测量齿轮齿圈径向跳动误差装置的设计

测量齿轮齿圈径向跳动误差装置的设计

实验1 齿轮径向跳动检测

实验1齿轮径向跳动检测 (一)实验目的 1、了解卧式径向检查仪工作原理及使用方法。 2、学会使用卧式径向检查仪检测齿轮径向跳动。 (二)实验原理 齿圈径向跳动误差ΔF r是在齿轮一转范围内,处于齿槽内或轮齿上、与齿高中部双面接触的测头相对于齿轮轴心线的最大变动量。 图1-1卧式径向检查仪工作原理 1-底座;2-工作台固紧螺丝;3-顶针固紧螺丝;4-被测齿轮;5-升降螺母6-指示表抬起手柄;7-指示表;8-测量头;9-中心顶针 图1-2卧式径向检查仪实物图

图1-3量棒及百分表放置图 如图1-4a,以齿轮基准孔的轴线O为中心,转动齿轮,使齿槽在正上方,再将球形测头(或用量棒)插入齿槽与左右齿面接触,从百分表(或千分表)上读数,依次测量所有齿。将各次读数记在坐标图上,如图1-2b所示,取最大读数与最小读数之差作为齿圈径向跳动误差。 图1-2齿轮径向计算图 (三)实验步骤 1、查阅仪器附件盒表格,根据被测齿轮选取球形测头,并将测头装入表的测杆下端。 2、把擦净的被测齿轮装在仪器的中心顶尖上,安装后齿轮不应有轴向窜动!

借助升降螺母5与抬起手柄6调整指示表,使指示表有一到二圈的压缩量; 3、 球形测头伸入齿槽最下方即可读数,读完数,向后扳拨杆,抬起千分表转过一齿,再放下,开始测第二齿。如此依次测量各个齿面,把指示表的读数记下,并绘制出齿圈径向跳动图,取最大读数与最小读数之差,算出齿圈径向跳动误差ΔFr (r F ?=max r -min r )。 4、 根据齿轮的技术要求,查出齿圈径向跳动公差Fr ,判断合格性:合格条件:r F ?≤r F 为合格 (四)实验报告及要求 1、 齿轮齿数Z=,模数m=,齿顶圆da=mm 。 2、 数据记录

形位误差测量方法

形位误差测量方法

摘要:跳动测量是生产实践中应用较广泛的一种测量方法,检测方式简单实用,又具有一定的综合控制功能。 形位误差测量 径向圆跳动、全跳动、端面圆跳动实验 一、实验目的: 跳动测量是生产实践中应用较广泛的一种测量方法,检测方式简单实用,又具有一定的综合控制功能。本实验的目的是: 1、掌握形位公差检测原则中的跳动原则。 2、形状误差不大时,用以代替同轴度测量。 3、分析圆度误差与径向跳动的各自特点。 二、实验内容: 1、模拟建立理想检测基准。 2、径向圆跳动、全跳动、端面圆跳动的测量。 3、根据指示表读数值,确定各种跳动量。 三、实验仪器: 偏摆仪、测量表架、指示表。 四、实验方法: 调整偏摆仪两端顶尖同轴,以两顶尖的轴线模拟公共基准,被测工件对顶无轴向移动且转动自如,采用跳动原则,看指示表读数,确定跳动量。 具体检测方法见下表。

五、实验步骤: 1、径向圆跳动测量: (1)将指示表安装在表架上,指示表头接触被测圆柱表现,指针指示不得超过指示表量程的1/3,测头与轴线垂直,指示表调零。 (2)轻轻使被测工件回转一周,指示表读数的最大差值即为单个测量截面上的径向跳动。 (3)按上述方法在若干个正截面上测量,分别记录,取各截面上测的跳动量中的最大值作为该零件的径向圆跳动。 (4)将测量记录填表2-2。

2、径向全跳动测量 (1)按上述方法在被测工件连续转动过程中,同时让指示表沿基准轴线方向作直线移动。(2)在整个测量过程中,指示表读数最大差值即为该零件的全跳动。(3)所测数据填表2-2。 3、端面圆跳动测量 (1)将指示表测头与被测的台阶表面接触,注意指示表指针指示不得超过指示表量程的1/3,指示表读数调零。 (2)轻轻转动工件一周,指示表读数最大差值即为单个测量圆柱面上的端面圆跳动。(3)按上述方法,在任意半径处测量若干个圆柱面,取各测量圆柱面上测得的跳动中最大值作为该零件的端面圆跳动。(4)所测数据填表2-2。 六、实验记录表 表2-2 径向圆跳动、全跳动、端面圆跳动实验记录

齿轮径向跳动

齿轮齿圈径向跳动的测量 一、实验目的 1.熟悉齿圈径向跳动的测量方法; 2.了解齿圈径向跳动对齿轮传动的影响; 3.练习齿轮公差表格的查阅。 二、实验设备 齿轮径向跳动测量仪结构图 1-底座; 2-工作台固紧螺丝; 3-顶针固紧螺丝; 4-被测齿轮; 5-升降螺母 6-指示表抬起手柄; 7-指示表; 8-测量头; 9-中心顶针; 该测量仪的主要技术参数:型号为DD300——89,被测齿轮模数范围为1~6 mm ,被测工件最大直径为300 mm ,两顶针间最大距离为418 mm 。 三、测量原理 齿圈径向跳动r F 是指在齿轮一转范围内,测头在齿槽内或齿轮上,于齿高中部双面接触,测头相对于齿轮轴心线的最大变动量。它主要是由齿轮加工中毛坯安装的几何偏心和齿轮机床工作台的跳动或插齿刀的偏心等引起的。这种误差将使齿轮传动一周范围内传动比发生变化,属于长周期误差。 为了测量各种不同模数的齿轮,仪器备有大小不同可换的球形测量头,此外仪器还备有两支杠杆。 外接触杠杆——成直角三角形,用于测量端面及伞齿轮; 内接触杠杆——成直角形,用于测量内孔的跳动及内齿轮的跳动。 本实验因是测量圆柱直齿轮齿圈径向跳动,不需要选用内外接触杠杆。测量时直接把球形侧头接在指示表的量杆下即可。 四、测量步骤 1.查阅仪器附件盒表格,根据被测齿轮模数的不同选择合适的球形测量头; 2.擦净测头并把它装在指示表量杆的下端; 3.把擦净的被测齿轮装在仪器的中心顶尖上,安装后齿轮不应有轴向窜动!借助升降螺母5与抬起手柄6调整指示表,使指示表有一到二圈的压缩量; 4.依次顺序测量各个齿面,把指示表的读数记下,并绘制出齿圈径向跳动;

最新径向跳动和公差

径向跳动和公差

径向圆跳动与径向全跳动 径向圆跳动的公差带是垂直于基准轴线的任意的测量平面 内半径差为公差值t,且圆心在基准轴线上的两个同心圆之 间的区域(见图10a),其公差带限制在两坐标(平面坐标)范围 内。 径向全跳动的公差带是半径为公差值t,且与基准轴线同轴的两圆柱面之间的区域(见图10b),其公差带限制在三坐标(空间坐标)范围内。 图10 径向圆跳动与径向全 跳动 图11 端面圆跳动与端面全 跳动 图12 用端面圆跳动控制端 面全跳动 图13斜向圆跳动

由于径向全跳动测量比较复杂,所以经常用测量径向圆跳 动来限制径向全跳动。必须指出,在用测量径向圆跳动代 替径向全跳动时,应保证被测量圆柱面上的母线对基准轴 线的平行度,或者是被测量圆柱面的轴向尺寸较小,并借 助于工艺方法可以保证母线对基准轴线平行度误差不大 时,方可应用。为确保产品质量,应使径向圆跳动误差值 与母线对基准轴线的平行度误差之和小于或等于所要求的 径向全跳动公差值。 2端面圆跳动与端面全跳动 端面圆跳动的公差带是在与基准轴线同轴的任一直径位置 的测量圆柱面上沿母线方向宽度为t的圆柱面区域(见图 11a)。 端面全跳动的公差带是垂直于基准轴线,距离为公差值t的两平行平面之间的区域(见图11b)。 显然端面圆跳动仅仅是端面全跳动的一部分,两者作用效 果是不同的。应该根据功能要求来确定是标注端面全跳动 还是端面圆跳动。通常,只有当端面的平面度足够小时, 才能用端面圆跳动代替端面全跳动。例如,对于安装轴承 的轴肩,因其径向尺寸(d1-d2)较小,可以用控制端面圆跳 动误差来达到控制端面全跳动的目的(见图12)。 3径向圆跳动与斜向圆跳动

测量跳动原则分析与应用

测量跳动原则的分析与应用 在盘类零件的生产过程中,为了保证工艺基准的垂直度,工艺人员往往对基准提出端面圆跳动的要求。为满足轴类零件图样上同轴度的要求,测量时习惯用径向圆跳动代替同轴度要求。实际上工艺人员都在不知不觉地使用测量跳动原则对产品进行快速经济的检测。为了保证产品质量提高工序合格率,利用这种替代方法是否准确可靠,又如何把握是工艺人员、检测人员值得共同探讨的问题。 1、测量跳动原则 在被测要素绕基准轴回转过程中,相对于某参考点或线的变化情况,来表示跳动值的一种检测原理,称为测量跳动原则,也叫做第四检测原则。测量跳动原则是根据跳动误差(所谓跳动误差是关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量)的定义提出的,主要用于圆跳动和全跳动误差测量,跳动公差是以检测方式定出的公差项目,具有综合控制形状误差和位置误差的功能,根据该原则所实施的检测方法很简单,因此,在生产中广泛应用。 2、圆跳动和全跳动的区别 跳动分为圆跳动和全跳动。其中,当关联实际要素绕基准轴线回转一周或连续回转时,为圆跳动公差;绕基准轴线连续回转时,为全跳动公差。根据测量方式的不同,圆跳动又分为径向圆跳动和端面圆跳动,径向圆跳动公差带是垂直于基准轴线的任一测量平面内,半径差为公差值,且圆心在基准轴线上的两个同心圆之间的区域;端面圆跳动公差带是在与基准轴线同轴的任一直径位置的测量圆柱面上,沿母线方向宽度为公差值的圆柱面区域。全跳动也分为径向全跳动和端面全跳动。径向全跳动公差带是半径差为公差值,且与基准轴线同轴的两圆柱面之间的区域;端面全跳动公差带是距离为公差值,且与基准轴线垂直的两平行平面之间的区域。在测量圆跳动误差时,指示表的位置是相互独立的,但在测量全跳动误差时,指示表的位置是沿着平行于(或垂直于)基准轴线运动的。显然测量圆跳动比测量全跳动的方法更简单,这正是习惯优先选用圆跳动的原因之一。

齿轮各项公差和极限偏差的分组

齿轮各项公差和极限偏差的分组 (1) 精度等级 齿轮的各项公差和极限偏差分成三个组。 根据使用的要求不同,允许各公差组选用不同的精度等级,但在同一公差组内,各项公差与极限偏差应保持相同的精度等级。参见齿轮传动精度等级选择 (2) 齿轮检验与公差根据齿轮副的使用要求和生产规模,在各公差组中选定检验组来检定和验收齿轮精度。(3) 齿轮副 的检验与公差齿轮副的要求包括齿轮副的切向综合误差ΔF ic′,齿轮副的一齿切向综合误差Δf ic′,齿轮副的接触班点位置和大小以及侧隙要求,如上述四方面要求均能满足,则此齿轮副即认为合格。(4) 齿轮侧隙齿轮副的侧隙要求,应根据工作条件用最大极限侧隙j nmax(或j tmax)与最小极限侧隙j nmin(或j tmin)来规定。中心距极限偏差(±f a)按“中心距极限偏差”表的规定。 齿厚极限偏差的上偏差E ss及下偏差E si从齿厚极限偏差表来选用。例如上偏差选用F(=-4f Pt),下偏差选用L(=-16f Pt),则齿厚极限偏差用代号FL表示。参看图“齿轮、齿轮副误差及侧隙的定义和代号”。若所选用的齿厚极限偏差超出齿厚极限偏差表所列14种代号时,允许自行规定。 (5) 齿轮各项公差的数值表 齿距累积公差F P及K个齿距累公差F PK齿向公差Fβ公法线长度变动公差F w 轴线平行度公差中心距极限偏差(±f a)齿厚极限偏差接触斑点 齿圈径向跳动公差F r径向综合公差F i″齿形公差F f齿距极限偏差(±f Pt) 基节极限偏差(±f Pb)一齿径向综合公差f i″齿坯尺寸和形状公差 齿坯基准面径向和端面跳动齿轮的表面粗糙度R a圆柱直齿轮分度圆上弦齿厚及弦齿高 (6) 图样标注 在齿轮零件图上应标注齿轮的精度等级和齿厚极限偏差的字母代号。标注示例 a) 齿轮三个公差组精度 同为7级,其齿厚上偏差为F, 下偏差为L: b) 第Ⅰ公差组精度为7级,第Ⅱ、Ⅲ公 差组精度为6级,齿厚上偏差为G,齿厚下 偏差为M: c) 齿轮的三个公差组精度同为4级, 其齿厚上偏差为-330μm,下偏差为 -405μm: 齿轮传动精度等级的选用按机器类型选择按速度、加工、工作条件选择

实验齿轮齿圈径向跳动

实验二 齿轮齿圈径向跳动的测量 实验人员:李洲,刘自成,龚佳健 实验温度:t=17℃ 实验时间:4月6日 指导教师:杨浪萍,张楚书 一、实验目的 1、熟悉测量齿圈径向跳动误差的方法; 2、加深理解齿圈径向跳动误差的定义。 二、实验内容 用齿圈径向跳动检查仪测量齿轮的齿圈径向跳动误差r F ?。 三、实验仪器说明及测量原理 测量齿圈径向跳动误差可用齿圈径向跳动检查仪、万能测齿仪等测量。 图为跳动检查仪的外形图。被测齿轮与心轴一起装在两顶针之间,两顶针架装在滑板上。转动手轮,可使滑板作纵向移动。扳动提升手柄,可使指示表放下进入齿槽。为了测量不同模数的齿轮,仪器备有不同直径的球形探测头。 图 齿圈径向跳动检查仪 齿圈径向跳动误差r F ?,是指在齿轮一转范围内,测头在齿槽内或轮齿上,于齿高中部双面接触,测头相对于齿轮轴线的最大变动两。如图所示。为了使测头球面在被测齿轮的分度圆附近与齿面接触,球形测头的直径p d 应按下式选取: p d = (2-1) 式中m 为齿轮模数(mm )

图测量原理 四、测量步骤 1、根据被测齿轮的模数,选择适当的球形测头装入指示表的测量杆下端; 2、将被测齿轮和心轴装在一起的两顶尖之间,拧紧顶尖座锁手轮和顶尖锁紧手柄; 3、旋转手轮,调整滑板位置,使球形测量头位于齿宽中部。借升降螺母和提升手柄。使是指表下降,直至测头伸入齿槽内且与齿面接触。调整指示表,使其指针压缩约1-2圈,拧紧表架后面的紧固旋钮; 4、球形测头伸入齿槽最下方即可读数,每测完一齿,抬起提升手柄,使球形测头进入第二个齿槽与齿面接触,以此类推,逐齿测量并记录指示表的读数; ,判断被测齿轮的合格性。 5、根据齿轮的技术要求,查出齿圈径向跳动公差r F 五、被测对象 图被测对象 齿轮基本参数见表1-1。 表2-1 齿Array轮基本参数 六、被测数据 记录员:刘自成 表2-2 第一次测量数据

跳动误差检测

跳动误差检测 1.径向圆跳动误差的检测 ⑴用跳动检查仪测量径向圆跳动 用指示表在跳动检查仪上测量工件的径向圆跳动,图1a为被测零件的图样标注,图 dφ圆1b为其测量方法。测量时,用跳动检查仪的两顶尖来模拟体现公共基准轴线,测量 1 柱面上若干点到基准轴线的距离,取其中的最大值作为径向圆跳动的误差值。 ⑴将工件安装在跳动检查仪的两顶尖间,公共基准轴线由两顶尖来模拟; ⑵将指示表压缩2~3圈; ⑶将被测工件回转一周,读出指示表的最大变动量; ⑷按上述方法测量若干个截面,取各截面跳动量的最大值作为径向圆跳动误差; ⑸根据测量结果判断零件径向圆跳动的合格性。 ⑵用双V形块测量径向圆跳动 用指示表测量工件的径向圆跳动。测量时,用V形块来模拟体现公共基准轴线,测量 dφ圆柱面上若干点到基准轴线的距离,取其中的最大值作为径向圆跳动的误差值。 1

⑴将工件支承在一对V形块上,并在轴向定位,公共基准轴线由V形块来模拟; ⑵将指示表压缩2~3圈; ⑶将被测工件回转一周,读出指示表的最大变动量,即为单个测量平面上的径向跳动; ⑷按上述方法测量若干个截面,取各截面跳动量的最大值作为径向圆跳动误差; ⑸根据测量结果判断零件径向圆跳动的合格性。 2.端面圆跳动误差的检测 ⑴用跳动检查仪测量端面圆跳动 用指示表在跳动检查仪上测量工件的端面圆跳动,图3a为被测零件的图样标注,图 d 右3b为其测量方法。测量时,用跳动检查仪的两顶尖来模拟体现公共基准轴线,测量 1 端面上某一圆周上各点至垂直于基准轴线的平面之间的距离,取其中的最大值作为端面圆跳动的误差值。 ⑴将工件安装在跳动检查仪的两顶尖间,公共基准轴线由两顶尖来模拟; ⑵将指示表压缩2~3圈; ⑶将被测工件回转一周,读出指示表的最大变动量; ⑷按上述方法测量若干个截面,取各截面跳动量的最大值作为端面圆跳动误差; ⑸根据测量结果判断零件端面圆跳动的合格性。

径向跳动和公差

径向圆跳动与径向全跳动 径向圆跳动的公差带是垂直于基准轴线的任意的测量平面 内半径差为公差值t,且圆心在基准轴线上的两个同心圆之 间的区域(见图10a),其公差带限制在两坐标(平面坐标)范围 内。 径向全跳动的公差带是半径为公差值t,且与基准轴线同轴的两圆柱面之间的区域(见图10b),其公差带限制在三坐标(空间坐标)范围内。 图10 径向圆跳动与径向全 跳动 图11 端面圆跳动与端面全 跳动 图12 用端面圆跳动控制端 面全跳动

图13斜向圆跳动由于径向全跳动测量比较复杂,所以经常用测量径向圆跳动来限制径向全跳动。必须指出,在用测量径向圆跳动代替径向全跳动时,应保证被测量圆柱面上的母线对基准轴线的平行度,或者是被测量圆柱面的轴向尺寸较小,并借助于工艺方法可以保证母线对基准轴线平行度误差不大时,方可应用。为确保产品质量,应使径向圆跳动误差值与母线对基准轴线的平行度误差之和小于或等于所要求的径向全跳动公差值。 端面圆跳动与端面全跳动 端面圆跳动的公差带是在与基准轴线同轴的任一直径位置的测量圆柱面上沿母线方向宽度为t的圆柱面区域(见图11a)。 端面全跳动的公差带是垂直于基准轴线,距离为公差值t的两平行平面之间的区域(见图11b)。 显然端面圆跳动仅仅是端面全跳动的一部分,两者作用效果是不同的。应该根据功能要求来确定是标注端面全跳动还是端面圆跳动。通常,只有当端面的平面度足够小时,才能用端面圆跳动代替端面全跳动。例如,对于安装轴承的轴肩,因其径向尺寸(d1-d2)较小,可以用控制端面圆跳动误差来

达到控制端面全跳动的目的(见图12)。 3径向圆跳动与斜向圆跳动 对于圆锥表面和对称回转轴线的成形表面一般应标注斜向 圆跳动。只有当锥面锥角较小时(如α≤10°)才可标注径向圆跳 动代替斜向圆跳动,以便于检测。如图13所示,设径向圆跳 动误差为H,斜向圆跳动误差为h,则:h=Hcosα。 五、跳动公差与其他形位公差 4 径向圆跳动、圆度、同轴度 径向圆跳动是一项综合性公差,它不仅控制了同轴度误差, 同时也包含了圆度误差。 当被测圆柱面的轴线与基准线同轴时,由于被测要素存在圆 度误差,因此会出现径向圆跳动误差;当被测要素为理想圆, 但存在同轴度误差时,也会出现径向圆跳动误差。由此可见, 只要存在同轴度或圆度误差,则必然存在径向圆跳动误差, 反之则不一定。 由于径向圆跳动误差检测较方便,因此,在生产中常常 以径向圆跳动代替同轴度公差。对同一被测要素,标注 了径向圆跳动后就不必再标注同轴度或圆度(见图14),否 图15 端则,同轴度公差值必须小于跳动公差值。 面垂直度

轴类零件圆跳动高效测量方法

摘要:介绍轴类零件的测量方法,主要介绍如何利用数据采集仪连接百分表来快速测量轴类零件圆跳动度误差的方法。 测量仪器:偏摆仪、百分表、太友科技QSmart 数据采集仪。 一、偏摆仪的介绍 本仪器主要用于测量轴类零件径向跳动误差,本仪器利用两顶尖定位轴类零件,转动被测零件,测头在被测零件径向方向上直接测量零件的径向跳动误差。该仪器主要用于检测轴类、盘类另件的径向、圆跳动和端面圆跳动,产品设计新颖,美观大方,精度高操作极为方便。 偏摆仪使用说明: 1、偏摆检查仪是精密的检测仪器,操作者必须熟练掌握仪器的操作技能,精心 地维护保养,并指定专人使用。 2、偏摆检查仪必须始终保持设备完好,设备安装应平衡可靠,导轨面要光滑, 无磕碰伤痕,二顶尖同轴度允差应在L=400MM范围内a向及b向均小于0.02MM。 3、工件检测前应先用L=400MM检验棒和百分表对偏摆仪进行精度校验,在确保 合格后,方可使用。

二、数据采集仪的介绍 数据采集仪主要是用来连接不同的测仪器进行自动数据采集(如数显卡尺、百分表、高度计、测厚仪、电子称、拉力计等),不再需要人工录入数据,节约人力成本而且可以减少由于人工录入所导致的错误。从而整体提高生产过程中的整体工作效率。 系统用途说明: 1、节约人力,提高效率:用于直接连接检测仪器进行自动数据采集(如数显卡 尺、百分表、高度计、测厚仪、电子称、拉力计等),无需操作人员手工记录数据,节约人力成本; 2、连接多个仪器:数据采集仪配置两个串口,可以同时连接两个仪器进行同时 自动测量; 3、方便数据分析:测量数据自动保存在系统的存储卡中,用户可以使用USB导 出数据文件,以进行相关的分析,用户也可通过网络直接获取测量的数据; 4、报警及防错:软件具备丰富功能,容易操作使用,对于超过规格标准的情况, 系统将以声音及颜色进行报警; 5、移动测量:支持移动测量,可由操作人员在现场移动操作,进行产品的质量 检测; 6、支持手工录入:支持手工录入,与传统的纸张记录模式相比较,避免人工二 次录入,节约人力成本;

径向跳动

径向跳动公差及检测 跳动误差的测量 1.径向圆跳动公差 径向圆跳动公差是要素以基准轴线为中心无轴向移动地旋转一周时,在任一测量面内所允许的最大跳动量。圆跳动的测量方向,一般是被测表面的法线方向。 径向圆跳动误差的检测,一般是用两顶尖的连线或V形块来体现基准轴线,在被测表面的法线方向,使指示器的测头与被测表面接触,使被测零件回转一周,指示器最大读数差值即为该截面的径向圆跳动误差。测量若干个截面的径向圆跳动误差,取其中最大误差值作为该零件的径向跳动误差。 外圆跳动分为圆跳动和全跳动两类。跳动测量可用跳动检查仪或V形块和千分表来检测。 测量工具:检验平板、V形块、带指示器的测量架、定位装置。 1.1当零件图中的基准是由两端圆柱轴线建立的公共基准时,采用V形块体现基准轴线。将被测零件放在V形块上,使基准轴线的外母线与V形块工作面接触,并在轴向定位,使指示器测头在被测表面的法线方向与被测表面充分接触; (1)转动被测零件,观察指示器的示值变化,记录被测零件在回转一周过程中的最大与最小读数M1和M2,取其代数差为该截面上的径向圆跳动误差:△=M1-M2 ( 2)按上述方法测量若干个截面,取各截面上测得的跳动量中的最大值作为该零件的径向圆跳动误差。 1.2当零件图中的基准是由两端中心孔轴线建立的公共基准时,采用顶尖体现基准轴线。 将被测零件安装在两顶尖之间。要求没有轴向窜动且转动自如。指示器在被测表面的法线方向与被测表面接触。转动被测零件,在一周过程中指示器读数的最大差值即为该截面上的径向圆跳动误差。测量若干个截面,取各截面上测得的跳动量中的最大值,作为该零件的径向圆跳动误差。 2.径向全跳动误差 2.1概念

(完整版)端面圆跳动和径向全跳动的测量.docx

实验二端面圆跳动和径向全跳动的测量 (一)实验目的 (1)掌握圆跳动和全跳动误差的测量方法。 (2)加深对圆跳动和全跳动误差和公差概念的理解。 (二)实验内容 用百分表在跳动检查仪上测量工件的端面圆跳动和径向全跳动。 (三)计量器具 本实验所用仪器为跳动检查仪,百分表。 (四)测量原理 如图 1-1 所示,图 a 为被测齿轮毛坯简图,齿坯外圆对基准孔轴线 A 的径向全跳动公差值为 t1,右端面对基准孔轴线 A 的端面圆跳动公差值为t2。如图 b 所示,测量时,用心轴模拟基准轴线 A ,测量Φ d 圆柱面上各点到基准轴线的距离,取各点距离中最大差值作为径向 全跳动误差;测量右端面上某一圆周上各点至垂直于基准轴线的平面之间的距离,取各点距离的最大差值作为端面圆跳动误差。 (a) 齿轮毛坯简图(b) 跳动测量示意图 图1-1 (五)测量步骤 (1)图 1-1( b)为测量示意图,将被测工件装在心轴上,并安装在跳动检查仪的两顶 尖之间。 ( 2)调节百分表,使测头与工件右端面接触,并有1~2 圈的压缩量,并且测杆与端面 基本垂直。 (3)将被测工件回转一周,百分表的最大读数与最小读数之差即为所测直径上的端面圆 跳动误差。测量若干直径(可根据被测工件直径的大小适当选取)上的端面圆跳动误差, 取其最大值作为该被测要素的端面圆跳动误差 f ↗。 (4)调节百分表,使测头与工件Φ d 外圆表面接触,测杆穿过心轴轴线并与轴线垂直,且 有 1~2 圈的压缩量。 (5)将被测工件缓慢回转,并沿轴线方向作直线移动,使指示表测头在外圆的整个表 面上划过,记下表上指针的最大读数与最小读数。取两读数之差值作为该被测要素的径向全

圆跳动测量技巧总结

测量高手放大招:圆跳动测量技巧总结在实际的测量工作中,经常碰到要求测量两个要素的圆跳动问题,利用不同的测量辅件及夹具能够比较容易实现,比较三坐标测量更容易实现。 01. 前言 在五金机加工厂实际的测量工作中,经常碰到要求测量两个要素的圆跳动问题, 利用不同的测量辅件及夹具能够比较容易实现,比较三坐标测量更容易实现。 02. 圆跳动及公差带的定义 圆跳动定义为:被测提取要素绕基准轴线做无轴向移动回转一周时,由位置固定 的指针计在给定方向上测量的最大与最小示值之差。 径向圆跳动的公差带定义:在任一垂直于基准轴线:的横截面内、半径差等于公 差值t 、圆心在基准轴线上的两同心圆所限定的区域。如图1 所示, 轴向圆跳动的公差带定义:与基准轴线同轴的任一半径的圆柱截面上,间距等于 公差值t 的两圆所限定的圆柱面区域。如图2 所示,

03. 测量方法与分析 测量案例1:单一基准的圆跳动测量,以外轴的轴线为基准

1.1V 形块和百分表测量端面用定位块限位,以避免测量过程中轴向窜动对测量的影响。分析:由于测量中没有考虑端面的形状误差对测量的影响,因而显得不合理。 1.2V 形块、Brown & Sharpe 标准球和百分表测量 这种方法只用在基准要素的圆柱度误差比跳动小的情况。否则这种测量方法将会因形状误差而产生很大的测量误差。测量时,需要依据顶针孔的大小来选择合适的标准球。同时利用限位块支撑住标准球。如端面实际加工成顶针孔,也可以直接利用顶针孔定位。分析:该测量方法考虑到消除端面基准形状误差对测量的影响,同时考虑到利用实际加工的形状轮廓(顶针孔,端面浅孔等)来定位,测量方案十分合理,而且易于实现。 1.3精精密测量用三爪卡盘(四爪卡盘)和百分表测量卡盘必须具有比工件跳动公差小的跳动。这可以在测量之前,用测量在卡盘上的一个几乎理想圆柱形复现形体的跳动的方法,来检查其适用性。如果必要且可能,工件的基准要素可由在卡盘上用指示表指示可能最小的示值变动来找正。测量时,必须注意控制卡盘锁紧力的大小,以避免损伤工件表面。 分析:该测量完全依据实际的加工定位方式来进行测量,完全与加工时的装夹方式一致。不过由于精密测量卡盘与测量平台的价格较高,不易于在一般工厂实现。 测量案例2 :单一基准的圆跳动测量,以孔的轴线为基准

齿轮公法线上下偏差计算公式

齿轮公法线上下偏差计算公式 公法线平均长度上偏差Ews=Es*scosа-2e*sinа, 公法线平均长度下偏差Ews=Esi*cosа+2e*sinа, 公法线平均长度公差:Tw=Ts*cosа-4esinа, 1、式中2e为齿轮一转内最大的几何偏心量,为ΔFr 2e=ΔFr=KFr,根据国标取K=0.72,式中Fr齿圈径向跳动公差有精度等级和分度圆直径决定(你未给出分度圆直径及应用,所以我没办法给你准确数,你自己查表)。 2、式中α为压力角,标准渐开线圆柱齿轮α=20° 3、式中Ess和Esi为齿轮齿厚上偏差和下偏差,通常齿轮副,两齿轮的Ess相同, Ess=fa*tagа+(jn min+J)/2cosа ①式中fa为齿轮副中心距极限偏差, ②式中jn min为齿轮副公法线方向极限侧隙,叫作法向极限侧隙, jn min=jn1+jn2 jn1=a(α1Δt1+α2Δt2)*2sinа(单位mm) a---齿轮副中心距 α1,α2---线膨胀系数(45#钢齿:11.5*10^-6,铸铁箱体:10.5*10^-6) Δt---工作温升(相对于20℃) 脚注1为齿轮,脚注2为壳体 jn2=K*mn (单位um) mn---法向模数 系数K---5~10(油池润滑) 10(V<10m/s)齿轮线速度(喷油润滑) 20(1060) Esi=Ess+Ts Ts=(Fr^2+br^2)^1/2*2tagα

Fr---齿圈径向跳动(查表) br---切齿径向进刀公差(查表) 4、小结 要得到公法线长度上下偏差必须根据应用环境来确定精度等级,有三组公差精度分别为:运动精度、平稳性精度、接触精度,示例一、7-6-6GM、示例二、7FL 第一个示例表示运动精度7,平稳性精度和接触精度6,G和M代表齿厚上下偏差分别为-6fpt和-20fpt(买本书或下载齿轮手册上面有标准),fpt查表得,它属平稳性精度参数,第二个示例表示三组公差精度都为7,其他同上,只是齿厚公差带偏上一点了,F=-4fpt,L=-16fpt。汽车变速箱齿轮一般采用的是6级精度,有的地方要求低的可取更低精度,这样节省成本,还有一般高速级齿轮副侧隙(公法线上偏差绝对值)应该留大一点,速度快齿轮副温升高,相对热膨胀大(齿轮副和壳体),同时高速级在前端,对回差影响不大。 5、附图

圆柱度、圆度、圆跳动、全跳动区别

路漫漫其修远兮,吾将上下而求索- 百度文库 圆柱度公差是限制实际圆柱面相对于理想圆柱面的变动。它表示实际圆柱面必须位于半径公差给定的两个同轴圆柱面之间 径向全跳动是被测表面绕基准轴线连续回转时,在整个圆柱面上所允许的最大跳动量。它表示被测表面绕基准轴线连续回转时,同时百分表相对于圆柱面作轴向移动,在整个圆柱面上的径向跳动量不得大于给定公差值 疑问:假如说一个圆柱面,它的径向全跳动公差和圆柱度公差都是0.05 我是这么想的:既然圆柱度公差0.05表示实际圆柱面必须位于半径公差0.05的两个同轴圆柱面之间,那么它在整个圆柱面上的径向跳动量一定也不会大于0.05.这样的话圆柱度和径向全跳动还有什么区别? 简单地讲圆柱度就是单讲圆柱外表面的实际轮廓与理想轮廓的差异,就是假想用最大极限与最小两个极限两个圆柱来限定实际圆柱的轮廓范围,超出这个范围就不合格。指圆柱外形的要求。 跳动时一项综合性的误差项目,反映被测要素的形状和位置误差。 他们的区别是:全跳动公差带与圆柱度公差带相同,可以利用全跳动公差控制圆柱度误差。还能反映出端面、圆柱面对于基准轴的垂直、平行误差。 总的来讲,全跳动测量比圆柱度测量要全面,甚至可以包括他。 圆跳动和全跳动的差别: 跳动的分类:可分为圆跳动和全跳动. 圆跳动:是指被测实际表面绕基准轴线作无轴向移动的回转时,在指定方向上指示器测得的最大读数差. 全跳动:是指被测实际表面绕基准轴线无轴向移动的回转,同时指示器作平行或垂直于基准轴线的移动,在整个过程中指示器测得的最大读数差. ********圆度与圆跳动的区别,圆柱度与全跳动的区别 圆度是形状误差,只是表达一个表面形状.而跳动给这个形状规定了一个基准,即中心轴线.跳动小的一定圆,圆的跳动可能大.当偏离基准的时候圆的跳动也大.就这样. 圆柱度增加了一个轴向概念,成为一个空间问题. 圆度是任一正截面上半径差为某一数值的两个同心圆区域,它的实际尺寸不能走超出给定的尺寸公差范围,实效尺寸就是零件的最大实体尺寸,这就是通常所说的尺寸公差控制形状误差。而圆跳动是有基准轴线的,任一截面的圆表面位置在 11

实验齿轮齿圈径向跳动精编版

实验齿轮齿圈径向跳动 精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

实验二齿轮齿圈径向跳动的测量 实验人员:李洲,刘自成,龚佳健 实验温度:t=17℃ 实验时间:4月6日 指导教师:杨浪萍,张楚书 一、实验目的 1、熟悉测量齿圈径向跳动误差的方法; 2、加深理解齿圈径向跳动误差的定义。 二、实验内容 用齿圈径向跳动检查仪测量齿轮的齿圈径向跳动误差r F ?。 三、实验仪器说明及测量原理 测量齿圈径向跳动误差可用齿圈径向跳动检查仪、万能测齿仪等测量。 图为跳动检查仪的外形图。被测齿轮与心轴一起装在两顶针之间,两顶针架装在滑板上。转动手轮,可使滑板作纵向移动。扳动提升手柄,可使指示表放下进入齿槽。为了测量不同模数的齿轮,仪器备有不同直径的球形探测头。 图齿圈径向跳动检查仪 齿圈径向跳动误差r F ?,是指在齿轮一转范围内,测头在齿槽内或轮齿上,于齿高中部双面接触,测头相对于齿轮轴线的最大变动两。如图所示。为了使测头球面在被测齿轮的分度圆附近与齿面接触,球形测头的直径p d 应按下式选取: p d =(2-1) 式中m 为齿轮模数(mm ) 图测量原理 四、测量步骤 1、根据被测齿轮的模数,选择适当的球形测头装入指示表的测量杆下端; 2、将被测齿轮和心轴装在一起的两顶尖之间,拧紧顶尖座锁手轮和顶尖锁紧手柄;

3、旋转手轮,调整滑板位置,使球形测量头位于齿宽中部。借升降螺母和提升手柄。使是指表下降,直至测头伸入齿槽内且与齿面接触。调整指示表,使其指针压缩约1-2圈,拧紧表架后面的紧固旋钮; 4、球形测头伸入齿槽最下方即可读数,每测完一齿,抬起提升手柄,使球形测头进入第二个齿槽与齿面接触,以此类推,逐齿测量并记录指示表的读数; 5、根据齿轮的技术要求,查出齿圈径向跳动公差r F ?,判断被测齿轮的合格性。 五、被测对象 图被测对象 齿轮基本参数见表1-1。 表2-1齿轮基本参数 六、被测数据 记录员:刘 自成 表2-2第一次测量数据 表2-3第二次测量数据

测量端面圆跳动误差的方法

测量端面圆跳动误差的方法

一、端面圆跳动公差带 端面圆跳动公差带是在与基准轴线同轴的任一直径的测量圆柱面上,沿母线方向宽度为公差值t的圆柱面区域。 如下图所示,当零件绕基准轴线作无轴向移动回转时,左端面上任一测量直径处的轴向跳动量均不得大于公差值0.05mm。 二、端面圆跳动测量方法 方法一: 1、将工件按下图所示安装好,以小端轴线作为检测基准,工件在轴向不准移动。将百分表的测头垂直压在被测表面上,然后缓慢均匀转动工件一周,将百分表读数最大差值作为单个测量圆柱面上的端面圆跳动,按上述方法测量若干个圆柱面,取各测量圆柱面的跳动量中的最大值作为该零件的端面圆跳动误差。

2、测量器具准备:百分表、表座、表架、V 形块、被测件、全棉布 数块、顶尖、防锈油等。 3、测量步骤 1)将被测零件放在 V 形块上,基准轴线由 V 形块模拟,并在轴向固定。2)将百分表安装在表架上,缓慢移动表架,使百分表的测量头与被测端面接触,并保持垂直,将指针调零,且有一定的压缩量。 3)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mimax 与最小读数 Mimin 的差值,作为该直径处的端面圆跳动误差Δi 。4)按上述方法,在被测端面四个不同直径处测量(直径 A 、B、C、D),取测量端面不同直径上测得的跳动量中的最大值,作为该零件的端面圆跳动误差。 5)根据图纸所给定的公差值,判断零件是否合格。 6)完成检测报告,整理实验器具。 方法二: 直接利用数据采集仪连接百分表实现高效测量 1、测量仪器:偏摆仪、百分表、太友科技QSmart 数据采集仪。 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆度误差,最后数据采集仪会自动判断所测零件的圆度误差是否在圆度范围内,如果所测圆度误差大于圆度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。测量效果示意图:

实验5-1 齿轮齿圈径向跳动的测量

实验6 齿轮齿圈径向跳动的测量 一、实验目的 1.学会在齿轮跳动仪上测量齿轮的齿圈径向跳动量 2.加深理解齿圈径向跳动量对齿轮传动精度的影响 二、实验内容 用齿圈径向跳动检查仪,测量齿轮的齿圈径向跳动 三、计量器具及测量原理 齿轮跳动检查仪是一种多用途的测量仪器,可供检查有中心孔的圆柱、圆锥表面和端面、6级或6级以下精度有中心孔的带轴内外啮合圆柱齿轮、圆锥齿轮和蜗轮蜗杆等的径向跳动或端面跳动量。 1、仪器主要度量指标 测量范围模数0.3~5mm 最大直径~300mm 指示表值范围0~1mm 分度值0.001mm 2、仪器结构 齿圈径向跳动误差可用齿圈径向跳动检查仪(如图4-1)、万能测齿仪或普通偏摆检查仪等仪器测量。本实验采用齿圈径向跳动检查仪来测量,该仪器的结构如图4-2所示。 本仪器主要由顶针架和测量支架两大部分组成。顶针架是安装被测工件的;测量支架是安装百分表的,其上有刻度值,当测量圆柱齿轮时,其上的刻线指向0,若测量圆锥齿轮则需转动相应的节锥角。 3、工作原理 齿圈径向跳动误差ΔFr是在齿轮一转范围内,测头在齿槽内或在轮齿上,于齿高中部双面接触,测头相对于齿轮旋转轴线径向位置的最大变动量。如图6-1所示。 如下图6-1所示,以齿轮基准孔的轴线O为中心,转动齿轮,使齿槽在正上方,再将测头插入齿槽与左右齿面接触,从百分表上读数,依次测量所有齿,取最大读数与最小读数之差作为齿圈径向跳动量ΔFr。 四、测量步骤 1.安装工件 根据被测齿轮心轴的长短,先将左顶针架固定在滑板的适当位置,分别锁紧左锁紧螺钉2和3,以使顶针架和顶针固定;调整右顶针架的位置,使其顶针顶住心轴中心孔时,松紧

齿轮径向跳动测量

齿轮径向跳动检测 一、实验目的、 1、了解卧式径向检查仪工作原理及使用方法。 2、学会使用卧式径向检查仪检测齿轮径向跳动。 二、实验原理 图2-1 1-底座;2-工作台固紧螺丝;3-顶针固紧螺丝; 4-被测齿轮;5-升降螺母 6-指示表抬起手柄;7-指示表;8-测量头;9-中心顶针; 图2-2 齿圈径向跳动误差ΔFr是在齿轮一转范围内,处于齿槽内或轮齿上、与齿高中部双面接触的测头在齿槽内或齿轮上,于齿高中部双面接触,测头相对于齿轮轴心线的最大变动量。 见图2-2a,以齿轮基准孔的轴线o为中心,转动齿轮,使齿槽在正上方,再将球形测头(或用圆柱)插入齿槽与左右齿面接触,从千分表上读数,依次测量所有齿。将各次读数记在坐标图上,如图2-2b所示,取最大读数与最小读数之差作为齿圈径向跳动误差。 三、实验步骤 1、查阅仪器附件盒表格,根据被测齿轮选取球形测头,并将测头装入表的 测杆下端。

2、 把擦净的被测齿轮装在仪器的中心顶尖上,安装后齿轮不应有轴向窜动! 借助升降螺母5与抬起手柄6调整指示表,使指示表有一到二圈的压缩量; 3、 球形测头伸入齿槽最下方即可读数,读完数,向后扳拨杆,抬起千分表转过一齿,再放下,开始测第二齿。如此依次测量各个齿面,把指示表的读数记下,并绘制出齿圈径向跳动图,取最大读数与最小读数之差,算出齿圈 径向跳动误差ΔFr(r F ?=m ax r -min r )。 4、 根据齿轮的技术要求,查出齿圈径向跳动公差F r,判断合格性: 合格条件:r F ?≤r F 为合格 四、 实验数据记录及处理 1、齿轮齿数Z=30,齿顶圆da=48.02mm 2、根据da=(2h a * +z )m,得m标准值为1.5mm ∴d=mz=45mm 4、∴ r ma x=4.2um r min =-3.2um 5、所以 r F ?=m ax r -min r =7.4u m 6、查表,得F r=23um ∴ r F ?≤r F 检验合格

齿轮精度等级、公差

齿轮精度等级、公差的说明 名词解释: 齿轮及齿轮副规定了12个精度等级,第1级的精度最高,第12级的精度最低。齿轮副中两个齿轮的精度等级一般取成相同,也允许取成不相同。齿轮的各项公差和极限偏差分成三个组齿轮各项公差和极限偏差的分组 -------------------------------------- 齿轮及齿轮副规定了12个精度等级,第1级的精度最高,第12级的精度最低。齿轮副中两个齿轮的精度等级一般取成相同,也允许取成不相同。齿轮的各项公差和极限偏差分成三个组齿轮各项公差和极限偏差的分组-------------------------------------------------------------------------------- 公差组公差与极限偏差项目误差特性对传动性能的主要影响ⅠFi′、FP、FPk Fi″、Fr、Fw 以齿轮一转为周期的误差传递运动的准确性Ⅱfi′、fi″、ff ±fPt、±fPb、ff β在齿轮一周内,多次周期地重复出现的误差传动的平稳性,噪声,振动ⅢFβ、Fb、±FPx 齿向线的误差载荷分布的均匀性根据使用的要求不同,允许各公差组选用不同的精度等级,但在同一公差组内,各项公差与极限偏差应保持相同的精度等级。齿轮传动精度等级的选用 -------------------------------------------------------------------------------- 机器类型精度等级机器类型精度等级测量齿轮3~5 一般用途减速器6~8 透平机用减速器3~6 载重汽车6~9 金属切削机床3~8 拖拉机及轧钢机的小齿轮6~10 航空发动机4~7 起重机械7~10 轻便汽车5~8 矿山用卷扬机8~10 内燃机车和电气机车5~8 农业机械8~11 关于齿轮精度等级计算的问题 某通用减速器中有一对直齿圆柱齿轮副,模数m=4mm,小齿轮z1=30,齿宽b1=40mm,大齿轮2的齿数z2=96,齿宽b2=40mm,齿形角α=20o。两齿轮的材料为45号钢,箱体材料为HT200,其线胀系数分别为α齿=11.5310-6K-1, α箱=10.5310-6K-1,齿轮工作温度为t齿=60oC,箱体工作温度t箱=30oC,采用喷油润滑,传递最大功率7.5KW,转速n=1280r/min,小批生产,试确定其精度等级、检验项目及齿坯公差,并绘制齿轮工作图。 回答你的问题: 1、齿轮精度主要是控制齿轮在运转时齿轮之间传递的精度,比如:传动的平稳性、瞬时速度的波动性、若有交变的反向运行,其齿侧隙是否达到最小,如果有冲击载荷,应该稍微提高精度,从而减少冲击载荷带给齿轮的破坏。 2、如果以上这些设计要求比较高,则齿轮精度也就要定得稍高一点,反之可以定得底一点 3、但是,齿轮精度定得过高,会上升加工成本,需要综合平衡 4、你上面的参数基本上属于比较常用的齿轮,其精度可以定为:7FL,或者7-6-6GM 精度标注的解释: 7FL:齿轮的三个公差组精度同为7级,齿厚的上偏差为F级,齿厚的下偏差为L级 7-6-6GM:齿轮的第一组公差带精度为7级,齿轮的第二组公差带精度为6级,齿轮的第三组公差带精度为6级,齿厚的上偏差为G级,齿厚的下偏差为M级 5、对于齿轮精度是没有什么计算公式的,因为不需要计算,是查手册得来的。 6、精度等级的确定是工程师综合分析的结果,传动要求精密、或者是高负载、交变负载……就将精度等级定高一点

实验齿轮齿圈径向跳动.doc

实验二齿轮齿圈径向跳动的测量 实验人员:李洲,刘自成,龚佳健 实验温度:t=17℃ 实验时间:4月6日 指导教师:杨浪萍,张楚书 一、实验目的 1、熟悉测量齿圈径向跳动误差的方法; 2、加深理解齿圈径向跳动误差的定义。 二、实验内容 用齿圈径向跳动检查仪测量齿轮的齿圈径向跳动误差F。 r 三、实验仪器说明及测量原理 测量齿圈径向跳动误差可用齿圈径向跳动检查仪、万能测齿仪等测量。 图2.1为跳动检查仪的外形图。被测齿轮与心轴一起装在两顶针之间,两顶针架装 在滑板上。转动手轮,可使滑板作纵向移动。扳动提升手柄,可使指示表放下进 入齿槽。为了测量不同模数的齿轮,仪器备有不同直径的球形探测头。 图2.1齿圈径向跳动检查仪 齿圈径向跳动误差F,是指在齿轮一转范围内,测头在齿槽内或轮齿上, r 于齿高中部双面接触,测头相对于齿轮轴线的最大变动两。如图 2.2所示。为了使测头球面在被测齿轮的分度圆附近与齿面接触,球形测头的直径d p应按下式选取: d=1.68m(2-1) p 式中m为齿轮模数(mm) 图2.2测量原理 四、测量步骤 1、根据被测齿轮的模数,选择适当的球形测头装入指示表的测量杆下端; 2、将被测齿轮和心轴装在一起的两顶尖之间,拧紧顶尖座锁手轮和顶尖锁紧

3、旋转手轮,调整滑板位置,使球形测量头位于齿宽中部。借升降螺母和提 升手柄。使是指表下降,直至测头伸入齿槽内且与齿面接触。调整指示表,使其 指针压缩约1-2 圈,拧紧表架后面的紧固旋钮; 4、球形测头伸入齿槽最下方即可读数,每测完一齿,抬起提升手柄,使球形 测头进入第二个齿槽与齿面接触,以此类推,逐齿测量并记录指示表的读数; 5、根据齿轮的技术要求,查出齿圈径向跳动公差F r ,判断被测齿轮的合格性。 五、被测对象 图2.3 被测对象 齿轮基本参数见表1-1。 表2-1齿轮基本参数 六、被模数m 齿数Z 压力角α齿轮精度径向跳动误差测数据记录员:刘 3 18 20 12 171μm 自成 表2-2第一次测量数据 序号读数(um)序号读数(um) 1 28 10 135 2 22 11 130 3 61 12 112 4 64 13 103 5 91 14 86 6 104 15 61 7 124 16 20 8 131 17 9 9 114 18 3 齿圈径跳误差F r (um)135-3=132 合格性结论合格,在公差范围内。 表2-3第二次测量数据

相关文档
最新文档