一道多元函数最值题的变式及推广

一道多元函数最值题的变式及推广
一道多元函数最值题的变式及推广

一道多元函数最值题的变式及推广

戚有建

江苏省扬州中学 (225000)

一、题目展示

题目设x,y,z为正数,求xy+yz/x2+y2+z2的最大值.

@@ 点评:本题是一道调研考试题,考查的是多元函

数的最值问题本题结构简洁、表达流畅,看起来很

平常,实际上却丰富多彩,有很大的教学价值和研究

空间.

@@ 二、解法研究

@@ 分析1:(从不等式角度来考虑)

 @@ 观察目标式的结构特征,容易想到用基本不等

式来求最值.

一道“华约”自主招生试题的探究

林志森

福建省南安市侨光中学 (362314)

一、试题再现及解析

@@ 已知点A在y=kx上,点B在y=-kx上,其中

k>0,|OA|?|OB|=k2+l且A,B在y轴同侧,(1)

求AB中点M的轨迹C;(2)略.(2013年“华约”自

主招生试题3)

@@ 解析:(1)设A(x1,y1),B(x2,y2),M(x,y),则

y1=kx1,y2=-kx2,由|OA|?|OB|=k2+1,得

x1x2=1.即(x1+x2)2/4-(x1+x2)2/4=1,又x=

x1+x2/2,y=y1+y2/2=k(x1-x2)/2,于是M的轨迹方

程为x2-y2/k2=l,故AB中点M的轨迹C是焦点为

(±(k2+1),0),长轴长为2的双曲线.

高三数学专项训练:函数值的大小比较

高三数学专项训练:函数值的大小比较 一、选择题 1,则c b a ,,的大小关系是( ). A. b c a >> B. b a c >> C. c b a >> D. c a b >> 2 .设2 lg ,(lg ),a e b e c === ( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 3.设a b c ,,分别是方程的实数根 , 则有( ) A.a b c << B.c b a << C.b a c << D.c a b << 4.若13 (1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( ) A .a > B 、c a b >> C 、b a c >> D 、b c a >> 9.若)1,0(∈x ,则下列结论正确的是( ) A B C D 10.若0m n <<,则下列结论正确的是( ) A .22m n > B C .22log log m n > D

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

函数的最值经典例题

函数的最值 根据条件确定函数的参数是否存在 例 已知函数1 log )(223++++=cx x b ax x x f ,是否存在实数a 、b 、c ,使)(x f 同时满足下列三个条件:(1)定义域为R 的奇函数;(2)在[)+∞,1上是增函数;(3)最大值是1.若存在,求出a 、b 、c ;若不存在,说明理由. 分析:本题是解决存在性的问题,首先假设三个参数a 、b 、c 存在,然后用三个已给条件逐一确定a 、b 、c 的值. 解:)(x f 是奇函数.1,0log 0)0(3=∴=?=?b b f 又)()(x f x f -=- ,即1 1log 11log 223223++++-=+-+-cx x ax x cx x ax x , ∴222222222222)1()1(1111x c x x a x ax x cx x cx x ax x -+=-+?++++=-+-+. ∴c a c a =?=2 2或c a -=,但c a =时,0)(=x f ,不合题意;故c a -=.这时1 1l o g )(223+++-=cx x cx x x f 在[)+∞,1上是增函数,且最大值是1. 设1 1)(22+++-=cx x cx x x u 在[)+∞,1上是增函数,且最大值是3. 2 22222222)1()1)(1(2)1()1(2)1()1)(2()1)(2()(++-+=++-=+++-+-++-='cx x x x c cx x x c cx x cx x c x cx x c x x u ,当1>x 时0)(012>'?>-x u x ,故0>c ;又当1-'x u ;当)1,1(-∈x 时,0)(<'x u ; 故0>c ,又当1-'x u ,当)1,1(-∈x 时,0)(<'x u . 所以)(x u 在),1()1,(+∞--∞ 是增函数,在(-1,1)上是减函数. 又1>x 时,1,1)(,1122-=∴<++<+-x x u cx x cx x 时)(x u 最大值为3. ∴.1,1,31 111-===+-++a c c c 经验证:1,1,1==-=c b a 时,)(x f 符合题设条件,所以存在满足条件的a 、b 、c ,即.1,1,1==-=c b a 说明:此题是综合性较强的存在性问题,对于拓宽思路,开阔视野很有指导意义.

高考题:函数值比较大小

在康成 ----无所不能 1.设 232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是 A (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 4.(全国Ⅰ卷理8文10)设a=3log 2,b=In2,c=1 2 5-,则 C A. a> B .b a c >> C .c a b >> D .b c a >> 15.(湖南卷文6)下面不等式成立的是( A ) 23log 5< B .3log 5log 2log 223<< 2<0< B . 4 1 log 52 a ,log log a a z = C ) A .x y z >> B .z y x >> C .y x z >> D .z x y >> 18.(全国Ⅱ卷理4文5)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a ≠,的图象如图所示,则a b ,满足的关系是( A ) A .101a b -<<< B .101b a -<<< C .101b a -<<<- D .1101a b --<<<

用导数法求函数的最值的练习题解析

用导数法求函数的最值的练习题解析 一、选择题 1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )( ) A .等于0 B .大于0 C .小于0 D .以上都有可能 [答案] A [解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A. 2.设f (x )=14x 4+13x 3+1 2x 2在[-1,1]上的最小值为( ) A .0 B .-2 C .-1 D.1312 [答案] A [解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0. ∴f (-1)=512,f (0)=0,f (1)=13 12 ∴f (x )在[-1,1]上最小值为0.故应选A. 3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.22 27 B .2 C .-1 D .-4 [答案] C [解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =1 3或x =-1

当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =22 27;当x =1时,y =2. 所以函数的最小值为-1,故应选C. 4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为3 4 B .最大值为1,最小值为4 C .最大值为13,最小值为1 D .最大值为-1,最小值为-7 [答案] A [解析] ∵y =x 2-x +1,∴y ′=2x -1, 令y ′=0,∴x =1 2,f (-3)=13,f ? ?? ??12=34,f (0)=1. 5.函数y =x +1-x 在(0,1)上的最大值为( ) A. 2 B .1 C .0 D .不存在 [答案] A [解析] y ′=1 2x -121-x =12·1-x -x x ·1-x 由y ′=0得x =1 2,在? ????0,12上y ′>0,在? ????12,1上 y ′<0.∴x =1 2时y 极大=2, 又x ∈(0,1),∴y max = 2. 6.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值

函数大小比较问题

一、两幂值比大小的方法: (1)同底数的两幂值比大小时,利用指数函数的单调性可直接比较大小; (2)底、指都不同的两幂值比大小时,可借用中间值间接比较大小,也可利用函数图象的位置关系来比较大小。 例2 :比较下列各组中各数的大小. (1)0.40.3与0.40.2;(2)-0.75-0.1与-0.750.1 (3)()1/5与()3/4;(4)()-2/3与()-3/2 解:(1)考察指数函数y=0.4x,∵0<0.4<1,此函数为减函数,而0.3>0.2,∴0.40.3<0.40.2 (2)∵0<0.75<1,-0.1<0.1,∴0.75-0.1>0.750.1,故-0.75-0.1<-0.750.1. 另解:分别画出函数y=()x和y=()x的图象,图象中A 点的纵坐标为()1/5,B点的纵坐标为()3/4,C点的纵坐标为()1/5 由于A点高于C点,C点又高于B点,所以()1/5>()3/4 (4)∵()-2/3>()0=1, ()-3/2<()0=1,∴()-2/3>()-3/2 二、两对数值比大小的方法:

(1)同底数的两对数值比大小时,利用对数函数的单调性可直接比较大小; (2)同真数的两对数值比大小时,可换底后比较大小,也可利用同类函数图象的高低比大小; (3)底与真数都不同的两对数值比大小时,可以借用中间值间接比较大小,也可利用函数图象的 位置关系来比较大小。 例3:比较下列各组中两个对数值的大小. (1)log0.20.5, log0.20.3; (2) log23, log1.53 (3) log59, log68 ; (4) log1/50.3, log20.8 . 解:(下面的解答由师生共同完成) (2)考察指数函数y=log0.2x,∵0<0.2<1, 此函数为减函数,而 0.5>0.3,∴log0.20.5< log0.20.3 (3)log23=, log1.53=,∵lg3>0,lg2>lg1.5>0,∴log23< log1.53 另解:分别画出函数y=log1.5x,y=log2x的图象,x>1以后y=log1.5x的图象 在y=log2x的图象的上方。当x=3时A点高于B点,因为A点纵坐标为log1.53,B点纵坐标为log23,所以log23< log1.53

函数的最大(小)值

第一章 1.3. 1(下)函数的最大(小)值 教学目的:⑴初步了解复合函数单调性的判断方法. ⑵理解函数的最大(小)值及其几何意义; ⑶学会运用函数图象理解和研究函数的性质; 教学重点:函数的最大(小)值及其几何意义. 教学难点:利用函数的单调性求函数的最大(小)值. 教学过程: 一.复习引入 1、函数单调性定义----上升的意义为单调递增,下降的意义为单调上升.,如何精确说明x 越大(小),y 越大(小),单调函数的定义. 2、初等函数:一次函数)0(≠+=k b kx y 、二次函数)0(2≠++=a c bx ax y ,对称轴为界,反比例函数)0(≠= k x k y 的单调性,单调区间: 3、单调性的判定、单调区间的求法:(1)初等函数直接给出(2)画函数图象(3)定义法 比如作业:《作业本》1.3.1(一)10. 若函数()()2 15f x ax a x =--+在区间1 ,12?? ??? 上是增函数,求实数a 的范围. 解:若0a =,则()5f x x =-+,符合 若0a >,则对称轴11022 a x a a -=≤?> 若0a <,则对称轴11102a x a a -= ≥?-≤< 综上:1a ≥- 4、单调性的证明方法:单调性的证明一般分五步:取 值 → 作 差 → 变 形 → 定 号 → 下结论 5、补充作业:证明函数f(x)=x 3 在(-∞,+∞)上是增函数.错解:分类1212 0,0x x x x <<<<讨论,只说明了在()(),0,0,-∞+∞上递增,但并不是(),-∞+∞上递增;即使再分120x x <<讨论也还不够,12,x x 中可以有0吗? 就此说明:(1)并不因为0x >递增,0x <递增,而得出R 上递增. 也可以有解法:2 222 2 2 212 1122 122132422x x x x x x x x x x x ??? ++=++=+++ ? ??? 或2 2 22 2222 12 12 1122122 2 x x x x x x x x x x ++++≥+- = (2)确定符号时,因式分解到底:

函数的最值及相关取值范围测试题(含答案)

函数的最值及相关取值范围一、单选题(共10道,每道10分) 1.函数的最大值是( ) A. B. C.12 D. 答案:C 解题思路: 试题难度:三颗星知识点:函数的最值 2.函数在区间上的最小值和最大值分别为( ) A.1和3 B.2和3 C.2和4 D.1和4 答案:B 解题思路:

试题难度:三颗星知识点:函数的最值 3.函数在区间[0,m]上的最大值是5,最小值是1,则m的取值范围是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:函数的最值 4.已知,则的最值是( ) A.最大值是3,最小值是﹣1 B.最大值是,无最小值 C.最大值是3,无最小值 D.既无最大值,也无最小值 答案:B 解题思路:

试题难度:三颗星知识点:函数的最值 5.若函数在区间(1,+∞)上单调递增,则a的取值范围是( ) A.(-∞,0] B.[0,+∞) C.(-∞,-2] D.[1,+∞) 答案:D 解题思路:

试题难度:三颗星知识点:函数单调性的性质 6.已知是定义在(0,+∞)上的单调减函数,若,则x的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:函数单调性的性质 7.已知定义在(-1,1)上的函数是减函数,且,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数单调性的性质 8.已知函数是定义在[0,1]上单调递减函数,若,则x的取值范围是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:函数单调性的性质 9.已知函数在区间上单调递减,则a的取值范围是( ) A.a≥1 B.0

关于比较一次函数的函数值与二次函数的函数值大小之我见

关于比较一次函数的函数值与二次函数的函数值大小之我见 多力昆·阿布都热西提 2014.6.3

关于比较一次函数的函数值与二次函数的 函数值大小之我见 多力昆·阿布都热西提 在初中数学中,一次函数的图像和二次函数的图像的复杂的和潜在的概念现象大部分的师生分析问题陷入困惑。数学教师对这一点的忽略引起了学生对这个容的探究精神的欠缺。 数学没有明确概念,解决问题一定会受阻,如果概念里模糊,问题与学过知识之间的技术处理一定会失败。我认为,一次函数的图像与二次函数的图像之间的函数值的大小问题应该分层次分析。 下面,我来分析二次函数的图像与一次函数的图像之间存在的模糊问题的看法。 1、在同一个平面直角坐标中,二次函数y 1 = ax2+bx+c和一次函 数y 2 =ax+b的函数值的大小问题 (1)判断二次函数的图像与一次函数的图像的关系,如果二次函 数y 1 = ax2+bx+c的图像与一次函数的图像相交,则函数值相等,即 y 1= y 2 。 由上可得:ax2+bx+c=ax+b。 整理得:ax2+(b-a)x+c-b=0。 检验:Δ=b2—4ac=(b—a)2—4a(c—b) 第一:当Δ>0时,二次函数的图像与一次函数相交于不同的两个点。

设交点的坐标为(x 1,y 1 ),(x 2 ,y 2 ), 在y= ax2+bx+c中,当a>0(x 1< x 2 )时,x 1 y 1 , 当x> x 2或x< x 1 时,y 2 < y 1 (图1)在y= ax2+bx+c中,当a<0(x 1 < x 2)时,x 1 y 2 。当x> x 2 或x< x 1 时,y 2 > y 1 。(图2) 图1 图2 在图1中,在直线x= x 1与直线x= x 2 之间,一次函数的图像在 二次函数的上方,即,y 1> y 2 在直线x= x 1 的右边与直线x= x 2 的右 边,一次函数的图像在二次函数的下方,即y 1> y 2 。 在图2,在直线x= x 2 之间,二次函数的图像在一次函数的图像, 即:y 1> y 2 。在直线x= x1的左边与直线x= x2的右边,一次函数的 图像在二次函数的图像上方,即y2> y1。 第二,当Δ=0时,一次函数的图像与二次函数的图像有一个交 点,此时,设交点的坐标为(x 0,y ),在y 1 =ax2+bx+c,当a>0时, 在x= x 0的条件下,y 1 > y 2 ,(图3)。在x≠ x 的条件下,y 1 > y 2 ,(图 4)。

高一数学必修一函数的最值问题试题(1)

函数的最值问题(高一) 一.填空题: 1. ()35,[3,6]f x x x =+∈的最大值是 。1 ()f x x =,[]1,3x ∈的最小值是 。 2. 函数y =的最小值是 ,最大值是 3.函数21 2810y x x =-+的最大值是 ,此时x = 4.函数[]23 ,3,21x y x x -=∈--+的最小值是 ,最大值是 5.函数[]3 ,2,1y x x x =-∈--的最小值是 ,最大值是 6.函数y=2-x -21 +x 的最小值是 。y x =-的最大值是 7.函数y=|x+1|–|2-x| 的最大值是 最小值是 . 8.函数()2 1f x x =-在[2,6]上的最大值是 最小值是 。 9.函数y =x x 213+-(x ≥0)的值域是______________. 10.二次函数y=-x 2+4x 的最大值 11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。 12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值 13.函数f (x )=)1(11x x --的最大值是 22225 1x x y x x ++=++的最大值是 14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是 15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是 16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是 17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为: 18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是 19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。 二、解答题 20.已知二次函数 在 上有最大值4,求实数 a 的值。 21.已知二次函数 在 上有最大值2,求a 的值。 []2,3-∈x 12)(2++=ax x a x f []1,0∈x a ax x x f -++-=12)(2

高考题:函数值比较大小

1.设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 A (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 C A. a> B .b a c >> C .c a b >> D .b c a >> 15.(湖南卷文6)下面不等式成立的是( A ) A .322log 2log 3log 5<< B .3log 5log 2log 223<< C .5log 2log 3log 232<< D .2log 5log 3log 322<< 16(江西卷文4)若01x y <<<,则( C ) A .33y x < B .log 3log 3x y < C .44log log x y < D .1 1()()44 x y < 17.(辽宁卷文4)已知01a << ,log log a a x =,1 log 52 a y = , log log a a z =,则( C ) A .x y z >> B .z y x >> C .y x z >> D .z x y >> 18.(全国Ⅱ卷理4文5)若1 3 (1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a ≠,的图象如图所示,则a b ,满足的关系是( A ) A .1 01a b -<<< B .101b a -<<< C .1 01b a -<<<- D .1 101a b --<<<

函数的最大(小)值

第一章 集合号函数概念 1.3 函数的基本性质 1.3.1 单调性与最大(小)值 第2课时 函数的最大(小)值 A 级 基础巩固 一、选择题 1.已知函数f (x )=2x -1 (x ∈[2,6]),则函数的最大值为( ) A .0.4 B .1 C .2 D .2.5 解析:因为函数f (x )=2x -1 在[2,6]上是单调递减函数,所以f (x )max =f (2)=22-1 =2. 答案:C 2.函数f (x )=? ????2x +4,1≤x ≤2,x +5,-1≤x <1,则f (x )的最大值、最小值分别为( ) A .8,4 B .8,6 C .6,4 D .以上都不对 解析:f (x )在[-1,2]上单调递增,所以最大值为f (2)=8,最小值为f (-1)=4. 答案:A 3.函数f (x )=11-x (1-x ) 的最大值是( )

A.54 B.45 C.43 D.34 解析:因为1-x (1-x )=x 2-x +1=? ?? ??x -122+34≥34,所以1 1-x (1-x )≤43 ,得f (x )的最大值为43. 答案:C 4.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( ) A .2 B .-2 C .2或-2 D .0 解析:a >0时,由题意得2a +1-(a +1)=2,即a =2;a <0时,a +1-(2a +1)=2,所以a =-2,所以,a =±2. 答案:C 5.已知f (x )=x 2-2x +3在区间[0,t ]上有最大值3,最小值2,则t 的取值范围是( ) A .[1,+∞) B .[0,2] C .(-∞,2] D .[1,2] 解析:因为f (0)=3,f (1)=2,函数f (x )图象的对称轴为x =1,结合图象可得1≤t ≤2. 答案:D 二、填空题 6.函数f (x )=x 2-4x +2,x ∈[-4,4]的最小值是________,最

(完整word版)高一数学必修一函数的最值问题试题(1).doc

函数的最值问题(高一 ) 一.填空题: 1. f ( x) 3x 5, x [3,6] 的最大值是 。 f ( x) 1 1,3 的最小值是 。 , x x 2.函数 y 12 4x x 2 的最小值是 ,最大值是 3.函数 y 1 的最大值是 ,此时 x 2 x 2 8x 10 4.函数 y 2x 3 3, 2 的最小值是 ,最大值是 x , x 1 5.函数 y 3 2, 1 的最小值是 ,最大值是 x , x x 1 6.函数 y= x 2 - 的最小值是 。 y x 1 2x 的最大值是 x 2 7.函数 y=|x+1| –|2-x| 的最大值是 最小值是 . 8.函数 f x 2 在 [2,6] 上的最大值是 最小值是 。 x 1 9.函数 y= 3 x ( x ≥ 0)的值域是 ______________. 1 2x 10.二次函数 y=-x 2+4x 的最大值 11. 函数 y=2x 2-3x+5 在[-2 ,2] 上的最大值和最小值 。 12.函数 y= -x 2 -4x+1 在 [-1 , 3] 上的最大值和最小值 13.函数 f ( x ) = 1 的最大值是 y 2x 2 2x 5 的最大值是 1 x(1 x) x 2 x 1 14. 已知 f ( x ) =x 2- 6x+8, x ∈[ 1,a ]并且 f ( x )的最小值为 f ( a ),则 a 的取值范围是 15.函数 y= –x 2–2ax(0 x 1)的最大值是 a 2,那么实数 a 的取值范围是 16.已知 f ( x )=x 2-2x+3 ,在闭区间[ 0, m ]上有最大值 3,最小值 2,则 m 的取值范围是 17. 若 f(x)= x 2 +ax+3 在区间 [1,4] 有最大值 10,则 a 的值为: 18.若函数 y=x 2 3x 4 的定义域为 [0,m], 值域为 [ 25/4, 4],则 m 的取值范围是 19. 已知 f ( x ) =-x 2+2x+3 , x ∈[ 0, 4] ,若 f ( x ) m 恒成立, m 范围是 。 二、解答题 20.已知二次函数 f ( x) a x 2 2ax 1 在 x 3,2 上有最大值 4,求实数 a 的值。 21.已知二次函数 f ( x) x 2 2ax 1 a 在 x 0,1 上有最大值 2,求 a 的值。

导数与极值、最值练习题.doc

三、知识新授 (一)函数极值的概念 (二)函数极值的求法:(1)考虑函数的定义域并求f'(x); (2)解方程f'(x)=0,得方程的根x 0(可能不止一个) (3)如果在x 0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x 0)是 极大值;反之,那么f(x 0)是极大值 题型一 图像问题 1、函数()f x 的导函数图象如下图所示,则函数()f x 在图示区间上( ) (第二题图) A .无极大值点,有四个极小值点 B .有三个极大值点,两个极小值点 C .有两个极大值点,两个极小值点 D .有四个极大值点,无极小值点 2、函数()f x 的定义域为开区间()a b ,,导函数()f x '在()a b ,内的图象如图所示,则函数()f x 在 开区间()a b ,内有极小值点( ) A .1个 B .2个 C .3个 D .4个 3、若函数2 ()f x x bx c =++的图象的顶点在第四象限,则函数()f x '的图象可能为( ) D. C. B. A. x y O x y O x y O O y x 4、设()f x '是函数()f x 的导函数,()y f x '=的图象如下图所示,则()y f x =的图象可能是( ) -1 2 1O y x D. C. B. A. 12121 221x y O x y O x y O O y x b a O y x O y x

5、已知函数 () f x 的导函数 () f x '的图象如右图所示,那么函数()f x 的图象最有可能的是( ) -1 1 f '(x ) y x O 6、()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是( ) 2y x O 222 2 D. C. B. A. O x y O x y y x O O x y 7、如果函数 () y f x =的图象如图,那么导函数()y f x '=的图象可能是( ) y y y x x x y x D C B A x y y=f(x)

函数大小比较

㈠ 与幂函数αx y =有关的大小比较 ⑴ 两个幂函数的指数相同(底数为负数时须先化为正数),利用幂函数的单调性判定大小; ⑵ 两个幂函数的指数不同,能化为同指数的,利用幂函数的单调性判定大小,不能化为同指数的,利用中间数0来比较大小; 幂函数αx y =的性质: ⑴ 在),0(∞上,0>α时是增函数,0<α时是减函数: ⑵ 1>x 时,指数大的图象在上方,10<α时,图象过(0,0),(1,1),0<α时,图象过(1,1)。 ㈡ 与指数函数x a y =有关的大小比较 ⑴ 两个指数函数的底数相同指数不同时,利用指数函数的单调性判定大小; ⑵ 两个指数函数的底数不同指数相同时,可根据图象与底数的关系进行比较; ⑶ 两个指数函数的底数和指数都不同时,可引进第3个数(如0,1)分别与之比较,通过常数传递比较大小。 指数函数的性质: ⑴ 1>a 时,x a y =是增函数,10<a 时,a 越大图象上升越快,10<a 时,x y a log =是增函数,10<a 时,010,01?>y x y x ,10<?<<y x y x ; ⑶ x y a log =的图象过(1,0)点,),0(,∞∈∈x R y 。 对数的性质:N a a N a a a ===log ,1log ,01log ,零和负数没有对数。 对数运算公式: ⑴ N M MN a a a log log )(log += ⑵ N M N M a a a log log )(log -= ⑶ M n M a n a log log = ⑷ 换底公式:)1,0,1,0(,log log log ≠>≠>=c c a a a N N a a a ⑸ a b b a log 1log = ⑹ )1,0,1,0(,log log ≠>≠>=b b a a b n m M a m a n

利用函数单调性比大小-第二章总结

【第二章计算题类型】 计算: (1)2lg2+lg31+12lg0.36+13lg8; (2)23×612×332. (3)lg2·lg 52 +lg0.2·lg40. (利用函数单调性比大小)★常考类型★ 1-1.设120.7a =,120.8b =,c 3log 0.7=,则( ). A. c > B. b a c >> C. c a b >> D. b c a >> 1-3.设a =log 132,b =log 13 3,c =? ????120.3,则( ) A .a成立的x 的取值范围是( ). A. 3(,)2+∞ B. 2(,)3+∞ C. 1(,)3+∞ D.1 (,)3 -+∞ 1-5.设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与 最小值之差为1 2,则a =( ). B. 2 C. D. 4 1-6. 函数y=log a x 在[2,4]上的最大值比最小值大1,求a 的值。 1-7. 若a>0且a ≠1,且log a 4 3<1,则实数a 的取值范围是( )。 A.043或01 1-8. 若实数a 满足log a 2>1,则a 的取值范围为________. 【恒过定点问题★常考类型★】 2-1.函数y =a x +1(a >0且a ≠1)的图象必经过点( ). A.(0,1) B. (1,0) C.(2,1) D.(0,2) 2-2. 若a >0且a ≠1,则函数y =a x -1-1的图像一定过点___。 2-3.函数y= log a (x+1)-2(a>0,且a≠1)的图象恒过定点 。 2-4. 已知函数y =3+log a (2x +3)(a >0且a ≠1)的图象必经 过点P ,则P 点坐标________. 2-5. 函数f (x )=log a (3x -2)+2(a >0且a ≠1)恒过定点_______。 (幂函数的解析式求值)★常考类型★ 3-1.如果幂函数()f x x α=的图象经过点,则(4)f 的值等于( ). A. 16 B. 2 C. 116 D. 12 3-2. 幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 (指数型函数应用题——人口计算) 4-1. 世界人口已超过56亿,若千分之一的年增长率,则两年增长的人口可相当于一个( ).

函数极值最值练习题

练习题 1. 已知a 是实数,函数()()2f x x x a =-. ⑴若(1)3f '=,求a 的值及曲线()y f x =在点()()11f ,处的切线方程; ⑵求()f x 的极值. ⑶求()f x 在区间[]02,上的最大值. 2. 已知a 为实数,2()(4)()f x x x a =--. ⑴求导数()f x '; ⑵若(1)0f '-=,求()f x 在[22]-, 上的最大值和最小值; ⑶若()f x 在(2)-∞-, 和(2)+∞,上都是递增的,求a 的取值范围 3. 已知函数()2()ln 12 ax f x x a x =+-+,a ∈R ,且0a ≥. ⑴若(2)1f '=,求a 的值; ⑵当0a =时,求函数()f x 的最大值; ⑶求函数()f x 的单调递增区间.

4. 已知函数3221()(1)(,)3 f x x ax a x b a b =-+-+∈R ⑴若1x =为()f x 的极值点,求a 的值; ⑵若()y f x =的图象在点(1,(1))f 处的切线方程为30x y +-=,求()f x 在区间 [2,4]-上的最大值; ⑶当0a ≠时,若()f x 在区间(1,1)-上不单调,求a 的取值范围. 5. 设0a >,函数2()|ln 1|f x x a x =+-. ⑴ 当1a =时,求曲线()y f x =在1x =处的切线方程; ⑵ 当3a =时,求函数()f x 的单调性; ⑶ 当4a =,[1)x ∈+∞, 时,求函数()f x 的最小值. 6. 已知()ln()[0)f x ax x x e =--∈-, ,. ⑴ 当1a =-时,讨论()f x 的单调性、极值; ⑵ 是否存在实数a ,使()f x 的最小值是3,如果存在,求出a 的值;若不存在,请说明理由.

一次分式函数最值问题

一次分式函数最值问题Last revision on 21 December 2020

拆分函数解析式结构,巧解问题 --------------函数()ax b f x cx d +=+值域(最值)问题的解法 在高中,初学函数之时,我们接触的具体函数并不多。前面我们已经给出了一元二次函数值域(最值)的求法步骤。除此,还有一类()(0)ax b f x c cx d +=≠+函数也很常见,它也是今后解决其他复杂函数值域(最值)问题的基础。此类函数看似生疏,而实际这类函数的图像,就是我们初中学过的反比例函数图像。 此类问题有三种类型,一种是函数式子决定定义域,不额外附加函数定义域;另一种是附加定义域。还有一种是可转化为()(0)ax b f x c cx d += ≠+型的函数,此类随着学习的深入,再行和大家见面。 下面我们以具体实例,说明如何依据函数解析式的结构特征,选择适当的方法步骤解决问题。 【例题1】:求函数21()3 x f x x +=-的值域; 【思路切入】:从函数结构可以得出,函数定义域由分式决定,为 {|3}x x R x ∈≠且,此时,将函数解析式的结构进行拆分变换,不难得出反比例函数结构,如此,得到解法程序: 1、将函数分解为反比例的结构; 2、根据反比例结构特性,或者利用图像,或者利用数式属性得到函数值域。 【解析】:原函数可化为212677()2333 x x f x x x x +-+===+---, 7303 x x ≠≠-且 ,2y ∴≠,函数()f x 值域为{|2}y y R y ∈≠且; 【例题2】:求函数21(),(2,4]1x f x x x -=∈-的值域;

函数值的大小比较

二次函数、反比例函数比较大小 一、二次函数的大小比较方法: 1、特殊值代入法: 直接根据题目要求,分别代入具体的数值,再比较大小。 2、利用函数的增减性: 当各点都在对称轴的一侧时,利用函数的增减性进行比较。 3、计算各点到对称轴的距离,结合抛物线的开口方向比较大小:(本法适用于各点在对称轴同侧和异侧的大小比较,尤其是异侧。) (1)当抛物线开口向上时(即a>0时),离对称轴距离越远,函数值越大,反之越小。 当抛物线开口向上与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1<y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1>y 2 【推理:由x 2-(a b 2- )>a b 2--x 1得x 2+x 1>a b -得221x x +>a b 2-;即x 2离对称轴距离较远;由x 2-(a b 2- )<a b 2--x 1,得x 2+x 1<a b -,得221x x +<a b 2-,即x 1离对称轴距离较远.】 (2)当抛物线开口向下时(即a <0时),离对称轴距离越远,函数值越小,反之越大。 当抛物线开口向下与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1>y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1<y 2,推理同(1) 4、图象法: 结合具体图象,利用y 轴“上大下小”的特点比较具体各点的函数值的大小。(第一、二象限的函数值总是大于第三、四象限的函数值) 5、移点法: 利用抛物线的对称性将各点转化到对称轴的同一侧,再利用函数的增减性比较大小。