基于霍尔传感器的直流电机转速测量系统设计

基于霍尔传感器的直流电机转速测量系统设计
基于霍尔传感器的直流电机转速测量系统设计

0 引言

随着单片机的不断推陈出新,特别是高性价比的单片机的涌现,转速测量控制普遍采用了以单片机为核心的数字化、智能化的系统。本文介绍了一种由单片机C8051F060作为主控制器,使用霍尔传感器进行测量的直流电机转速测量系统。

1转速测量及控制的基本原理

1.1转速测量原理

转速的测量方法很多,根据脉冲计数来实现转速测量的方法主要有M法(测频法)、T法(测周期法)和MPT法(频率周期法),该系统采用了M法(测频法)。由于转速是以单位时间内转数来衡量,在变换过程中多数是有规律的重复运动。根据霍尔效应原理,将一块永久磁钢固定在电机转轴上的转盘边沿,转盘随测轴旋转,磁钢也将跟着同步旋转,在转盘下方安装一个霍尔器件,转盘随轴旋转时,受磁钢所产生的磁场的影响,霍尔器件输出脉冲信号,其频率和转速成正比。脉冲信号的周期与电机的转速有以下关系:

式中:n为电机转速;P为电机转一圈的脉冲数;T为输出方波信号周期

根据式(1)即可计算出直流电机的转速。

霍尔器件是由半导体材料制成的一种薄片,在垂直于平面方向上施加外磁场B,在沿平面方向两端加外电场,则使电子在磁场中运动,结果在器件的2个侧面之间产生霍尔电势。其大小和外磁场及电流大小成比例。霍尔开关传感器由于其体积小、无触点、动态特性好、使用寿命长等特点,故在测量转动物体旋转速度领域得到了广泛应用。在这里选用美国史普拉格公司(SPRAGUE)生产的3000系列霍尔开关传感器3013,它是一种硅单片集成电路,器件的内部含有稳压电路、霍尔电势发生器、放大器、史密特触发器和集电极开路输出电路,具有工作电压范围宽、可靠性高、外电路简单<输出电平可与各种数字电路兼容等特点。

1.2转速控制原理

直流电机的转速与施加于电机两端的电压大小有关,可以采用C8051F060片内的D/A 转换器DAC0的输出控制直流电机的电压从而控制电机的转速。在这里采用简单的比例调节器算法(简单的加一、减一法)。比例调节器的输出系统式为:

式中:Y为调节器的输出;e(t)为调节器的输人,一般为偏差值;Kp为比例系数。

从式(2)可以看出,调节器的输出Y与输入偏差值e(t)成正比。因此,只要偏差e(t)一出现就产生与之成比例的调节作用,具有调节及时的特点,这是一种最基本的调节规律。比例调节作用的大小除了与偏差e(t)有关外,主要取决于比例系数Kp,比例调节系数愈大,调节作用越强,动态特性也越大。反之,比例系数越小,调节作用越弱。对于大多数的惯性环节,Kp太大时将会引起自激振荡。比例调节的主要缺点是存在静差,对于扰动的惯性环节,Kp 太大时将会引起自激振荡。对于扰动较大,惯性也比较大的系统,若采用单纯的比例调节器就难于兼顾动态和静态特性,需采用调节规律比较复杂的PI(比例积分调节器)或PID(比例、积分、微分调节器)算法。

2系统的硬件软件设计

2.1硬件设计

本系统采用单片机C8051F060作为主控制器,使用霍尔传感器测量电机的转速,通过7079最终在LED上显示测试结果。此外,还可以根据需要调整控制电机的转速,硬件组成由图1所示。

控制器C8051F060主要完成转速脉冲的采集、16为定时计数器计数定时、运算比较,片内集成的12位DAC0控制转速,并且通过7279显示接口芯片实现数码显示等多项功能。

系统采用外部晶振,系统时钟SYSCLK等于18432000,T0定时 1 ms,初始化时TH0=(-SYSCLK/1 000)》8;TL0=-SYSCLK/1 000。等待1 s到,输出转速脉冲个数N,计算电机转速值。将1 s内的转速值换算成1 min内的电机转速值,并在LED上输出测量结果。

2.2软件设计

本系统采用C8051F060中的INT0中断对转速脉冲计数。定时器T1工作于外部事件计数方式对转速脉冲计数;T0工作于定时器方式均工作于方式1。每到1 s读一次计数值,此值即为脉冲信号的频率,根据式(1)可计算出电机的转速。由于直流电机的转速与施加工于电机两端的电压大小有关,故将实际测得的转速值与预设的转速值比较,若大于预设的转速值则减小DAC0的数值,若小于转速预设的转速值则增加DAC0的值调整电机的转速,直到转速值等于预设定的值,这样就实现了对电机转速的控制,主程序和T0中断流程图如图2、3所示。

3实验测试结果

首先在软件中给出转速预设值,即给定常量speed的值,观察速度稳定后七段数码管的数值,比较实际测量的转速值和预设转速值,计算测量误差,评价测量的准确性,测试结果如表1所示。根据实验测试和误差分析绘制了测量误差曲线,如图4所示。误差分析表明,转速测量误差在5%以内,并且随着转速预设值的增加测量误差愈小,呈指数形式下降,函数关系如式(3)所示。

4结论

本测速系统采用集成霍尔传感器敏感速率信号,具有频率响应快、抗干扰能力强等特点。霍尔传感器的输出信号经信号调理后,通过单片机对连续脉冲记数来实现转速测控,并且充分利用了单片机的内部资源,有很高的性价比。经过测试并对误差进行分析发现,该系统的测量误差在5%以内,并且在测量范围内转速越高测量精度越高。所以该系统在一般的转速检测和控制中均可应用。

本文来源于大道无极‘技术BLOG https://www.360docs.net/doc/f812017691.html,/ , 原文地址:https://www.360docs.net/doc/f812017691.html,/post/955.html

传感器原理——基于霍尔传感器的转速测量系统设计

. 传感器原理及应用期末课程设计题目基于霍尔传感器的转速测量电路设计 姓名小波学号8888888888 院(系)电子电气工程学院 班级清华大学——电子信息 指导教师牛人职称博士后 二O一一年七月十二日

摘要:转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

Abstract: The rotate speed is one of the important parameters for the engine, and it is also the important factor that calculates other parameters. The rotate speed measurement system for the common engine is designed with the single chip STC89C51. The signal of the rotate speed is sampled by the Hall sensor, and it is transformed into square wave which will be sent to single chip computer. The result of the experiment shows that the measurement system is able to satisfy the requirement of the engine rotate speed measurement. Key words:rotate speed measurement, Hall sensor, signal processing, data processing

传感器原理——基于霍尔传感器的转速测量系统设计

传感器原理及应用期末课程设计题目基于霍尔传感器的转速测量电路设计 姓名小波学号8888888888 院(系)电子电气工程学院 班级清华大学——电子信息 指导教师牛人职称博士后 二O一一年七月十二日

摘要:转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

Abstract: The rotate speed is one of the important parameters for the engine, and it is also the important factor that calculates other parameters. The rotate speed measurement system for the common engine is designed with the single chip STC89C51. The signal of the rotate speed is sampled by the Hall sensor, and it is transformed into square wave which will be sent to single chip computer. The result of the experiment shows that the measurement system is able to satisfy the requirement of the engine rotate speed measurement. Key words: rotate speed measurement, Hall sensor, signal processing, data processing

基于霍尔传感器的转速测量)

成绩评定: 传感器技术 课程设计 题目基于霍尔传感器的转速测量

摘要 转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

目录 一、设计目的------------------------- 1 二、设计任务与要求--------------------- 1 2.1设计任务------------------------- 1 2.2设计要求------------------------- 1 三、设计步骤及原理分析 ----------------- 1 3.1设计方法------------------------- 2 3.2设计步骤------------------------- 2 3.3设计原理分析--------------------- 16 四、课程设计小结与体会 ---------------- 16 五、参考文献------------------------- 16

一、设计目的 1.学习基本理论在实践中综合运用的初步禁言,掌握模拟电路的设计的基本方法,设计步骤,培养综合设计与实物调试能力。 2.学会霍尔传感器的设计方法和性能指标测试。 3.进一步了解霍尔传感器的组成框图和各个单元的工作原理以及相互之间的联系。 4.培养实践技能,提高分析和解决问题的能力。 5.提高自己对文献资料的搜索和信息处理能力。 二、设计任务与要求 2.1设计任务 1、查阅传感器有关方面的相关资料,了解此方面的发展状况。 2、掌握所用器件的特性。 3、采用合理的设计方案。 4、设计、实现该系统。 5、撰写设计报告。 2.2设计要求 1.掌握霍尔传感器的使用方法 2.熟悉使用单片机测量转速 三、设计步骤及原理分析 3.1设计方法 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化

基于单片机的电机转速测量系统

兰州交通大学 毕业设计文献综述 题目:基于单片机的电机转速测量系统Title:Motor speed measuring system based on single chip microcomputer 姓名:韦宝芸

学号:3 班级:机设1202班 摘要 本文首先叙述了单片机测量转速的系统构成及转速测量的几种常用方法,分析了相应方法在测量上的特点、误差和计算。其次,针对特定的应用环境,设计出一种基于 80C51单片机的全数字式测速系统,详细阐述了系统的工作原理,指出产生误差的可能原因,并给出了具体解决的方法;根据系统要求编制了源程序,分析其工作流程。最后,对构建的系统利用仿真机进行调试,对测量指标进行了分析、比较并提出改进方案。 关键词:单片机、转速、测量精度 Abstract

This paper first discussed some ways for rotary speed measure. It analyzed characters and errors of these ways. Second, it designed full digital measure system based on a Single-Chip Microprocessor(80C51) responding to special application, stated the working theory of the system and the methods to solve the errors, writed the working programmes by A51 assemble language. Finally, this system implementation was confirmed by using of Keil-51 simulator. The characters on the error margin and accuracy was summarized. Keywords : Single-Chip Microprocessor、rotary speed 、measureprecision Keil-51

实验十九 开关式霍尔传感器测转速实验

实验十九开关式霍尔传感器测转速实验 一、实验目的:了解开关式霍尔传感器测转速的应用。 二、基本原理:开关式霍尔传感器是线性霍尔元件的输出信号经放大器放大,再经施密特电路整形成矩形波(开关信号)输出的传感器。开关式霍尔传感器测转速的原理框图19—1所示。当被测圆盘上装上6只磁性体时,圆盘每转一周磁场就变化6次,开关式霍尔传感器就同频率f相应变化输出,再经转速表显示转速n。 图19—1开关式霍尔传感器测转速原理框图 三、需用器件与单元:主机箱中的转速调节0~24V直流稳压电源、+5V直流稳压电源、电压表、频率\转速表;霍尔转速传感器、转动源。 四、实验步骤: 1、根据图19—2将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm。 2、将主机箱中的转速调节电源0~24V旋钮调到最小(逆时针方向转到底)后接入电压表(电压表量程切换开关打到20V档);其它接线按图19—2所示连接(注意霍尔转速传感器的三根引线的序号);将频频\转速表的开关按到转速档。 3、检查接线无误后合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变直流电机电枢电压),观察电机转动及转速表的显示情况。

图19—2 霍尔转速传感器实验安装、接线示意图 4、从2V开始记录每增加1V相应电机转速的数据(待电机转速比较稳定后读取数据);画出电机的V-n(电机电枢电压与电机转速的关系)特性曲线。实验完毕,关闭电源。 n(转/ 406286108132157179203225250分) V(mv)2003004635006017037999019991104 电机的V-n(电机电枢电压与电机转速的关系)特性曲线 五、思考题: 利用开关式霍尔传感器测转速时被测对象要满足什么条件? 被测物能够阻挡或透过或反射霍尔信号,般都是一个发射头一个接收头若发射接收安装在同侧,则被测物必须能反射该信号,发射接收安装在对侧,则被测物必须能阻挡透过该信

直流电机转速测量系统的设计

一、概述 该课程设计是关于直流电动机转速的测量。转速是电动机极为重要的一个状态参数,一般是指电机转子的每分钟转数,通常用r/min 表示。本次课程设计选用光电测速法,测量电路由光电转换电路,整形电路,晶体振荡电路,分频电路,倍频电路,时序控制电路和计数、译码、驱动、显示电路构成,电机转速的测量范围为600r/min~30000r/min ,测量的相对误差 1%,并用5位LED 数码管显示出相应的电机转速。 本次课设需满足以下设计要求: 1根据技术指标,设计各部分电路并确定元器件参数; 2.用5位LED 数码管显示出相应的电机转速; 3.画出电路原理图(元器件标准化,电路图要规范化)。 二、方案论证 本课程设计是设计电机转速测量系统,采用光电测速方案,将转速信号转化为脉冲信号,然后用数字系统内部的时钟来对脉冲信号的频率进行测量,方案中包括光电转换电路,整形电路,闸门电路,晶体振荡电路,分频电路,倍频电路,控制电路和计数、译码、驱动、显示电路。原理方框图如图1所示: 在电动机转轴上安装一个圆盘,在圆盘上打6个均匀小孔。当电动机旋转时光源通过小孔投射到光敏三极管上,就产生了一序列的脉冲信号,光敏三极管产生的脉冲信号频率与电机转速成正比。脉冲信号经过整形电路转变成方波,再用二倍频电路使整形后的信号频率变为原来的二倍。再由晶体振荡电路输出的信号经过215分频电路, 光电转换电路 整 形 电 路 闸 门 电 路 计数、译码、驱动、显示 电路 输入 信号 晶体振荡器 电路 分 频 电 路 控 制 电 路 图1 电机转速测量系统原理框图

产生1Hz的基准信号,再经过10分频,便可产生一个0.1Hz的基准信号,该基准信号用来控制闸门电路,把经过倍频的光电转换后的信号计数并显示出来 三、电路设计 1.光电转换电路 在该部分可以用发光元件作为光的发射部分,可以选择发光二极管作发光元件,接收部分则要选择光敏三级管作为接受部件。其原理是用光敏三极管接收发光二极管通过小孔发射过来的光信号。在电机的转轴上安装上已打好6个均匀小孔的圆盘,让发光二极管与光敏三极管通过小孔相对,这样电机每转动一周,光线就会相应通过小孔6次,因为光电转换器受光一次就会产生一个脉冲,所以说电机在每转一周后就会相应的产生了6个脉冲。光电转换电路原理如图2所示: 图2 光电转换电路原理图 图中R1和R2为两个为350Ω限流电阻,LED持续发出的光被带孔圆盘间歇性阻断,变成间断的光信号,而光敏三极管将接收到的光信号转化成电信号,作用于之后的系统。 2.整形电路 整形电路用555定时器构成施密特触发器,利用施密特触发器,将输入的信号进行整形,输出为方波。2和6管脚连在一起接输入信号,从3管脚输出,输入信号与 输出信号反相,在5管脚接入10nF的滤波电容,当输入电压v i ﹤1/3Vcc时,v o 输出 为高电平,当输入电压v i ﹥2/3Vcc时,v o 输出为低电平。整形电路接法及输出波形如 图3和图4所示:

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔 是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

光电传感器转速测量系统设计讲解

专业课程设计 题目 光电传感器的转速测量设计 院系:自动化学院 专业班级: 小组成员: 指导教师: 日期:2012年10月8---2012年10月19

一.课程设计描述 采用单片机、uln2003为主要器件,设计步进电机调速系统,实现电机速度开环可调。 二.课程设计具体要求 1、通过按键选择速度; 2、转速测量显示范围为0~9999转/秒。 3、检测并显示各档速度。 三.主要元器件 实验板(中号) 1个步进电机 1个 STC89C52 1个电容(30pF、10uF)各1个 数码管(共阳、四位一体)1个晶振(12MHz) 1个 小按键 4个 ULN2003 1个 电阻若干发光二极管 1个 三极管(NPN) 4个排阻 1个 四.原理阐述 4.1系统简述 按照题给要求,我们最终设计了如下的解决方案: 用户通过键盘键入控制指令(开关),微控制器在收到指令后改变输出的PWM 波,最终在ULN2003的驱动下电机转速发生改变。通过ST151传感器测量电机扇叶的旋转情况,将转速显示在数码管上。 在程序主循环中实现按键扫描与转速显示,将定时器0作为计数器,计数ST151产生的下降沿,可算出转速,并送至数码管显示。 设计思路: (1)利用光电开关管做电机转速的信号拾取元件,在电机的转轴上安装一个圆盘,在圆盘上挖1小洞,小洞上下分别对应着光发射和光接受开关,圆盘转动一圈即光电管导通1次,利用此信号做为脉冲计数所需。 (2)对光电开关信号整流放大。 (3)脉冲经过单片机内部的计数器和定时器进行计数和定时。 (4)显示电路采用单片机动态显示。

4.2转速测量原理 在此采用频率测量法,其测量原理为,在固定的测量时间内,计取转速传感器产生的脉冲个数,从而算出实际转速。设固定的测量时间为Tc(min),计数器计取的脉冲个数m,假定脉冲发生器每转输出p个脉冲,对应被测转速为N (r/min),则f=pN/60Hz;另在测量时间Tc内,计取转速传感器输出的脉冲个数m应为 m=Tcf ,所以,当测得m值时,就可算出实际转速值[1]: N=60m/pTc (r/min) (1) 4.3转速测量系统组成框图 系统由信号预处理电路、单片机STC 89C51、系统化LED显示模块、串口数据存储电路和系统软件组成。其中信号预处理电路包含信号放大、波形变换和波形整形。对待测信号进行放大的目的是降低对待测信号的幅度要求;波形变换和波形整形电路则用来将放大的信号转换成可与单片机匹配的TTL信号;通过对单片机的编程设置可使内部定时器T0对输入脉冲进行计数,这样就能精确地算出加到T0引脚的单位时间内检测到的脉冲数;设计中转速显示部分采用价格低廉且使用方便的LED模块,通过相关计算方法计算得到的转速通过I2C总线放到E2PROM存储,既节省了所需单片机的口线和外围器件,同时也简化了显示部分的软件编程。系统的原理框图如图2.1所示。 图2.1 系统的原理框图 五.系统硬件电路的设计 系统硬件部分包含输入模块、显示模块、控制模块、测速模块等。在硬件搭建前,先通过Proteus Pro 7.5进行硬件仿真实现。 5.1脉冲产生电路设计

根据霍尔传感器的电机测速装置设计

检测与转换技术大作业报告 题目 院系 班级 学生姓名 日期

霍尔传感器在电机转速测量装置上 的应用设计 利用霍尔传感器,设计了一种电机转速测量装置并提出了相应的测速算法,还设计了转速信号处理电路,将脉冲信号转化为标准的T TL 电平,便于A T89C52 单片机的计数运算,并通74LS164 寄存器将转速信号显示在L ED 上。该电机测速装置具有线路简单、实时性好、成本低、安装调试方便和节省空间等优点,尤其是在测量空间有限、轴偏心或传感器不便安装的条件下,该测量方法具有明显的优势。 第一章测速电路相关元件分析 1.1 AT89C52单片机 AT89C52是一个低电压、高性能CMOS8位单片机,片内含8KB的可反复擦写的Flash只读程序存储器和256B的随机存取数据存储器(RAM),兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元。AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读/写口线。AT89C52主要功能特性和引脚图如下所示: ·完全兼容MCS-51指令系统 ·8k可反复擦写Flash ROM ·全静态操作:时钟频率0-24MHz

·三级加密程序存储器 ·3个16位可编程定时/计数器中断 ·256x8bit内部RAM ·32个可编程的双向I/O口 ·2个外部中断源,共8个中断源 ·2个读写中断口线 ·可编程串行UART通道 ·低功耗空闲和掉电模式 ·软件设置睡眠和唤醒功能 1.2 LM317T三端稳压器 LM317T是可调节三端正电压稳压器,在输出电压范围为1.25V到37V时能够提供超过1.5A的负载电流。此稳压器使用非常容易,只需两个外接电阻来设置输出电压。其主要功能特性如下所示: ·输出电流超过1.5安 ·输出电压在1.2伏和37伏间连续可调 ·内部热过载保护 ·不随温度变化的内部短路电流限制

霍尔传感器测量转速

测试技术应用案例 (霍尔传感器测量转速) 班级: 学号: 姓名:

霍尔传感器测量转速 一.霍尔传感器的优点 1.测量范围广:霍尔传感器可以测量任意波形的电流和电压, 如:直流、交流、脉冲波形等。 2.精度高:在工作温度区内精度优于1%,该精度适合于任何波形 的测量。 3.线性度好:优于%。 4.动态性能好:响应时间小于1μs跟踪速度di/dt高于50A/μs。 5.性价比高。 各式各样的霍尔传感器 二.霍尔传感器测转速原理 霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。利用霍尔效应可以设计制成多种传感器。霍尔电位差U H的基本关系为: U H=K H IB K H =1/nq(金属) 式中K H――霍尔系数;n――单位体积内载流子或自由电子的个数;q――电子电量;I――通过的电流;B――垂直于I的磁感应强度; 利用霍尔效应表达式:U H=K H IB,当被测物体上装上N只磁性体时,物体每转一周磁场就变化N次,霍尔电势相应变化N次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 三.测量设备 本案例以实验室霍尔元件测量圆盘转速为例。 实验设备:CSY2000系列传感器与检测技术实验台。

1、主控台部分,提供高稳定的±15V、+5V、±2V~±10V可 调、+2V~+24V可调四种直流稳压电源;主控台面板上还装有电压、频率、转速的3位半数显表。 2、旋转源0-2400转/分(可调) 需用器件与单元:霍尔传感器、5V直流源、转速调节装置、转动源单元、数显单元的转速显示部分。 四.实验方案 1.实验装置如下图 2.将5V直流源加于霍尔元件电源输入端。 3.将霍尔转速传感器输出端(黄)插入数显单元F i n端。 4.将转速调节中的2V-24V转速电源引入到台面上转动单元中转 动电源2-24VK插孔。 5.将数显单元上的转速/频率表波段开关拨到转速档,此时数显 表指示转速。 6.调节转速调节电压使转动速度变化。观察数显表转速显示的变 化。 五.实验结果计算 磁体经过霍尔元件,霍尔元件就会发出就会发出一个信号,经放大整形得到脉冲信号,两个脉冲的间隔时间即为周期,通过周期就可算出转速。

光电传感器的转速测量系统设计

课程设计报告 题目:光电传感器的转速测量系统设计姓名: 学号: 专业班级: 指导老师:

目录 1引言 (1) 2系统组成及工作原理 (1) 2.1转速测量原理 (1) 2.2转速测量的一般方法 (3) 2.3转速测量系统组成框图 (3) 3系统硬件电路的设计 (3) 3.1脉冲产生电路设计 (3) 3.2光电转换及信号调理电路设计 (4) 3.2.1光电传感器简介 (4) 3.2.2光电转换及信号调理电路设计 (5) 3.3测量系统主机部分设计 (7) 3.3.1单片机 (7) 3.3.2键盘显示模块设计 (9) 3.3.3串行通信模块设计 (11) 3.3.4电源模块设计 (12) 4系统软件设计 (13) 4.1程序模块设计 (13) 4.2数据处理过程 (15) 4.3浮点数学运算程序 (16) 5制作调试 (16) 6结果分析 (18) 7参考文献 (18)

1、引言 随着社会经济的快速发展,转速测量成为了社会生产和日常生活中重要的测量和控制对象。测速是工农业生产中经常遇到的问题,人们经常需要精确测量每秒钟转轴的转速,学会对电机转速的测量和显示具有重要的意义。近年来,由于世界范围内对转速测量合理利用的日益重视,促使转速测量技术的迅速发展,各种新型的测量仪表相继问世并越来越多地得到应用。由于技术保密,厂家不会提供详细电路图和源代码,用户很难自行进行二次开发和改进。针对这种现状,使用光电传感器结合STC公司的STC 89C51型单片机设计的一种转速测量与控制系统。STC 89C51单片机采用了CMOS工艺和高密度非易失性存储器技术,而且其输入/输出引脚和指令系统都与MCS-51兼容,是开发该系统的适合芯片。 2 、系统组成及工作原理 2.1 转速测量原理 在此采用频率测量法,其测量原理为,在固定的测量时间内,计取转速传感器产生的脉冲个数,从而算出实际转速。设固定的测量时间为Tc(min),计数器计取的脉冲个数m,假定脉冲发生器每转输出p个脉冲,对应被测转速为N(r/min),则f=pN/60Hz;另在测量时间Tc内,计取转速传感器输出的脉冲个数m应为 m=Tcf ,所以,当测得m值时,就可算出实际转速值[1]: N=60m/pTc (r/min) (1) 2.2 转速测量的一般方法 一般转速测量系统有以下几个部分构成,转速测量框图如图2-1所示。 图2-1 转速测量框图 1.转速信号拾取 转速信号拾取是整个系统的前端通道,目的是将外界的非电参量,通过一定方式转换

基于霍尔传感器的转速测量系统设计

基于霍尔传感器的 转速测量 姓名:** 班级:** 学号:** 指导老师:** 基于霍尔传感器的转速测量

摘要 本文介绍一种用STC89C51单片机测量小型电动机转速的方法,霍尔传感器的工作原理,阐述了霍尔传感器测速系统的工作过程,利用脉冲计数法实现了对转速的测量,通过LCD 直观地显示电机的转速值。结合硬件电路设计,采用模块化方法进行了软件设计。编制了电机转速的测量设计了测量模块、转速模块、显示模块等的C51程序。系统以单片机STC89C51为控制核心,用霍尔集成传感器作为测量小型直流电机转速的检测元件,经过单片机数据处理,用8位LED数码管动态显示小型直流电机的转速。 关键词:单片机;转速测量;霍尔传感器 背景: 在直流电机的多年实际运行的过程中,机械测速电机不足之处日益明显,其主要表现为直流测速电机DG中的炭刷磨损及交流测速发电机TG中的轴承磨损,增加了设备的维护工作量,也随着增加了发生故障的可能性;同时机械测速电机在更换炭刷及轴承的检修作业过程中,需要将直流电动机停运,安装过程中需要调整机械测速电机轴与主电机轴的同轴度,延长了检修时间,影响了设备的长期平稳运行。 随着电力电子技术的不断发展,一些新颖器件的不断涌现,原有器件的性能也随着逐渐改进,采用电力电子器件构成的各种电力电子电路的应用范围与日俱增。因此采用电子脉冲测速取代原直流电动机械测速电机已具备理论基础,如可采用磁阻式、霍尔效应式、光电式等方式检测电机转速。 经过比较分析后,决定采用测速齿轮和霍尔元件代替原来的机械测速电机。霍尔传感器作为测速器件得到广泛应用。霍尔传感器是利用霍尔效应实现磁电转换的一种传感器。霍尔效应这种物理现象的发现,虽然已有一百多年的历史,但是直到20世纪40年代后期,由于半导体工艺的不断改进,才被人们所重视和应用。我国从70年代开始研究霍尔器件,经过20余年的研究和开发,目前已经能生产各种性能的霍尔元件,霍尔传感器具有灵敏度高、线性度好、稳定性高、体积小和耐高温等特点。 (一)转速的测量原理 转速是工程中应用非常广泛的一个参数,而随着大规模及超大规模集成电路技术的发展,数字测量系统得到普遍应用,利用单片机对脉冲数字信号的强大处理能力,应用全数字化的结构,使数字测量系统的越来越普及。在测量范围和测量精度方面都有极大的提高。转速的测量方法有很多,由于转速是以单位时间内的转速来衡量的,所以本文采用霍尔元器件测量转速。 霍尔器件是有半导体材料制成的一种薄片,其长为l,宽为b,厚度为d。若在垂直于薄片方向(即沿厚度d的方向)施加外磁场,在沿长为l的方向的两端面加外电场,则其内部会有一定的电流通过。由于电子在磁场中运动,所以将受到一个洛仑兹力,其大小为: F=qVB, 式中:F为洛伦兹力;q为载流子电荷,V为载流子运动速度,B为磁感应强度。

霍尔测速实验

246810 1214 1618202224 霍尔传感器V-n 曲线图 电压(V )/V 转速(n )/r p m 霍尔测速实验报告 一、实验目的: 了解霍尔组件的应用——测量转速。 二、实验仪器: 霍尔传感器、+5V 、+4、±6、±8、±10V 直流电源、转动源、频率/转速表。 三、实验原理; 利用霍尔效应表达式:U H =K H IB ,当被测圆盘上装上N 只磁性体时,转盘每转一周磁场变化N 次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。 四、实验内容与步骤 1.安装根据图28-1,霍尔传感器已安装于传感器支架上,且霍尔组件正对着转盘上的磁钢。 图28-1 2.将+5V 电源接到三源板上“霍尔”输出的电源端,“霍尔”输出接到频率/转速表(切换到测转速位置)。 3.打开实验台电源,选择不同电源+4V 、+6V 、+8V 、+10V 、12V (±6)、16V (±8)、20V (±10)、24V 驱动转动源,可以观察到转动源转速的变化,待转速稳定后记录相应驱动电压下得到的转速值。也可用示波器观测霍尔元件输出的脉冲波形。 五、数据记录与分析 2、用matlab 绘制V-RPM 曲线图

3、霍尔组件产生脉冲的原因 因为霍尔传感器本身是磁场和霍尔元件之间由于磁性交替变化而产生的脉冲信号变化。两者之间通常会设有遮光原件,能够在变化过程中间断的影响到两者之间的磁通量。有磁场照射霍尔元件导通,没有磁场照射霍尔元件截止,不断的交替变化引起了脉冲的信号变化,所以霍尔测速时,所长生的波形也就是脉冲电,只是随转速的改变频率发生了改变,频率变化越快证明转速越快。 六、实验报告 1.分析霍尔组件产生脉冲的原理。 2.根据记录的驱动电压和转速,作V-RPM曲线。

基于单片机的电机转速测量系统设计_(附图及源程序)

摘要 在工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。模拟式采用测速发电机为检测元件,得到的信号是模拟量。数字式通常采用光电编码器,霍尔元件等为检测元件,得到的信号是脉冲信号。随着微型计算机的广泛应用,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法。 本文便是运用AT89C51单片机控制的智能化转速测量仪。电机在运行过程中,需要对其进行监控,转速是一个必不可少的一个参数。本系统就是对电机转速进行测量,并可以和PC机进行通信,显示电机的转速,并观察电机运行的基本状况。 本设计主要用AT89C51作为控制核心,由霍尔传感器、LED数码显像管、HIN232CPE电平转换、及RS232构成。详细介绍了单片机的测量转速系统及PC机与单片机之间的串行通讯。充分发挥了单片机的性能。本文重点是测量速度并显示在5位LED数码管上。 其优点硬件是电路简单,软件功能完善,测量速度快、精度高、控制系统可靠,性价比较高等特点。 关键字:MSC-51(单片机);转速;传感器

目录 摘要 (1) Abstract ................................... 错误!未定义书签。 1 序言 (1) 2 系统功能分析 (2) 2.1 系统功能概述 (2) 2.2 系统要求及主要内容 (3) 3 系统总体设计 (4) 3.1 硬件电路设计思路 (4) 3.2 软件设计思路 (4) 4 硬件电路设计 (6) 4.1 单片机模块 (6) 4.1.1 处理执行元件 (6) 4.1.2 时钟电路 (10) 4.1.3 复位电路 (11) 4.1.4 显示电路 (12) 4.2 霍尔传感器简介 (15) 4.2.1 霍尔器件概述 (15) 4.2.2 霍尔传感器的应用 (16) 4.2.3 AH41霍尔开关 (17) 4.3 发送模块 (18) 5 软件设计 (22) 5.1 单片机转速程序设计思路及过程 (22) 5.1.1 单片机程序设计思路 (22) 5.1.2 单片机转速计算程序 (23) 5.1.3 二-十进制转换程序 (24) 5.2 程序设计 (27) 6 系统调试 (29) 6.1 硬件调试 (29) 6.2 软件调试 (30) 6.3 综合调试 (32)

霍尔转速测量实训报告

河南工程学院 课程设计 霍尔转速测量 学生姓名:## 学院:电气信息工程学院专业班级:电气工程及其自动化####专业课程:自动检测技术 指导教师:## 2014年6月26日

一、设计的背景和目的 1.设计的背景 在工程实践中,我们经常会遇到各种需要测量转速的场合。例如在发动机、电动机等旋转设备的试验、运转和控制中,常需要分时和连续测量和显示其转速及瞬时速度。 传统式的转速测量通常是采用测速发电机为检测元件,这种方法是模拟式的,因此其得到的信号是电压信号,其抗干扰能力差,灵活性差。霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。采用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达.55℃~150℃。按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。 2.设计的目的 实验介绍了霍尔传感器的工作原理,阐述了霍尔传感器测速系统的工作过程,利用脉冲计数法实现了对转速的测量,利用硬件电路设计,编制了电机转速的测量设计了测量模块、显示模块等,并通过PROTEUSE软件进行了仿真。仿真结果表明所设计的电路原理上是可行的。 二、设计的功能 根据霍尔传感器的原理,当转动的物体比如说电机在转动时,如果能在其转子上加上一个磁铁,然后让霍尔传感器去感受就能在LED数码管上得到一定时间内的转动的脉冲数,然后通过芯片的内部计算从而得到转速,并且显示在数码管

数字式转速测量系统设计方案

数字式转速测量系统设计方案 1.1 数字式转速测量系统的发展背景 目前国外测量电机转速的方法很多,按照不同的理论方法,先后产生过模拟测速法(如离心式转速表、用电机转矩或者电机电枢电动势计算所得)、同步测速法(如机械式或闪光式频闪测速仪)以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。传统的电机转速检测多采用测速发电机或光电数字脉冲编码器,也有采用电磁式(利用电磁感应原理或可变磁阻的霍尔元件等)、电容式(对高频振荡进行幅值调制或频率调制)等,还有一些特殊的测速器是利用置于旋转体的放射性材料来发生脉冲信号.其中应用最广的是光电式,光电式测系统具有低惯性、低噪声、高分辨率和高精度的优点.加之激光光源、光栅、光学码盘、CCD 器件、光导纤维等的相继出现和成功应用,使得光电传感器在检测和控制领域得到了广泛的应用。而采用光电传感器的电机转速测量系统测量准确度高、采样速度快、测量围宽和测量精度与被测转速无关等优点,具有广阔的应用前景。 1.2 本设计课题的目的和意义 在工程实践中,经常会遇到各种需要测量转速的场合, 例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。要测速,首先要解决是采样问题。在使用模技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。为了能精确地测量转速外,还要保证测量的实时性,要求能测得瞬时转速方法。因此转速的测试具有重要的意义。 这次设计容包含知识全面,对传感器测量发电机转速的不同的方法及原理设计有较多介绍,在测量系统中能学到关于测量转速的传感器采样问题,单片机部分的容,显示部分等各个模块的通信和联调。全面了解单片机和信号放大的具体容。进一步锻炼我们在信号采集,处理,显示发面的实际工作能力。

霍尔传感器转速测量电路设计

课程设计报告书

2.概述 2.1系统组成框图 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用AT89C51单片机,显示器采用8位LED数码管动态显示。本课题采用的是以8051系列的A T89C51单片机为核心开发的霍尔传感器测转速的系统。系统硬件原理框图如图1所示: 图1 系统框图 2.2系统工作原理 转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r/min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机AT89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。

2.2.1霍尔传感器 霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的 NJK-8002D 的霍尔传感器,其响应频率为100KHz ,额定电压为5-30(V )、检测距离为10(mm )。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范围宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V ,直流电源要有足够的滤波电容,测量极性为N 极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm 处。当磁钢与霍尔元件相对位置发生变化时,通过霍尔元件感磁面的磁场强度就会发生变化。圆盘转动,磁钢靠近霍尔元件,穿过霍尔元件的磁场较强,霍尔元件输出低电平;当磁场减弱时,输出高电平,从而使得在圆盘转动过程中,霍尔元件输出连续脉冲信号。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2.2.2转速测量原理 霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l 、b 、d 。若在垂直于薄片平面(沿厚度 d )方向施加外磁场B ,在沿l 方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:qVB f = 式中:f —洛仑磁力, q —载流子电荷, V —载流子运动速度, B —磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差H U 称为霍尔电压。 霍尔电压大小为: H U H R =d B I /??(mV) 式中:H R —霍尔常数, d —元件厚度,B —磁感应强度, I —控制电流 设 H K H R =d /, 则H U =H K d B I /??(mV) H K 为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和 单位控制电流下输出霍尔电动势的大小。应注意,当电磁感应强度B 反向时,霍尔电动势也反向。图2为霍耳元件的原理结构图。

速度测量实验

霍尔测速实验 一、实验目的:了解霍尔转速传感器的应用。 二、基本原理:利用霍尔效应表达式U H = K H IB ,当被测圆盘上装上N 只磁性 体时,圆盘每转一周,磁场就变化N 次,霍尔电势相应变化N 次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速(转速=60*频率/12) 三、需用器件与单元:霍尔转速传感器、转速调节2-24V 、转动源单元、数显单元的转速显示部分。 四、实验步骤: 1、根据图5-4,将霍尔转速传感器装于传感器支架上,探头对准反射面的磁 钢。 2、将直流源加于霍尔元件电源输入端。红(+)接+5V ,黑(┴)接地。 3、将霍尔转速传感器输出端(蓝)插入数显单元F in 端。 4、将转速调节中的2-24V 转速电源引到转动源的2-24V 插孔。 5、将数显单元上的转速/频率表波段开关拨到转速档,此时数显表指示转速。 6、调节电压使转动速度变化。观察数显表转速显示的变化。 五、思考题: 1、利用霍尔元件测转速,在测量上是否有限制? 2、本实验装置上用了十二只磁钢,能否用一只磁钢,二者有什么区别呢? 图1霍尔、光电、磁电转速传感器安装示意图

实验三十一光纤传感器测速实验 一、实验目的:了解光纤位移传感器用于测量转速的方法。 二、基本原理:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。 三、需用器件与单元:光纤传感器、光纤传感器实验模块、转速/频率数显表、直流源±15V、转速调节2~24V,转动源模块。 四、实验步骤: 1、光纤传感器按图1装于传感器支架上,使光纤探头与电机转盘平台中磁钢反射点对准。 2、按“光纤位移特性实验”的连线图,如图2所示,将光纤传感器实验模 块输出V o1与数显电压表V i 端相接,接上实验模块上±15V电源,数显表的切换 开关选择开关拨到20V档。①用手转动圆盘,使探头避开反射面(暗电流),合 上主控箱电源开关,调节Rw 2使数显表显示接近零(≥0),此时Rw 1 处于中间位 置。②再用手转动圆盘,使光纤探头对准反射点,调节升降支架高低,使数显表 指示最大,重复①、②步骤,直至两者的电压差值最大,再将V o1 与转速/频率数显表fi输入端相接,数显表的波段开关拨到转速档。 图2光纤传感器位移实验模块 3、将转速调节2-24V,接入转动电源24V插孔上,使电机转动,逐渐加大转速源电压。使电机转速盘加快转动,固定某一转速,观察并记下数显表上的读 数n 1 。 4、固定转速电压不变,将选择开关拨到频率测量档,测量频率,记下频率 读数,根据转盘上的测速点数折算成转速值n 2 (转速和频率的折算关系为:转速=频率*60/12)。 5、将实验步骤4与实验步骤3比较,以转速n 1 作为真值计算两种方法的测

相关文档
最新文档