学生深入了解方差及方差分析的基本概念,掌握方差分析的基本思想和原理 2.掌握方差分析的过程。 3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练进行单因素方差分析、两因素方差分析等操作,激发学生的学习兴趣,增强自我学习和研究的能力。 二、实验原理 在现实的生产和经营管理过程中,影响产品质量、数量或销量的因素往往很多。例如,农作物的产量受作物的品种、施肥的多少及种类等的影响;某种商品的销量受商品价格、质量、广告等的影响。为此引入方差分析的方法。 方差分析也是一种假设检验,它是对全部样本观测值的变动进行分解,将某种控制因素下各组样本观测值之间可能存在的由该因素导致的系统性误差与随即误差加以比较,据以推断各组样本之间是否存在显著差异。若存在显著差异,则说明该因素对各总体的影响是显著的。 方差分析有3个基本的概念:观测变量、因素和水平。 ●观测变量是进行方差分析所研究的对象; ●因素是影响观测变量变化的客观或人为条件; ●因素的不同类别或不通取值则称为因素的不同水平。在上面的例子中,农作物的产量和商品的销 量就是观测变量,作物的品种、施肥种类、商品价格、广告等就是因素。在方差分析中,因素常常是某一个或多个离散型的分类变量。 ?根据观测变量的个数,可将方差分析分为单变量方差分析和多变量方差分析; ?根据因素个数,可分为单因素方差分析和多因素方差分析。 在SPSS中,有One-way ANOV A(单变量-单因素方差分析)、GLM Univariate(单变量多因素方差分析);GLM Multivariate (多变量多因素方差分析),不同的方差分析方法适用于不同的实际情况。本节仅练习最为常用的单变量方差分析。 三、实验演示内容与步骤 ㈠单变量-单因素方差分析 单因素方差分析也称一维方差分析,对两组以上的均值加以比较。检验由单一因素影响的一个分析变量由因素各水平分组的均值之间的差异是否有统计意义。并可以进行两两组间均值的比较,称作组间均值的多重比较。主要采用One-way ANOV A过程。 采用One-way ANOV A过程要求:因变量属于正态分布总体,若因变量的分布明显是非正态,应该用非参数分析过程。若对被观测对象的实验不是随机分组的,而是进行的重复测量形成几个彼此不独立的变量,应该用Repeated Measure菜单项,进行重复测量方差分析,条件满足时,还可以进行趋势分析。 【例6.1】欲比较四种饲料对仔猪增重效果的优劣,随机选取了性别、年龄、体重相同,无亲缘关系的20头猪,随机分为4组,每组5头,分别饲喂一种饲料所得增重数据如下在。试利用这些数据对4种饲料对仔猪

常用医学统计学方法汇总

选择合适的统计学方法 1连续性资料 1.1 两组独立样本比较 1.1.1 资料符合正态分布,且两组方差齐性,直接采用t检验。 1.1.2 资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后对转换后的数据采用t检验;(2)采用非参数检验,如Wilcoxon检验。 1.1.3 资料方差不齐,(1)采用Satterthwate 的t’检验;(2)采用非参数检验,如Wilcoxon检验。 1.2 两组配对样本的比较 1.2.1 两组差值服从正态分布,采用配对t检验。 1.2.2 两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。 1.3 多组完全随机样本比较 1.3.1资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe 法,SNK法等。 1.3.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal-Wallis法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用成组的Wilcoxon检验。 1.4 多组随机区组样本比较 1.4.1资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe 法,SNK法等。 1.4.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman检验法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用符号配对的Wilcoxon检验。 ****需要注意的问题:

7.计量资料的统计推断—方差分析

7 计量资料的统计推断——方差分析 方差分析(analysis of variance,缩写为ANOVA),目的是判断多个组的总体均数是否完全相等,其基本统计假设为H0:各组总体均数完全相等;在拒绝H0时,还要进行各组均数间的多重比较(multiple comparison),即对各个总体均数作进一步两两比较,其目的是判断哪些总体均数相等,哪些总体均数不相等。 方差分析应用条件为:①各样本是相互独立的随机样本;②各样本均来自正态分布总体; ③各样本的总体方差相等,即具有方差齐性。在不满足正态性时可以用非参数检验,方差不齐时可以尝试通过数据变换,使满足方差分析的应用条件。 7.1 完全随机设计资料的方差分析 完全随机设计是把试验对象随机分配到不同的试验组中,各组分别接受不同的处理,试验结束后,比较各组均数之间的差异有无统计学意义。对于完全随机试验的两个或多个样本均数比较,可用Compare Means过程中的One-way ANOVA(单因素方差分析)来分析。 例7-1研究单味中药对小白鼠细胞免疫机能的影响,把39只小白鼠随机分为四组,雌雄尽量各半,用药15天后,进行E-玫瑰花结形成率(E-SFC)测定,结果如表7-1。分析四种用药情况对小白鼠细胞免疫机能的影响是否相同。 表7-1 不同中药对小白鼠E-SFC的影响 对照组对照组14101216131410139 淫羊藿组35273329314035302836 党参组21241817221918232018 黄芪组24202218172118221923解01234 等。H1:四组E-玫瑰花结形成率总体均数不全相等。如图7-1建立2列39行的数据文件,其中分析变量esfc(标签:E-SFC(%)),分组变量group(值标签:1=“对照组”、2=“淫羊藿组”、3=“党参组”、4=“黄芪组”)。 图7-1 例7-1数据文件图7-2 One-way ANOVA主对话框

T检验及其与方差分析的区别.docx

T检验及其与方差分析的区别 假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。 t 检验:1.单因素设计的小样本(n<50)计量资料 2.样本来自正态分布总体 3.总体标准差未知 4.两样本均数比较时,要求两样本相应的总体方差相等 ?根据研究设计t检验可由三种形式: –单个样本的t检验 –配对样本均数t检验(非独立两样本均数t检验) –两个独立样本均数t检验 (1)单个样本t检验 ?又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。 ?已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。 ?单样t检验的应用条件是总体标准 未知的小样本资料( 如n<50),且服从正态分布。(2)配对样本均数t检验 ?配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。 ?配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。 ?应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。 ?配对设计处理分配方式主要有三种情况: ①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对; ②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例5.2资料; ③自身对比(self-contrast)。即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。 (3)两独立样本t检验 两独立样本t 检验(two independent samples t-test),又称成组t 检验。 ?适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。 ?完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理,分析比较处理的效应。或分别从不同总体中随机抽样进行研究。 ?两独立样本t检验要求两样本所代表的总体服从正态分布N(μ1,σ12)和N(μ2,σ 2),且两总体方差σ12、σ22相等,即方差齐性(homogeneity of variance, 2 homoscedasticity)。 ?若两总体方差不等,即方差不齐,可采用t’检验,或进行变量变换,或用秩和检验方法处理。 t 检验中的注意事项 1.假设检验结论正确的前提作假设检验用的样本资料,必须能代表相应的总体,同时各

最新sas第九章 t检验和方差分析

s a s第九章t检验和 方差分析

第九章 t 检验和方差分析 在科研中,我们往往是根据样本之间的差异,去推断其总体之间是否有差异。样本差异可能是由抽样误差所致,也可能是由本质的不同所致。应用统计学方法来处理这类问题,称为“差异的显著性检验”。若已知总体为正态分布,进行差异的显著性检验,称为“参数性检验”,SAS 中MEANS 、TTEST 、ANOVA 、GLM 等均属此类检验;若未知总体分布,进行差异的显著性检验,称为“非参数性检验”,SAS 中采用NPAR1WAY 过程。 第一节 t 检验 9.1.1 简介 t 检验是用于两组数据均值间差异的显著性检验。它常用于以下场合: 1.样本均值与总体(理论)均值差别的显著性检验 检验所测得的一组连续资料是否抽样于均值已知的总体 根据大量调查的结果或以往的经验,可得到某事物的平均数(例如生理生化的正常值),以此作总体均值看待。 SAS 中采用MEANS 过程,计算出观察与总体均值的差值,再对该差值的均值进行t 检验。 2.同一批对象实验前后差异的显著性检验(自身对照比较)或配对资料差异的显著性检验(配对比较检验) 比如,在医学研究中,我们常常对同一批病人治疗前后的某些生理生化指标(如血压、体温等)进行测量,以观察疗效;或对同一批人群进行预防接种,以观察预防效果;或把实验对象配成对进行测定,比较其实验结果。 SAS 中采用MEANS 过程,计算出两样本观察的差值(如治疗前、后实验数据的差值),再对该差值的均值进行t 检验。 3.两样本均值差异的显著性检验 作两样本均值差异比较的两组原始资料各自独立,没有成对关系。两组样本所包含的个数可以相等,也可以不相等。每组观测值都是来自正态总体的样本。 设1X 与2X 为两样本的均值,1n 与2n 为两样本数,21s ,22s 为两样本方差,分两种情形,其数学模型为: (1)方差齐(相等)时: ) /1/1(212 21n n s x x t +-= )2/(])1()1[(212 222112-+-+-=n n s n s n s

方差齐性检验

LXK的结论:齐性检验时F越小(p越大),就证明没有差异,就说明齐,比如F=1.27,p>0.05则齐,这与方差分析均数时F越大约好相反。 LXK注:方差(MS或s2)=离均差平方和/自由度(即离均差平方和的均数) 标准差=方差的平方根(s) F=MS组间/MS误差=(处理因素的影响+个体差异带来的误差)/个体差异带来的误差================= F检验为什么要求各比较组的方差齐性? ——之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。 在方差分析的F检验中,是以各个实验组内总体方差齐性为前提的,因此,按理应该在方差分析之前,要对各个实验组内的总体方差先进行齐性检验。如果各个实验组内总体方差为齐性,而且经过F检验所得多个样本所属总体平均数差异显著,这时才可以将多个样本所属总体平均数的差异归因于各种实验处理的不同所致;如果各个总体方差不齐,那么经过F检验所得多个样本所属总体平均数差异显著的结果,可能有一部分归因于各个实验组内总体方差不同所致。 简单地说就是在进行两组或多组数据进行比较时,先要使各组数据符合正态分布,另外就是要使各组数据的方差相等(齐性)。 ----------------- 在SPSS中,如果进行方差齐性检验呢?命令是什么? 方差分析(Anaylsis of Variance, ANOVA)要求各组方差整齐,不过一般认为,如果各组人数相若,就算未能通过方差整齐检验,问题也不大。 One-Way ANOVA对话方块中,点击Options…(选项…)按扭, 勾Homogeneity-of-variance即可。它会产生 Levene、Cochran C、Bartlett-Box F等检验值及其显著性水平P值, 若P值<于0.05,便拒绝方差整齐的假设。 顺带一提,Cochran和Bartlett检定对非正态性相当敏感, 若出现「拒绝方差整齐」的检测结果,或因这原因而做成。 --------------- 用spss处理完数据的显示结果中,F值,t值及其显著性(sig)都分别是解释什么的? 答案 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我

T检验及其与方差分析的区别

T 检验及其与方差分析的区别 假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。 t 检验:1.单因素设计的小样本(n <50)计量资料 2.样本来自正态分布总体 3.总体标准差未知 4.两样本均数比较时,要求两样本相应的总体方差相等 ? 根据研究设计t 检验可由三种形式: – 单个样本的t 检验 – 配对样本均数t 检验(非独立两样本均数t 检验) – 两个独立样本均数t 检验 (1)单个样本t 检验 ? 又称单样本均数t 检验(one sample t test),适用于样本均数与已知总体均数μ0的比较, 其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。 ? 已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。 ? 单样t 检验的应用条件是总体标准 未知的小样本资料( 如n <50),且服从正态分布。 (2)配对样本均数t 检验 ? 配对样本均数t 检验简称配对t 检验(paired t test),又称非独立两样本均数t 检验,适用 于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。 ? 配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中 的两个个体随机地给予两种处理。 ? 应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。 ? 配对设计处理分配方式主要有三种情况: ①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对; ②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例5.2资料; ③自身对比(self-contrast)。即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。 (3)两独立样本t 检验 两独立样本t 检验(two independent samples t -test),又称成组 t 检验。 ? 适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数 是否相等。 ? 完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理, 分析比较处理的效应。或分别从不同总体中随机抽样进行研究。 ? 两独立样本t 检验要求两样本所代表的总体服从正态分布N (μ1,σ12)和N (μ2,σ 22),且两总体方差σ12、σ22相等,即方差齐性(homogeneity of variance, homoscedasticity)。 ? 若两总体方差不等,即方差不齐,可采用t ’检验,或进行变量变换,或用秩和检验方法 处理。 t 检验中的注意事项 1. 假设检验结论正确的前提 作假设检验用的样本资料,必须能代表相应的总体,同时各

相关文档
最新文档