高考总复习 函数与方程思想

高考总复习  函数与方程思想
高考总复习  函数与方程思想

第39练 函数与方程思想

[思想方法解读] 1.函数与方程思想的含义

(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.

(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.

2.函数与方程的思想在解题中的应用

(1)函数与不等式的相互转化,对函数y =f (x ),当y >0时,就化为不等式f (x )>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.

(2)数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.

(3)解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.

(4)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.

常考题型精析

题型一 利用函数与方程思想解决图象交点或方程根等问题

例1 已知函数f (x )=-x 2

+2e x +t -1,g (x )=x +e 2

x

(x >0),其中e 表示自然对数的底数.

(1)若g (x )=m 有实根,求m 的取值范围;

(2)确定t 的取值范围,使得g (x )-f (x )=0有两个相异实根.

解 (1)方法一 因为x >0,所以g (x )=x +e 2

x ≥2e 2=2e ,等号成立的条件是x =e.

故g (x )的值域是[2e ,+∞),

因而只需m ≥2e ,g (x )=m 就有实根.

方法二 作出g (x )=x +e 2

x (x >0)的图象,如图所示,观察图象可知g (x )

的最小值为2e ,因此要使g (x )=m 有实根,则只需m ≥2e. 方法三 由g (x )=m , 得x 2-mx +e 2=0,

故?????

m 2>0,Δ=m 2-4e 2≥0,

等价于?????

m >0,m ≥2e 或m ≤-2e ,

故m ≥2e.

(2)若g (x )-f (x )=0有两个相异的实根,则函数g (x )与f (x )的图象有两个不同的交点. 因为f (x )=-x 2+2e x +t -1=-(x -e)2+t -1+e 2,所以函数f (x )图象的对称轴为直线x =e ,

开口向下,最大值为t -1+e 2.

由题意,作出g (x )=x +e 2

x (x >0)及f (x )=-x 2+2e x +t -1的大致图象,

如图所示.

故当t -1+e 2>2e ,即t >-e 2+2e +1时,g (x )与f (x )的图象有两个交点,即g (x )-f (x )=0有两个相异实根.

所以t 的取值范围是(-e 2+2e +1,+∞).

点评 函数图象的交点、函数零点、方程的根三者之间可互相转化,解题的宗旨就是函数与方程的思想.方程的根可转化为函数零点、函数图象的交点,反之函数零点、函数图象交点个数问题也可转化为方程根的问题.

变式训练1 已知定义在R 上的函数f (x )满足:f (x )=?

????

x 2+2,x ∈[0,1),

2-x 2

,x ∈[-1,0),且f (x +2)=f (x ),g (x )=2x +5

x +2,则方程f (x )=g (x )在区间[-5,1]上的所有实根之和为( )

A .-5

B .-6

C .-7

D .-8

答案 C

解析 g (x )=2x +5x +2=2(x +2)+1x +2=2+1

x +2,由题意知函数f (x )的周期为2,则函数f (x ),g (x )

在区间[-5,1]上的图象如图所示:

由图象知f (x )、g (x )有三个交点,故方程f (x )=g (x ),在x ∈[-5,1]上有三个根x A 、x B 、x C ,x B =-3,x A +x C

2=-2,x A +x C =-4,∴x A +x B +x C =-7.

题型二 函数与方程思想在不等式中的应用

例2 已知函数f (x )=ln x -14x +3

4x -1,g (x )=-x 2+2bx -4,若对任意x 1∈(0,2),x 2∈[1,2],

不等式f (x 1)≥g (x 2)恒成立,则实数b 的取值范围为____________. 答案 ?

???

-∞,142

解析 问题等价于f (x )min ≥g (x )max . f (x )=ln x -14x +3

4x

-1,

所以f ′(x )=1x -14-34x 2=4x -x 2

-3

4x 2

令f ′(x )>0得x 2-4x +3<0,解得1

故函数f (x )的单调递增区间是(1,3),单调递减区间是(0,1)和(3,+∞),故在区间(0,2)上,x =1是函数的极小值点,这个极小值点是唯一的,故也是最小值点,所以f (x )min =f (1)=-1

2.

由于函数g (x )=-x 2+2bx -4,x ∈[1,2]. 当b <1时,g (x )max =g (1)=2b -5; 当1≤b ≤2时;g (x )max =g (b )=b 2-4; 当b >2时,g (x )max =g (2)=4b -8. 故问题等价于

????? b <1,-12≥2b -5或????? 1≤b ≤2,-12≥b 2

-4或?????

b >2,-12≥4b -8.

解第一个不等式组得b <1,解第二个不等式组得1≤b ≤14

2

,第三个不等式组无解. 综上所述,b 的取值范围是?

??

?

-∞,

142. 点评 不等式恒成立问题的处理方法

在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题.同时要注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更明朗化.一般地,已知存在范围的量为变量,而待求范围的量为参数.

变式训练2 设f (x )=ln x +x -1. 证明:(1)当x >1时,f (x )<3

2(x -1);

(2)当1

x +5

.

证明 (1)记g (x )=ln x +x -1-3

2(x -1),

则当x >1时,g ′(x )=1x +12x -3

2

<0.

又g (1)=0,所以有g (x )<0,即f (x )<3

2(x -1).

(2)记h (x )=(x +5)f (x )-9(x -1), 则当1

由(1),得h ′(x )=f (x )+(x +5)f ′(x )-9<32(x -1)+(x +5)????1x +12x -9=1

2x [3x (x -1)+(x +5)(2

+x )-18x ]<12x [3x (x -1)+(x +5)(2+x 2+1

2)-18x ]

=1

4x (7x 2-32x +25)<0. 因此h (x )在(1,3)内单调递减.

又h (1)=0,所以h (x )<0,即f (x )<9(x -1)

x +5

.

题型三 函数与方程思想在数列中的应用

例3 已知数列{a n }是首项为2,各项均为正数的等差数列,a 2,a 3,a 4+1成等比数列,设b n =1S n +1+1S n +2+…+1S 2n (其中S n 是数列{a n }的前n 项和),若对任意n ∈N *,不等式b n ≤k 恒

成立,求实数k 的最小值. 解 因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0, 所以(2+2d )2=(2+d )(3+3d ), 得d =2或d =-1(舍去), 所以数列{a n }的通项公式a n =2n . 因为S n =n (n +1), b n =1S n +1+1S n +2+…+1

S 2n

1

(n +1)(n +2)+1(n +2)(n +3)+…+1

2n (2n +1)

1

n +1-1n +2+1n +2-1n +3+…+12n -1

2n +1

1n +1-12n +1=n

2n 2+3n +1 =

1

2n +1n +3

. 令f (x )=2x +1

x

(x ≥1),

则f ′(x )=2-1

x 2,当x ≥1时,f ′(x )>0恒成立,

所以f (x )在[1,+∞)上是增函数, 故当x =1时,[f (x )]min =f (1)=3, 即当n =1时,(b n )max =1

6

要使对任意的正整数n ,不等式b n ≤k 恒成立, 则须使k ≥(b n )max =16,所以实数k 的最小值为1

6

.

点评 数列问题函数(方程)化法

数列问题函数(方程)化法与形式结构函数(方程)化法类似,但要注意数列问题中n 的取值范围为正整数,涉及的函数具有离散性特点,其一般解题步骤: 第一步:分析数列式子的结构特征.

第二步:根据结构特征构造“特征”函数(方程),转化问题形式.

第三步:研究函数性质.结合解决问题的需要研究函数(方程)的相关性质,主要涉及函数单调性与最值、值域问题的研究.

第四步:回归问题.结合对函数(方程)相关性质的研究,回归问题.

变式训练3 已知f (x )=x 2-4x +4,f 1(x )=f (x ),f 2(x )=f (f 1(x )),…,f n (x )=f (f n -1(x )),函数y =f n (x )的零点个数记为a n ,则a n 等于( ) A .2n B .2n -

1

C .2n +

1

D .2n 或2n -

1

答案 B

解析 f 1(x )=x 2-4x +4=(x -2)2,有1个零点2,由f 2(x )=0可得f 1(x )=2,则x =2+2或x =2-2,即y =f 2(x )有2个零点,由f 3(x )=0可得f 2(x )=2-2或2+2,则(x -2)2=2-2或(x -2)2=2+2,即y =f 3(x )有4个零点,以此类推可知,y =f n (x )的零点个数a n =2n -1.故选B.

题型四 函数与方程思想在解析几何中的应用

例4 椭圆C 的中心为坐标原点O ,焦点在y 轴上,短轴长为2,离心率为2

2

,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=3PB →. (1)求椭圆C 的方程; (2)求m 的取值范围.

解 (1)设椭圆C 的方程为y 2a 2+x 2

b 2=1 (a >b >0),

设c >0,c 2=a 2-b 2,

由题意,知2b =2,c a =22,所以a =1,b =c =2

2.

故椭圆C 的方程为y 2

+x 2

12

=1,即y 2+2x 2=1.

(2)设直线l 的方程为y =kx +m (k ≠0),l 与椭圆C 的交点坐标为A (x 1,y 1),B (x 2,y 2),

由?????

y =kx +m ,2x 2+y 2=1,

得(k 2+2)x 2+2kmx +(m 2-1)=0,

Δ=(2km )2-4(k 2+2)(m 2-1)=4(k 2-2m 2+2)>0,(*) x 1+x 2=-2km k 2+2,x 1x 2=m 2-1k 2+2.

因为AP →=3PB →

,所以-x 1=3x 2,

所以?????

x 1+x 2=-2x 2,x 1x 2=-3x 22.则3(x 1+x 2)2+4x 1x 2=0,

即3·? ??

??-2km k 2+22+4·m 2-1k 2+2=0,

整理得4k 2m 2+2m 2-k 2-2=0, 即k 2(4m 2-1)+2m 2-2=0, 当m 2=1

4时,上式不成立;

当m 2

≠14时,k 2

=2-2m 24m 2-1

由(*)式,得k 2>2m 2-2,又k ≠0, 所以k 2

=2-2m 2

4m 2-1

>0,

解得-1

2

即所求m 的取值范围为?

???-1,-12∪????1

2,1. 点评 利用判别式法研究圆锥曲线中的范围问题的步骤 第一步:联立方程. 第二步:求解判别式Δ.

第三步:代换.利用题设条件和圆锥曲线的几何性质,得到所求目标参数和判别式不等式中的参数的一个等量关系,将其代换.

第四步:下结论.将上述等量代换式代入Δ>0或Δ≥0中,即可求出目标参数的取值范围. 第五步:回顾反思.在研究直线与圆锥曲线的位置关系问题时,无论题目中有没有涉及求参数的取值范围,都不能忽视了判别式对某些量的制约,这是求解这类问题的关键环节. 变式训练4 如图所示,设椭圆C 1:x 25+y 2

4=1的左,右焦点分别是F 1,F 2,下顶点为A ,

线段OA 的中点为B (O 为坐标原点),若抛物线C 2:y =mx 2-n (m >0,n >0)与y 轴的交点为B ,且经过F 1,F 2两点.

(1)求抛物线C 2的方程;

(2)设M ????0,-4

5,N 为抛物线C 2上的一动点,过点N 作抛物线C 2的切线交椭圆C 1于P ,Q 两点,求△MPQ 的面积的最大值.

解 (1)由题意可知A (0,-2),则B (0,-1),由抛物线y =mx 2-n 过点B ,可知n =1. 又F 1(-1,0),F 2(1,0),抛物线y =mx 2-n 经过F 1,F 2两点,即m -n =0,所以m =1. 所以抛物线C 2的方程为y =x 2-1.

(2)设N (t ,t 2-1),由y ′=2x ,知直线PQ 的方程为y -(t 2-1)=2t (x -t ),即y =2tx -t 2-1. 将其代入椭圆方程,整理得4(1+5t 2)x 2-20t (t 2+1)x +5(t 2+1)2-20=0. Δ=400t 2(t 2+1)2-80(5t 2+1)[(t 2+1)2-4]=80(-t 4+182+3), 设P (x 1,y 1),Q (x 2,y 2),

则x 1+x 2=5t (t 2+1)1+5t 2,x 1x 2=5(t 2+1)2-20

4(1+5t 2

), 故|PQ |=(y 1-y 2)2+(x 1-x 2)2

=1+4t 2·|x 1-x 2|

1+4t 2·(x 1+x 2)2-4x 1x 2

=5·1+4t 2·-t 4+18t 2+3

1+5t 2

.

设点M 到直线PQ 的距离为d , 则d =|45-t 2-1|1+4t 2=t 2+151+4t 2

.

所以S △MPQ =1

2

|PQ |·d

=12·5·1+4t 2

·-t 4

+18t 2

+31+5t 2·t 2+

15

1+4t

2

=5

10

·-t 4+18t 2+3 =5

10·-(t 2-9)2+84 ≤5

10×84 =

1055

. 当且仅当t =±3时取“=”,经检验此时Δ>0,满足题意. 综上,可知△MPQ 的面积的最大值为

105

5

. 高考题型精练

1.若2x +5y ≤2-

y +5-

x ,则有( )

A .x +y ≥0

B .x +y ≤0

C .x -y ≤0

D .x -y ≥0

答案 B

解析 把不等式变形为2x -5-x ≤2-y -5y ,构造函数y =2x -5-x ,其为R 上的增函数,所以有x ≤-y ,即x +y ≤0.

2.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( )

A .[15,20]

B .[12,25]

C .[10,30]

D .[20,30] 答案 C

解析 如图,△ADE ∽△ABC ,设矩形的另一边长为y ,则S △ADE S △ABC =? ????40-y 402

=???

?x 402,所以y =40-x ,由题意知xy ≥300,即x (40-x )≥300,整理得x 2-40x +300≤0,解不等式得10≤x ≤30.

3.满足条件AB =2,AC =2BC 的三角形ABC 的面积的最大值是________. 答案 2 2

解析 可设BC =x ,则AC =2x , 根据面积公式得S △ABC =x

1-cos 2B ,

由余弦定理计算得cos B =4-x 24x ,

代入上式得S △ABC =x

1-(4-x 24x

)2

128-(x 2-12)2

16

.

由?????

2x +x >2,x +2>2x ,

得22-2

4.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么,不等式f (x +2)<5的解集是________. 答案 {x |-7

解析 令x <0,则-x >0,∵x ≥0时,f (x )=x 2-4x ,∴f (-x )=(-x )2-4(-x )=x 2+4x ,又f (x )

为偶函数,∴f (-x )=f (x ),∴x <0时,f (x )=x 2+4x ,故有f (x )=?????

x 2-4x ,x ≥0,x 2

+4x ,x <0.再求f (x )<5

的解集,由????? x ≥0,x 2-4x <5,得0≤x <5;由?????

x <0,

x 2+4x <5,

得-5

5,5).由于f (x )向左平移两个单位即得f (x +2),故f (x +2)<5的解集为{x |-7

2014届高三数学一轮必备“高频题型全掌握”21.数学方法:函数与方程思想

- 1 - 【精选三年经典试题(数学)】2014届高三全程必备《高频题型全掌 握系列》21.数学方法:函数与方程思想 1.(2013.厦门联考)二次函数f (x )=ax 2+bx +c ,a 为正整数,c ≥1,a +b +c ≥1,方程ax 2+bx +c =0有两个小于1的不等正根,则a 的最小值是 ( ). A .3 B .4 C .5 D .6 解析 由题意得f (0)=c ≥1,f (1)=a +b +c ≥1.当a 越大,y =f (x )的开口越小,当a 越小,y =f (x )的开口越大,而y =f (x )的开口最大时,y =f (x )过(0,1),(1,1),则c =1,a +b +c =1.a +b = 0,a =-b ,-b 2a =12 ,又b 2-4ac >0,a (a -4)>0,a >4,由于a 为正整数,即a 的最小值为5. 答案 C 2.(2013·烟台月考)已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ). A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0 D .2x -y +5=0 解析 由题意知,M 为PQ 中点,设Q (x ,y ),则P 为(-2-x ,4-y ),代入2x -y +3=0,得2x -y +5=0. 答案 D 3.(2013·沈阳二模)在平行四边形ABCD 中,∠BAD =60°,AD =2AB ,若P 是平面ABCD 内一 点,且满足:xAB →+yAD →+PA →=0(x ,y ∈R ).则当点P 在以A 为圆心,33 |BD →|为半径的圆上时,实数x ,y 应满足关系式为 ( ). A .4x 2+y 2+2xy =1 B .4x 2+y 2-2xy =1 C .x 2+4y 2-2xy =1 D .x 2+4y 2 +2xy =1 解析 如图,以A 为原点建立平面直角坐标系,设AD =2.据题意,得 AB =1,∠ABD =90°,BD = 3.∴B 、D 的坐标分别为(1,0)、(1,3), ∴AB →=(1,0),AD →=(1,3).设点P 的坐标为(m ,n ),即AP →=(m , n ),则由xAB →+yAD →+PA →=0,得:AP →=xAB →+yAD →,∴??? m =x +y ,n =3y . 据题意,m 2+n 2=1,∴x 2+4y 2+2xy =1. 答案 D

高中数学函数知识点总结

高中数学函数知识点总结 (1)高中函数公式的变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 (2)一次函数:①若两个变量 ,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。②当 =0时,称是的正比例函数。(3)高中函数的一次函数的图象及性质 ①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数 =的图象是经过原点的一条直线。 ③在一次函数中,当 0, O,则经2、3、4象限;当 0, 0时,则经1、 2、4象限;当 0, 0时,则经1、 3、4象限;当 0, 0时,则经1、2、3象限。 ④当 0时,的值随值的增大而增大,当 0时,的值随值的增大而减少。(4)高中函数的二次函数: ①一般式: ( ),对称轴是 顶点是; ②顶点式: ( ),对称轴是顶点是; ③交点式: ( ),其中(),()是抛物线与x轴的交点 (5)高中函数的二次函数的性质 ①函数的图象关于直线对称。 ②时,在对称轴()左侧,值随值的增大而减少;在对称轴()右侧;的值随值的增大而增大。当时,取得最小值

③时,在对称轴()左侧,值随值的增大而增大;在对称轴()右侧;的值随值的增大而减少。当时,取得最大值 9 高中函数的图形的对称 (1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。 (2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

高考数学函数与方程的思想方法

高考数学函数与方程的 思想方法 Last revised by LE LE in 2021

第4讲 函数与方程的思想方法 一、知识整合 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究。 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系. 3.(1) 函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点。 (2) 函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。 (3) 数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。 (4) 函数f(x)=n b ax )( (n ∈N *)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。 (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元

高三数学精品教案:专题1:函数专题(理科)

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关

高考数学重点难点3函数与方程思想大全

重点难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. ●重点难点磁场 1.(★★★★★)关于x的不等式2?32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为. 2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0) (1)若a=1,b=–2时,求f(x)的不动点; (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围; (3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值. ●案例探究 [例1]已知函数f(x)=logm (1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明; (2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由. 命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目. 知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根. 技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题. 解:(1)x<–3或x>3. ∵f(x)定义域为[α,β],∴α>3 设β≥x1>x2≥α,有 当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数. (2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)] ∵0<m<1, f(x)为减函数. ∴ 即 即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根 ∴∴0<m< 故当0<m<时,满足题意条件的m存在. [例2]已知函数f(x)=x2–(m+1)x+m(m∈R) (1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5; (2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3; (3)在(2)的条件下,若函数f(sinα)的最大值是8,求m. 命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属

2011年高考理科数学函数、导函数试题汇编

2011年高考理科数学函数、导函数试题汇编 一、选择题: 1. 【2011安徽理】(3)设)(x f 是定义在R 上的奇函数,当0≤x 时,x x x f -=22)(,则=)1(f (A)-3 (B)-1 (C) 1 (D)3 2.【2011安徽理】(10)函数n m x ax x f )1()(-=在区间[0,1]上的图像如图所示,则m,n 的值可能是 (A) m=1,n=1 (B) m=1,n=2 (C) m=2,n=1 (D) m=3,n=1 3. 【2011北京理】6.根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为 ??? ??? ?≥<=A x A c A x x c x f ,, ,)((A ,C 为常数)。已知工人组装第4件产品用时30分钟,组装第A 件 产品用时15分钟,那么C 和A 的值分别是 A .75,25 B .75,16 C .60,25 D .60,16 4.【2011广东理】4. 设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列 结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数 5.【2011湖北理】6.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()222f x g x a a -+=-+(a >0,且0a ≠).若()2g a =,则()2f = A .2 B . 15 4 C . 17 4 D .2 a

6.【2011湖南理】8.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( ) A .1 B . 12 C D 7.【2011江西理】3 .若()f x = ,则()f x 的定义域为 A .(,)1-02 B .(,]1-02 C .(,)1 - +∞2 D .(,)0+∞ 8.【2011江西理】4.若()ln f x x x x 2=-2-4,则'()f x >0的解集为 A .(,)0+∞ B .-+10?2∞(,)(,) C .(,)2+∞ D .(,)-10 9.【2011辽宁理】9.设函数? ??>-≤=-1,log 11 ,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是 A .1[-,2] B .[0,2] C .[1,+∞] D .[0,+∞] 10.【2011辽宁理】11.函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为 A .(1-,1) B .(1-,+∞) C .(∞-,1-) D .(∞-,+∞) 11.【2011全国理】2 .函数0)y x =≥的反函数为 A .2()4x y x R =∈ B .2 (0)4 x y x =≥ C .24y x =()x R ∈ D .24(0)y x x =≥ 12. 【2011全国理】9.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则 5()2f -= A .-1 2 B .1 4 - C . 14 D . 12

高考数学必修一函数知识点总结

高考数学必修一函数知识点总结 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=fx,x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{fx|x∈A}叫做函数的值域. 注意:2如果只给出解析式y=fx,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式. 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:1分式的分母不等于零;2偶次方根的被开方数不小于零;3对数式的真数必须大于零;4指数、对数式的底必须大于零且不等于1.5如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.6指数为零底不可以等于零6实际问题中的函数的定义域还要保证实际问题有意义. 又注意:求出不等式组的解集即为函数的定义域。 构成函数的三要素:定义域、对应关系和值域 再注意:1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等或为同一函数2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致两点必须同时具备 见课本21页相关例2 1、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.2.应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。 4.函数图象知识归纳 1定义:在平面直角坐标系中,以函数y=fx,x∈A中的x为横坐标,函数值y为纵坐标的点Px,y的集合C,叫做函数y=fx,x∈A的图象. C上每一点的坐标x,y均满足函数关系y=fx,反过来,以满足y=fx的每一组有序实数对x、y为坐标的点x,y,均在C上.即记为C={Px,y|y=fx,x∈A} 图象C一般的是一条光滑的连续曲线或直线,也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。 2画法

高考理科数学常用公式大全

高考理科常用数学公式总结 1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 2.U U A B A A B B A B C B C A =?=????U A C B ?=ΦU C A B R ?= 3.()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式 2()()(0)f x a x h k a =-+≠;③零点式12()()()(0)f x a x x x x a =--≠. 5.设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 6.函数()y f x =的图象的对称性:①函数()y f x =的图象关于直线x a =对称 ()()f a x f a x ?+=-(2)()f a x f x ?-=.②函数()y f x =的图象关于直线 2 a b x +=对称()()f a mx f b mx ?+=-()()f a b mx f mx ?+-=. 7.两个函数图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线 0x =(即y 轴)对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直线 2a b x m +=对称.③函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称. 8.分数指数幂 m n a =(0,,a m n N *>∈,且1n >). 1 m n m n a a -=(0,,a m n N *>∈,且1n >). 9. log (0,1,0)b a N b a N a a N =?=>≠>. 10.对数的换底公式 log log log m a m N N a =.推论 log log m n a a n b b m =. 11.11, 1,2 n n n s n a s s n -=?=?-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++). 12.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈; 其前n 项和公式 1()2n n n a a s += 1(1)2n n na d -=+211 ()22 d n a d n =+-. 13.等比数列的通项公式1*11()n n n a a a q q n N q -==?∈;

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

(word完整版)高三数学专题复习(函数与方程练习题)

高三数学专题复习(函数与方程练习题) 一、选择题 1、定义域为R 的函数y =f (x)的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A 、[2a ,a +b ] B 、[a ,b ] C 、[0,b -a ] D 、[-a ,a +b ] 2、若y =f (x)的定义域为D ,且为单调函数,[a ,b ]D ,(a -b )·f (a)·f (b)>0,则下列命题正确为( ) A 、若f (x)=0,则x ∈(a ,b ) B 、若f (x)>0,则x ? (a ,b) C 、若x ∈(a ,b ),则f (x)=0 D 、若f (x)<0,则x ? (a ,b ) 3、设点P 为曲线y =x 3-3 x +3 2 上的任意一点,P 点处切线倾斜角为α,则α的取值范围为( ) A 、[32π,π] B 、(2π,π) C 、[0,2 π]∪(65π,π) D 、[0,2 π ]∪[32π,π) 4、设函数f (x)是定义R 上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=1 3 2+-m m ,则m 的取 值范围为( ) A 、m < 32 B 、m <32且m ≠-1 C 、-1<m <32 D 、m >3 2 或m <-1 5、定义在R 上的函数f (x)在(-∞,2)上是增函数,且f (x +2)的图象关于x =0对称,则( ) A 、f (-1)<f (3) B 、f (0)>f (3) C 、f (-1)=f (3) D 、f (0)=f (3) 6、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为( ) A 、10 B 、15 C 、5 D 、无法确定 7、函数y =log 2 1 (x 2+kx +2)的值域为R ,则k 的范围为( ) A 、[22 ,+∞] B 、(-∞,-22)∪[22,+∞]

全国高考理科数学试题分类汇编:函数

2013年全国高考理科数学试题分类汇编2:函数 一、选择题 1 .(2013年高考江西卷(理))函数 的定义域为 A.(0,1) B.[0,1) C.(0,1] D.[0,1] 【答案】D 2 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若 a b c <<,则函数 ()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( ) A.(),a b 和(),b c 内 B.(),a -∞和(),a b 内 C.(),b c 和(),c +∞内 D.(),a -∞和(),c +∞内 【答案】A 3 .(2013年上海市春季高考数学试卷(含答案))函数 1 2 ()f x x - =的大致图像是( ) 【答案】A 4 .(2013年高考四川卷(理)) 设函数 ()f x =(a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( ) (A)[1,]e (B)1 [,-11]e -, (C)[1,1]e + (D)1 [-1,1]e e -+ 【答案】A 5 .(2013年高考新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ?-+≤?+>? ,若|()f x |≥ax ,则a 的取值范围是 A.(,0]-∞ B.(,1]-∞ C.[2,1]- D.[2,0]- 【答案】D 6 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))函数 ()()21=log 10f x x x ?? +> ??? 的反函数()1=f x -

高中数学函数与方程知识点总结 经典例题及解析 高考真题及答案

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有 1个零点?0)(=x f 有两个相等实根; 0?

高三数学一轮复习必备精品6:函数与方程 【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】

第6讲 函数与方程 备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】 一.【课标要求】 1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系; 2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。 二.【命题走向】 函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。高考试题中有近一半的试题与这三个“二次”问题有关 预计2010年高考对本讲的要求是:以二分法为重点、以二次函数为载体、以考察函数与方程的关系为目标来考察学生的能力 (1)题型可为选择、填空和解答; (2)高考试题中可能出现复合了函数性质与函数零点的综合题,同时考察函数方程的思想。 三.【要点精讲】 1.方程的根与函数的零点 (1)函数零点 概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。 函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点。 二次函数)0(2 ≠++=a c bx ax y 的零点: 1)△>0,方程02 =++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点; 2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点; 3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。 零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有 0)()(

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

高考数学函数知识点汇总2020

高考数学函数知识点汇总2020 高中数学的知识点有很多,高考数学要想那高分就对知识点进行总结,下面就是小编给大家带来的高考数学知识点汇总2020,希望大家喜欢! 集合 一、集合概念 (1)集合中元素的特征:确定性,互异性,无序性。 (2)集合与元素的关系用符号=表示。 (3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。 (4)集合的表示法:列举法,描述法,韦恩图。 (5)空集是指不含任何元素的集合。 空集是任何集合的子集,是任何非空集合的真子集。 函数 一、映射与函数: (1)映射的概念:(2)一一映射:(3)函数的概念: 二、函数的三要素: 相同函数的判断方法:①对应法则;②定义域(两点必须同时具备) (1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法: (2)函数定义域的求法: ①含参问题的定义域要分类讨论; ②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。 (3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式; ②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;

⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 五、反函数: (1)定义: (2)函数存在反函数的条件: (3)互为反函数的定义域与值域的关系: (4)求反函数的步骤:①将看成关于的方程,解出,若有两解,要注意解的选择;②将互换,得;③写出反函数的定义域(即的值域)。 (5)互为反函数的图象间的关系: (6)原函数与反函数具有相同的单调性; (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。 七、常用的初等函数: (1)一元一次函数: (2)一元二次函数: 一般式 两点式 顶点式 二次函数求最值问题:首先要采用配方法,化为一般式, 有三个类型题型: (1)顶点固定,区间也固定。如: (2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。 (3)顶点固定,区间变动,这时要讨论区间中的参数. 等价命题在区间上有两根在区间上有两根在区间或上有一根 注意:若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,在令和检查端点的情况。 (3)反比例函数: (4)指数函数: 指数函数:y=(a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0 (5)对数函数:

高考文科数学函数专题讲解及高考真题精选(含答案) (1)

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:

函数与方程知识点总结经典例题及解析高考真题及答案

函数与方程 【考纲说明】 1、 了解函数的零点与方程根的联系,能判断一元二次方程根的存在性及根的个数。 2、 能够根据具体函数的图像,用二分法求出相应方程的近似解。 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

高三数学教案 函数与方程思想

第十一专题 函数与方程思想 考情动态分析: 本专题的内容主要是函数思想、方程思想及其应用.函数的思想方法是用联系变化的观点,将给定的数学问题转化为函数关系,通过研究函数的性质,得出所需的结论.高考中有关函数思想的试题主要涉及四个方面:(1)具体的原始意义上的函数问题;(2)方程、不等式与函数的综合问题;(3)数列这一特殊的函数;④利用辅助函数解题. 方程的思想方法,就是设出未知数.根据题中各量间的关系,列出等式,沟通未知与已知的关系,从而使问题得以解决.高考中有关方程的试题单独命题较少,主要有以下几个方面:(1)方程、函数、不等式的综合题;(2)求曲线的方程;(3)数列中方程思想的应用. 对函数与方程思想的考查,集中体现在应用题、探索性问题,主要考查学生的阅读能力、应用能力、理解能力、表达能力及信息加工处理能力,命题集中体现在在知识交汇点处命制综合性问题. 第一课时 函数思想与方程思想 一、考点核心整合 函数思想就是要用运动变化的观点,分析和研究具体问题中的数量关系,通过函数的形式把这数量关系表示出来,并加以研究,从而使问题获得解决.函数思想的实质是剔除问题的非数学特征,用联系的观点提出数学抽象,抽象其数学特征,建立函数关系. 方程的思想就是如果变量间的关系是通过解析式表示出来的,则可以把解析式看作一个方程,通过对方程的讨论使问题得到解决. 函数思想、方程思想体现了一种解决数学问题的理念——建“模”意识.所谓“模”就是一个问题的载体,是联系已知、未知的桥梁,建“模”后的第二个步骤是解析“模”,从而真正将实际问题化为数学问题,数学因此也成为探索大自然奥秘的工具. 二、典例精讲: 例1 已知函数)(x f 的定义域为}3,2,1{=A ,值域为}2,1{--=B ,则这样的函数共有 ________个. 例2 设平面内两向量与互相垂直,且1||,2||==,又k 与t 是两个不同时为0的实数. (Ⅰ)若t )3(2 -+=与b t a k y +-=垂直,求k 关于t 的函数关系式)(t f k =; (Ⅱ)试确定)(t f k =的单调区间. 例3 已知函数)(log )1(log 1 1 log )(222 x p x x x x f -+-+-+=. (Ⅰ)求)(x f 的定义域; (Ⅱ)求)(x f 的值域. 例4 二次函数r qx px x f ++=2 )(中实数、r 、q p 满足 012=++++m r m q m p ,其中0>m ,求证:(Ⅰ)0)1 ( <+m m pf ; (Ⅱ)方程0)(=x f 在)1,0(内恒有解. 三、提高训练: (一)选择题:

相关文档
最新文档