数学建模“如何进行人员分配”问题

数学建模“如何进行人员分配”问题
数学建模“如何进行人员分配”问题

数学建模竞赛试题

B题:如何进行人员分配

“A公司”是一家从事建筑工程的公司,现有41个专业技术人员,其结构和相应的工资水平分布如表1所示:

表1 人员结构及工资情况

目前,公司承接4个工程项目,其中2项是现场施工,分别在A地和B地,主要工作在现场完成;另外2项是工程设计,分别在C地和D地,主要工作在办公室完成。由于4个项目来源于不同客户,并且工作的难易程度不同,因此,各项目的合同对有关技术人员的收费标准不同,具体情况如表2:

表2 不同项目和各种人员的收费标准

为了保证工程质量,各项目中必须保证专业人员结构符合客户的要求,具体情况如表3所示:

表3 各项目对专业技术人员结构的要求

说明:

(1)项目D,由于技术要求较高,人员配备必须是助理工程师以上,技术员不能参加;

(2)高级工程师相对稀少,而且是保证质量的关键,因此,各项目客户对高级工程师的配备要求不能少于一定数目的限制。各项目对其他专业人员也有不同的限制或要求;

(3)各项目客户对总人数都有限制;

(4)由于C,D两项目是在办公室完成,所以每人每天有50元的管理费开支;

由于收费是按人工计算的,而且4个项目总共同时最多需要的人数是10+16+11+18=55,多于公司现有人数41,应如何合理地分配现有的人员力量,使公司每天的直接受益最大?

2011年高教社杯全国大学生数学建模竞赛选拔赛

题目如何进行人员分配

摘要

人力资源管理是一个公司进行人力资源分配的重要工作,合理地安排人力资源,能够为企业带来最大的经济效益。公司不只要对现有的人员进行任务分配,还要使公司的人力资源结构保持一个科学的比例。本模型旨在为A建筑公司提供一个良好的人员分配方案,达到公司获利最大的目的,以及怎样在以后的人员招聘中使人力资源结构保持一个良好的比例。在公司现有的情况下,通过分析各种影响因素,排除掉一些不必要的干扰因素,运用整数线性规划和分支定界法的知识建立数学模型,并使用LINGO软件进行编程求解,得出公司人员分配的最佳方案。在对本模型优缺点评价之后,根据公司可能会采取临时招聘技术人员的情况,对模型进行了改进,通过模型计算,为公司提供了一个合理的人员招聘方案。

关键字:线性规划,人员分配,最大收益,LINGO软件

目录

一、问题重述

二、问题分析

三、问题假设

四、模型建立

五、模型求解

六、结果分析

七、模型评价

八、模型改进

九、附录

一、问题重述

企业的人力资源管理是一门科学,而人力资源管理最主要的任务是如何把企业现有的人力资源安排到合适的工作岗位,以使企业能够获得更高的经济效益。尤其是在人力资源稀缺的情况下,合理的安排各人员的任务更是显得至关重要。接下来我们将要解决的就是一个企业人员分配的问题。在这个问题中,A建筑工程公司有高级工程师、工程师、助理工程师、技术员等四种不同级别的工作人员,并且公司同时承接了A、B、C、D四个不同的工程项目。公司不同级别的技术人员的工资是固定不变的,各级别技术人员的数量也是一定的,为了保证工程质量,各项目中必须保证专业人员结构符合客户的要求,在各项目的收费标准也是一定的情况下,合理的安排现有的技术人员的任务,将使公司获得一个最大的利润。那么,为了获得最大收益,A公司到底应该如何把这四种不同级别的技术人员安排到四个不同的项目中去呢?本文中,我们将重点对该问题进行分析。

二、问题分析

该问题的任务是,通过合理分配人员,使公司每天的直接收益最大。公司的主要收入来源是对各项目所收取的费用,支出主要有两项:四种不同级别的技术人员的工资和项目期间的办公费用。公司的直接收益是总收入减去总支出。A公司对各个项目的不同技术人员的收费标准都高于对应技术人员的总支出费用。我们可以得出不同项目对应不同级别技术人员的利润表如下:

注:该表中的利润值是已经减去办公费用的值

同时,技术人员的分配受到不同项目对技术人员结构要求的约束,由于公司人员有限,各项目的技术人员安排不可能同时达到所需的最大数量,我们要将现有的41名技术人员对最大55个可用岗位进行安排。

从以上分析结果,我们可以确定这是一个线性规划问题,对公司现有的各级别技术人员进行合理的任务安排,可以使公司获得一个最大利润。接下来,我们

就将问题转化到如何将A公司各级别技术人员安排到55个岗位上来,使公司获得最大利润。

三、问题假设

1、公司的现有技术人员数量和结构保持不变,即公司不会再临时招聘专业技术人员;

2、一旦任务分配好之后,不会再出现人员变动的情况,并且不可能出现同一个技术人员同时担任两个项目的工作;

3、对项目的收费标准和专业技术人员的工资水平保持不变;

4、排除人员因生病、请假等不能正常工作的情况,排除天气对项目进行的影响;

5、假设四个项目工期相同,即四个项目每天都在同时运行。

四、模型建立

1、决策变量:

对各项目分配的技术人员数目设如下变量:

2、目标函数:

设公司每天的利润为M元,根据利润表和人员分配表,公司每天的总利润可以表示为:

M=750*x11+1250*x12+1000*x13+700*x14+

600*x21+600*x22+650*x23+550*x24+

430*x31+530*x32+480*x33+480*x34+

390*x41+490*x42+240*x43+340*x44

3、约束条件:

(1) 各项目的不同技术人员数量约束如下:1≤x11≤3

2≤x12≤5

x13=2

1≤x14≤2

x21≥2

x22≥2

x23≥2

2≤x24≤8

x31≥2

x32≥2

x33≥2

x34≥1

x41≥1

x42≥3

x43≥1

x44=0

(2)各项目安排的总人员约束如下:

x11+x21+x31+x41≤10

x12+x22+x32+x42≤16

x13+x23+x33+x43≤11

x14+x24+x34+x44≤18

(3)各级别技术人员总数约束如下:

x11+x12+x13+x14≤9

x21+x22+x23+x24≤17

x31+x32+x33+x34≤10

x41+x42+x43+x44≤5

五、模型求解

对于这种整数规划类型的问题,可以用分支定界法来进行求解。但是由于该模型的变量比较多,用分支定界法进行手工求解是比较麻烦的,而lingo软件求解整数规划问题时,正是基于这种方法,所以我们可以借助lingo软件进行求解。编写lingo程序如下:

model:

max=750*x11+1250*x12+1000*x13+700*x14+

600*x21+600*x22+650*x23+550*x24+

430*x31+530*x32+480*x33+480*x34+

390*x41+490*x42+240*x43+340*x44;

x11+x12+x13+x14<=9;

x21+x22+x23+x24<=17;

x31+x32+x33+x34<=10;

x41+x42+x43+x44<=5;

x11+x21+x31+x41<=10;

x12+x22+x32+x42<=16;

x13+x23+x33+x43<=11;

x14+x24+x34+x44<=18;

x11>=1;

x11<=3;

x12>=2;

x12<=5;

x13=2;

x14>=1;

x14<=2;

x21>=2;

x22>=2;

x23>=2;

x24>=2;

x24<=8;

x31>=2;

x32>=2;

x33>=2;

x34>=1;

x41>=1;

x42>=3;

x43>=1;

x44=0;

End

运行程序(运行结果见附录一),求得最优解为27150 元,即为公司每天最大直

接收益。

各项目的专业技术人员最优分配表如下:

六、结果分析

从运行结果(详见附录一)可以看出,公司的41名技术人员都能分配到任务,且完全符合各项目对技术人员结构的要求。而且,从其“影子价格”一栏可得知,在其他条件不变的情况下,每增加一名高级工程师,公司的最大直接收益就增加700元;每增加一名工程师,公司的最大直接收益就增加550元;每增加一名助理工程师,公司的最大直接收益增加480元;每增加一名技术员,公司的最大直接收益增加440元。因此,在不影响公司正常业务的情况下,应减少助理工程师和技术员的人数,增加高级工程师和工程师的人数,以使公司获得最大的直接收益。

七、模型评价

1.模型优点:

(1)该模型对问题用线性规划进行分析,而且列出了利润表对问题进行简化,使得问题变得简单,也减少了模型变量的数量,使得分析问题变得简单;

(2)模型用lingo软件进行求解,通过影子价格来分析问题,简化了手工计算的工作量;

(3)结果分析了各级别技术人员数量增加时对企业利润的影响,给人力资源结构调整作了一个参照,以及今后公司扩展业务时应该招聘的人员比例。

2.模型缺点:

(1)本模型忽略了实际作业时的多种因素,例如天气、人员缺勤等不确定因素;

(2)本模型未对公司实际作业时的其他支出进行考虑,如购买工具、设备折旧等;

(3)当公司招聘临时技术人员时,会对公司利润造成影响,本模型未对其进行考虑。

八、模型改进

针对模型的以上缺点,我们对其进行了以下改进:

四个项目同时要求的总人数为55人,而公司实际人口为41人,如果公司招聘更多的技术人员会使利润增加,但应该招多少高级工程师、工程师、助理工程师和技术员,才能使公司的直接收益最大呢?下面我们对此问题进行求解。假设其他条件不变,新招聘的技术人员的工资标准和现有人员的相同。我们编写如下lingo 程序并进行求解:

model:

max=750*x11+1250*x12+1000*x13+700*x14+

600*x21+600*x22+650*x23+550*x24+

430*x31+530*x32+480*x33+480*x34+

390*x41+490*x42+240*x43+340*x44;

x11+x21+x31+x41<=10;

x12+x22+x32+x42<=16;

x13+x23+x33+x43<=11;

x14+x24+x34+x44<=18;

x11>=1;

x11<=3;

x12>=2;

x12<=5;

x13=2;

x14>=1;

x14<=2;

x21>=2;

x22>=2;

x23>=2;

x24>=2;

x24<=8;

x31>=2;

x32>=2;

x33>=2;

x34>=1;

x41>=1;

x42>=3;

x43>=1;

x44=0;

End

结果(详见附录二)显示:当招录高级工程师3人,工程师7人,助理工程师4人时,公司的直接收益最大,且最大收益为35020元。

各项目的专业技术人员最优分配表如下:

表中的各级别的技术人员比例是最优的人员配置,当A公司保持这种人员比例时,会使公司的利润最大化。这就给今后公司的进行人员招聘提供了一个比较科学的参照。

九、附录

附录一:原模型运行结果

Global optimal solution found.

Objective value: 27150.00

Total solver iterations: 7

Variable Value Reduced Cost X11 1.000000 0.000000 X12 5.000000 0.000000 X13 2.000000 0.000000 X14 1.000000 0.000000 X21 6.000000 0.000000 X22 3.000000 0.000000 X23 6.000000 0.000000 X24 2.000000 0.000000 X31 2.000000 0.000000 X32 5.000000 0.000000 X33 2.000000 0.000000 X34 1.000000 0.000000 X41 1.000000 0.000000 X42 3.000000 0.000000 X43 1.000000 0.000000 X44 0.000000 0.000000

Row Slack or Surplus Dual Price

1 27150.00 1.000000

2 0.000000 700.0000

3 0.000000 550.0000

4 0.000000 480.0000

5 0.000000 440.0000

6 0.000000 50.00000

7 0.000000 50.00000

8 0.000000 100.0000

9 14.00000 0.000000

10 0.000000 0.000000

11 2.000000 0.000000

12 3.000000 0.000000

13 0.000000 500.0000

14 0.000000 200.0000

15 0.000000 0.000000

16 1.000000 0.000000

17 4.000000 0.000000

18 1.000000 0.000000

19 4.000000 0.000000

20 0.000000 0.000000

21 6.000000 0.000000

22 0.000000 -100.0000

24 0.000000 -100.0000

25 0.000000 0.000000

26 0.000000 -100.0000

27 0.000000 0.000000

28 0.000000 -300.0000

29 0.000000 -100.0000

附录二:改进后模型运行结果:

Global optimal solution found.

Objective value: 35020.00

Total solver iterations: 0

Variable Value Reduced Cost X11 3.000000 0.000000 X12 5.000000 0.000000 X13 2.000000 0.000000 X14 2.000000 0.000000 X21 4.000000 0.000000 X22 6.000000 0.000000 X23 6.000000 0.000000 X24 8.000000 0.000000 X31 2.000000 0.000000 X32 2.000000 0.000000 X33 2.000000 0.000000 X34 8.000000 0.000000 X41 1.000000 0.000000 X42 3.000000 0.000000 X43 1.000000 0.000000 X44 0.000000 0.000000

Row Slack or Surplus Dual Price

1 35020.00 1.000000

2 0.000000 600.0000

3 0.000000 600.0000

4 0.000000 650.0000

5 0.000000 480.0000

6 2.000000 0.000000

7 0.000000 150.0000

8 3.000000 0.000000

9 0.000000 650.0000

10 0.000000 350.0000

12 0.000000 220.0000

13 2.000000 0.000000

14 4.000000 0.000000

15 4.000000 0.000000

16 6.000000 0.000000

17 0.000000 70.00000

18 0.000000 -170.0000

19 0.000000 -70.00000

20 0.000000 -170.0000

21 7.000000 0.000000

22 0.000000 -210.0000

23 0.000000 -110.0000

24 0.000000 -410.0000

25 0.000000 -140.0000

参考文献:

【1】姜启源等,《数学建模》(第三版),北京,高等教育出版社,2003年;【2】胡运权等,《运筹学基础及应用》(第四版),北京,高等教育出版社,2003年;

【3】赵静等,《数学建模与数学实验》,北京,高等教育出版社&施普林格出版社,2000年;

【4】马莉,《MATLAB数学实验与建模》,北京,清华大学出版社,2010年。

数学建模,名额分配问题

名额公平分配问题 问题的提出 名额分配问题是西方所谓的民主政治问题,美国宪法在第一条第二条款指出:‘众议院议员名额……将根据各州的人口比例分配。。。。。’美国宪法从1788年生效以来200多年间,关于公平和人力的实现宪法中所规定的分配原则,美国的政治家和科学家们展开了激烈的讨论。并提出了多种方法,但没有一种方法能够得到普遍的认可。下面就日常生活中的实际问题,考虑合理的分配方案问题。 设某高校有5个系共2500名学生,各系学生人数见表格。现有25个学生代表名额, 赢如何分配较为合理。 5个系的学生人数 系别一二三四五总和人数11056483622481372500模型假设 1、要将名额尽可能的公平的分配,首先考虑的是公平量化,所谓公平,就是学生 代表的名额占有率都相等,这样,基于名额占有率相等的分配的方案就是最公平的,在 名额占有率不相等时,应要求差距尽可能的小,才能使分配方案更加公平。 2、在计算各个系别的名额分配占有量,这样就确定了公平的分配方案。 3、通常计算的名额占有量是小数,而名额只能整数的分配,这就需要将小数变成 整数,解决小数变整数的问题通常采用四舍五入法。 名额占有率=总名额数÷总人数 名额占有量=名额占有率×学生数 模型建立 模型一名额占有率分配 =1%,即每一百人才有一个名额。根据名额占有率可以算出全校名额占有率=25 2500 分配: 系别一二三四五总和 人数11056483622481372500名额数11.05 6.48 3.62 2.48 1.3725取整11642124 显然看出,这种方法出现了缺陷,分的总名额数多出一个,而这一个又无法可分, 无论是四舍五入法,还是直接取整,分给二,四其中一个必定对另一个不公平。所以需

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

数学建模活动策划书

数学建模活动策划方案(初稿) 一、活动背景 数学建模协会面向全校招新活动圆满完成。为了促进协会会员对数学建模的了解,增强对数学建模的认识,数学建模协会对近期一年时间策划此次活动,希望通过活动,增强新会员对数学建模协会的兴趣和认识度,是新会员对数学建模的活动、工作有一定了解和一个全新的认识。 二、活动目的及意义 为了让同学们对数学建模及竞赛有一个初步的了解,激发广大学子学习数学建模的热情,促进我校大学生课外科技活动的蓬勃开展,提高大学生的创新意识及运用数学知识和计算机技术解决实际问题的能力,推广数学建模精神,让同学们了解数学建模,接近数学建模,喜欢数学建模。活动对培养同学们应用数学知识解决实际问题的兴趣,开拓眼界等都有着十分重要的意义。活动的开展不仅为民院学子提供了一次施展才华和挑战自我的机会,也为学子创造了一个学习实践与思想交流的平台。 三、活动主题 走进数学建模 四、主办单位 社团联合会数学建模协会 五、承办单位

社团联合会数学建模协会 六、活动内容 (一)数学建模知识讲座 (二)新老会员见面交流会 (三)团队娱乐游戏活动 (四)小型数学建模大赛 七、活动步骤 (一)数学建模知识讲座 1、前期准备:邀请相关老师并协调好时间、通知协会会员及兴趣 爱好者 2、中期过程:(1)安排知识讲座时间、地点以及准备相关物品 (2)内容:数学建模思想、数学建模理论 3、后期安排:相关工作人员做工作总结 (二)新老会员见面交流会 1、前期准备:邀请相关人员为交流会做准备、通知协会会员 2、中期过程:安排见面交流会的时间、地点以及准备相关物品 3、后期安排:相关工作人员做工作总结 (三)团队娱乐游戏活动(待定) (四)小型数学建模大赛 1、前期准备:对举行小型数学建模大赛的意义进行宣传,并通知 比赛时间地点、比赛模式,邀请相关老师参与 2、中期过程:由相关老师批阅后进行表彰

数学建模论文

数 学 建 模 论 文 系部——— 班级—— 组员—— —— ——2010年1月7日

摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部门都能解决实际的问题。席位可以是代表大会、股东会议、公司企业员工大会、等的具体座位。假设说,有一个学校要召集开一个代表会议,席位只有20个,三个系总共200人,分别是甲系100,乙系60,丙系40.如果你是会议的策划人,你要合理的分配会议厅的20个座位,既要保证每个系部都有人参加,最关键的就是要对个公平都公平,保证三个系部对你所安排的位置没有异议。那么这个问题就要靠数学建模的方法来解决。 关键词: Q值法公平席位

问题的重述:三个系部学生共200名,(甲系100.乙系60,丙系40)代表会议共20席,按比例分配三个系分别为10、6、4席。老情况变为下列情况怎样分配才是最公平的,现因学生转系三系人数为103.63.34. (1)问20席该如何分配。 (2)若增加21席又如何分配。 问题的分析: 一、通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即: 某单位席位分配数= 某单位总人数比例 总席位 如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这样最初学生人数及学生代表席位为 系名甲乙丙总数学生数100 60 40 200 学生人数比例100/200 60/200 40/200 席位分配10 6 4 20 学生转系情况,各系学生人数及学生代表席位变为 系名甲乙丙总数学生数103 63 34 200 学生人数比例103/200 63/200 34/200 按比例分配席位10.3 6.3 3.4 20 按惯例席位分配10 6 4 20 (1)20席应该甲系10席、乙系6席,丙系4席这样分配

课程时间安排数学建模

课程时间安排数学建模公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

课程时间安排的优化模型 摘要 排课是教务运作中的一项重要工作,同时排课问题也是一个复杂的组合优化问题,对此问题的建模和求解,难度都非常大。多数情况下我们只是满足于求解问题的一个可行解,而对此可行解的进一步优化往往通过手工完成,效率很低。目前有很多计算机专家和数学专家都致力于对大规模排课问题的研究,在此我们给出一个规模相对较少,约束相对较少的较为简单的排课问题。解决排课中的问题,既能满足老师授课上机的要求又能满足学生对上机时间的合理安排。让学校、老师和同学的满意。 让老师满意,就是安排尽量少出现像同一天同一位老师上1-2节,7-8节,最好是1-2节面授然后4-5节课上机;让同学们满意,可从以下几方面考虑,比如,同一班级同一门课程,至少应隔一天上一次,另外对学生感到比较难学的课程尽量安排在最好的时段,上机时间要安排在面授课之后;让学校满意,就是尽量减少因出现问题而不得不为老师调课的次数。根据实际情况在具体模型建立过程中采用了0-1矩阵法,矩阵的乘法等数学方法,建立优化类数学模型来求解有效矩阵,根据有效矩阵初排课表,结合多方面因素建立修正矩阵,对初排课表逐层修改,得出最优排课表。并通过matlab实现算法和给出模型的解。 先将123班级课表和20张老师课表转换为0-1变量,有课改为0,没课改为1,组成两个矩阵,然后可用VB编程得到一个新的矩阵,两矩阵中元素都为1时,新的矩阵对应的元素就为1,即老师和班级同时有空时为1。将多目标函数转换为单目标函数,其他的要求可直接在约束条件中满足。然后用lingo软件编程解决(其约束条件和目标函数都可用lingo的语句表示出来) 关键词:排课问题 0-1矩阵矩阵的乘法优化目标矩阵 lingo VB 1 问题重述 排课是教务运作中的一项重要工作,同时排课问题也是一个复杂的组合优化问题,对此问题的建模和求解,难度都非常大。多数情况下我们只是满足于求解问题的一个可行解,而对此可行解的进一步优化往往通过手工完成,效率很低。目前有很多计算机专家和数学专家都致力于

数学建模对公平的席位分配问题的一点补充

对公平的席位分配问题解法的一点补充 222008314011010 刘欢 08数统一班 为叙述简单,仍然采用书中的例子如下 一.提出问题: 某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,显然甲、乙、丙三系分别应占有10,6,4个席位。现在丙系有3名学生转入甲系, 3名学生转入乙系,仍按比例分配席位出现了小数,三系同意,在将取得整数的19席位分配完毕后,剩下的1席位参照所谓惯例分给比例中小数最大的丙系,于是三系仍分别占有10,6,4个席位。按比例并参照惯例的席位分配。 由于20个席位的代表会议在表决时可能出现10∶10的局面,会议决定下一届增加1席,按照上述方法重新分配席位,计算结果是甲、乙、丙三系分别应占有11,7,3个席位。显然这个结果对丙系太不公平了,因总席位增加1席,而丙系却由4席减为3席。 请问:如何分配才算是公平? 二.书中模型 用Q 值法求解如下 设A ,B 两方,人数分别为1p 和2p ,占有席位分别是1n 和2n ,当1122=p n p n 时席位的分配公平。但人数为整数,通常1122≠p n p n 。这时席位分配不公平,且 /p n 较大的一方吃亏。 当1122>p n p n 时,定义 1122 1222 -= (,)A p n p n r n n p n (1) 为对A 的相对不公平值。

当1122

p n p n ,即对A 不公平,当再分配一个席位时,有以下三种情况: (1) 当 22 1>+11p p n n 时,说明即使给A 增加1席,仍然对A 不公平,所以这一席显然应给A 方. (2)当 22 1<+11p p n n 时,说明给A 增加1席后,变为对B 不公平,此时对B 的相对不公平值为 211212 11-1 ++= () (,)B p n r n n p n (3) (3)当 221 >+11p p n n 时,这说明给B 增加1席,将对A 不公平,此时对A 的相对不公平值为 121221 11-1 ++= () (,)A p n r n n p n (4) 因为公平分配席位的原则是使相对不公平值尽可能小,所以如果 121211 +<+(,)(,)B A r n n r n n (5) 则这1席给A 方,反之这1席给B 方. 由(3)(4)可知,(5)等价于 2 1222211< 11++() () p p n n n n (6) 不难证明上述的第(1)种情况 22 1>+11p p n n 也与(6)式等价,于是我们的结论是当(6)式成立时,增加的1席应给A 方,反之给B 方。 若记 2, =1,2 1= +() i i i i p Q i n n

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

数学建模时间安排及论文要点

竞赛时间的安排 第一天: 上午:确定题目,并查阅文献 下午:开始分析,建立初步模型 晚上:编程,得到初步计算结果 第二天: 上午:得到初步模型的合理结果 下午:开始写论文,并考虑对初步模型的改进 晚上:得到改进的模型的初步结果 第三天: 上午:得到改进模型的合理结果 下午:考虑对前二个模型的进一步优化,得到第三个数学模型,或对前二个模型的正确性等进行验证等 晚上:得到最后结果,完成整篇论文 论文写作要点 论文组成部分: 1. 摘要 2. 问题重述与背景 3. 假设 4. 建模 5. 求解和结论分析 6. 讨论优缺点 7. 模型改进 论文评卷标准 1. 假设的合理性 2. 建模的创造性 3. 结果的正确性 4. 文字清晰程度 (一)摘要 一定要写好(不超过一页纸)。主要写四个方面: 1. 解决什么问题(简明扼要) 2. 采取什么建模方法和算法(引起阅卷老师的注意,不能太粗,也不能太细) 3. 得到什么结果(清楚、生动、公式要简单、必要时可采用小图表) 4. 有什么特色

(二)问题重述 正文(15页左右,某些内容可以放在附录中) 将原问题用数学的语言表达出来 指出需要解决哪些问题,重点解决的问题应着重说明,将读者或评阅者引导到自己的思路中。 (三)假设 根据题目的条件和要求做合理的假设。关键假设不能少,要简明扼要、准确清楚 1. 假设不能太多。要归结出一些重要的假设,一般3~5条,有些不是很重要的假设在论文适当的地方提到 2. 假设要数学化,重视逻辑性要求 3. 设计好符号,使人看起来清楚,前后不要有重复 (四)建模 建模的思路要清晰 注重建模的原始想法,直观的思想往往是重要模型的来源,一定要说清楚 模型要实用、有效,数学表达(或方案)要完整 推导要严密时,公式推导若过长,可放在附录中 一般要求设计2~3个模型(一个简单的、再对模型进行改进,得到第二个模型,就会生动),鼓励创新,但不要离题。 (五)模型求解 (1)模型的定性 线性或非线性 连续、离散或混合 随机或确定 (2)模型求解 建立数学命题要表达规范,论证严密 算法原理、步骤要明确,利用现成的软件应说明 设法算出合理的数学结果或给出模拟 没有现成软件的需自己编程解出问题 (六)结果分析与检验 最终数值结果的正确性或合理性 结果检验,灵敏度分析等 考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据 必要时对问题解答作定性或规律性的讨论

赛程安排数学建模问题

题目 赛程安排 摘要 赛程安排在体育活动中举足轻重,在很大程度上影响比赛的结果;本文主要针对最优赛程安排方案建立相应的数学模型,给出最优赛程的安排方案。 对于问题一,要给出一个各队每两场比赛中间都至少相隔一场的赛。因为参赛队伍只有5个,容易操作,所以可以利用排除-假设法可以得到一种满足条件的赛程安排,即,,,,,,,,,AB CD EA BC DE AC BD EC AD BE 。 对于问题二,考虑到各队每两场比赛中间至少相隔一场,我们用逆时针轮转法对比赛队伍进行排序,并根据这种方法,用Matlab 编出相应编程得出不同队伍比赛间隔的上限,再根据数据总结出规律,当N 为偶数时各队每两场比赛中间相隔的场次数的上限为22 N -场,用Matlab 软件验证其准确性。用同样的方 法可知,当N 为奇数时各队每两场比赛中间相隔的场次数的上限为 N 32 -()。 对于问题三,在达到第二问上限的情况下,可通过轮换模型得到8,9N N ==的赛程安排。N 8=时一种赛程安排如下: (1,2),(3,5),(4,6),(8,7),(1,3),(4,2),(8,5),(7,6),(1,4),(8,3),(7,2),(6,5),(1,8),(7,4),(6,3),(5,2),(1,7),(6,8),(5,4),(2,3),(1,6),(5,7),(2,8),(3,4),(1,5),(2,6),(3,7),(4,8) 9N =时一种赛程安排如下: (1,2),(3,4),(5,6),(7,8),(1,9),(2,4),(3,6),(5,8),(7,9),(1,4),(2,6),(3,8),(5,9),(1,7),(4,6),(8,2),(9,3),(5,7),(1,6),(4,8),(2,9),(3,7),(1,5),(6,8),(4,9),(2,7),(3,5),(1,8),(6,9),(4,7),(2,5),(1,3),(8,9),(6,7),(4,5),(2,3). 对于问题四,我们可以用每个队的每两场比赛中间间隔的场次数之和SUM 来衡量赛程的公平性。当SUM 不同时,SUM 大的队伍对其比赛结果越有利。当SUM 相同时,用每次间隔场次的标准差来衡量赛程的公平性,其中标准差越小的队对其比赛的结果越有利。当SUM 相同且每次间隔场次的标准差也相同时,两个队比赛时,我们用双方已参加比赛的次数来衡量比赛赛程的优劣,其中在双方比赛时,已参加比赛次数越少,其比赛的结果越有利。 关键词:排除-假设法 逆时针轮转法 Matlab 标准差

公平的席位分配问题建模作业

公平的席位分配问题 ——数学建模报告 20094865,陈天送 20094862,陈铁忠 20094854,朱海

公平的席位分配问题 席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。 符号设定: N :总席位数 i n :分配给第i 系席位数 (1,2,3i =分别为甲,乙,丙系) P :总人数 i P :第i 系数 (1,2,3i =分别为甲,乙,丙系) i Q :第i 系Q 值 (1,2,3i =分别为甲,乙,丙系) Z :目标函数 方法一,比例分配法:即: 某单位席位分配数 = 某单位总人数比例?总席位 如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这种分配方法公平吗?由书上给出的案例,我们可以很清楚的知道该方法是有缺陷的,是不公平的。 方法二,Q 值法: 采用相对标准,定义席位分配的相对不公平标准公式:若 2211n p n p > 则称 1122122221 1-=-n p n p n p n p n p 为对A 的相对不公平值, 记为 ),(21n n r A ,若 2211n p n p < 则称 121121 1 11 22-=-n p n p n p n p n p 为对B 的相对不公平值 ,记为 ),(21n n r B 由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。 确定分配方案: 使用不公平值的大小来确定分配方案,不妨设1 1 n p > 2 2n p ,即对单位A 不公平,再分配一个席 位时,关于11n p ,22n p 的关系可能有 1. 111+n p >22 n p ,说明此一席给A 后,对A 还不公平; 2. 111+n p <22n p ,说明此一席给A 后,对B 还不公平,不公平值为 1)1(11),1(21211111 222 1-?+=++-=+n p p n n p n p n p n n r B 3. 1 1 n p > 1 22+n p ,说明此一席给B 后,对A 不公平,不公平值为

数学建模宣传活动策划书

2010年**学院数学建模宣传活动策划书 策划人:杨**、李**等 活动内容:2010年**学院数学建模成果展系列宣传活动 活动时间:2010年12月3日——12月30日(暂定) 举办单位:**数学建模工作室,**数学建模协会 一、活动背景: 全国大学生数学建模竞赛(CUMCM)是由教育部高等教育司和中国工业与应用数学学会主办,目前全国高等学校中规模最大的课外科技活动之一。我校自2003年以来每年都组织参加该项赛事,并且在比赛中取得了优异的成绩。2010全国大学生数学建模竞赛陕西赛区获奖名单在11月19日正式公布。在今年的比赛中,我校取得了可喜可贺的成绩,参赛的20支队伍中共有18支队伍获奖,其中国家奖4个,省级奖14个,参赛队伍获奖率高达90%,在所有同类院校中名列前茅,同时也实现了我校参赛以来本科队国家奖零的突破,具体如下表: 而且我校的两支队伍已报名参加明年二月的数学建模国际赛,目前队员们正在为比赛进行准备,这需要学校给予鼓励和宣传支持。我

校今年无论是获奖队伍的数量还是获奖的等级上都有了很大的提高,在所有同类院校中名列前茅。美中不足的是我校还有很多人对数学建模竞赛一知半解,在每年选拔参赛队员的时候宣传极为费力,同时也可能使许多优秀的同学失去了参加比赛的机会。我校在这样的背境下正适合宣传数学建模系列活动,以使更多的同学接触并了解数学建模比赛,为在以后的全国比赛乃至国际赛取得优秀的成绩打下基础。 二、活动目的: 1.、增强我校学生对数学建模竞赛的认识,吸引更多喜欢数模的优秀大学生加入; 2、为我校的两支团队参加明年数学建模国际赛造势; 3、为**数学建模协会培养挑选一批优秀人才,使**数学建模协会能形成良性循环机制。 三、活动简介: **数学建模协会计划于2010年12月3日—30日举行“2010年**学院数学建模宣传系列活动”,并借助此次活动宣传数学建模,扩大数学建模的影响力。 本次系列活动包含三个子活动 活动一:“2010年**学院数学建模成果展” 活动二:“数学建模国际赛宣传活动” 活动三:“有奖征集,**数学建模协会会徽设计大赛” 四、活动地点及负责人:

数学建模 席位分配

各宿舍分配委员模型 (参考阿) 摘要:学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住 在C 宿舍.学生们要组织一个10人的委员会 (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法; (3).d ’Hondt 方法 试用上述办法分配各宿舍的委员数 关键词:比例加惯例 Q 值 d ’Hondt 法 一、问题的重述 学校有1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生们要组织一个10人的委员会,怎样公平合理的分配各宿舍的委员数。再进一步讨论:如果人数增至15人,依照10个的过程检验一下。 二、问题分析 模型1中,先建立一个简单的“比例加惯例模型”简单分析。 在模型2中,再用Q 值法进一步讨论。然后,在模型3中,用书中给出的d ’Hondt 计算后进行比较 三、模型假设 (1)各个宿舍之间是独立的,且人数始终保持不变; (2)几个委员是平等的。 四、模型的建立与求解 先考虑N=10的分配方案, , 432 ,333 ,235321===p p p ∑ ==3 1 . 1000i i p 方法一(按比例分配)

, 35.23 1 11== ∑ =i i p N p q , 33.33 1 22== ∑ =i i p N p q 32 .43 1 33== ∑ =i i p N p q 分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分配)为: 4 ,3 ,2321===n n n 第10个席位:计算Q 值为 , 17.92043 2235 2 1=?= Q ,75.92404 3333 2 2=?= Q 2 .93315 4432 2 3=?= Q 3 Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n 方法三(d ’Hondt 方法) 此方法的分配结果为:5 ,3 ,2321===n n n 此方法的原理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可 使对所有的,i i i n p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 五,模型的检验、评价与推广 现在当人数为15人时,依照10人时的情况,来检验各个模型的公平性:

课程时间安排-数学建模

课程时间安排的优化模型 摘要 排课是教务运作中的一项重要工作,同时排课问题也是一个复杂的组合优化问题,对此问题的建模和求解,难度都非常大。多数情况下我们只是满足于求解问题的一个可行解,而对此可行解的进一步优化往往通过手工完成,效率很低。目前有很多计算机专家和数学专家都致力于对大规模排课问题的研究,在此我们给出一个规模相对较少,约束相对较少的较为简单的排课问题。解决排课中的问题,既能满足老师授课上机的要求又能满足学生对上机时间的合理安排。让学校、老师和同学的满意。 让老师满意,就是安排尽量少出现像同一天同一位老师上1-2节,7-8节,最好是1-2节面授然后4-5节课上机;让同学们满意,可从以下几方面考虑,比如,同一班级同一门课程,至少应隔一天上一次,另外对学生感到比较难学的课程尽量安排在最好的时段,上机时间要安排在面授课之后;让学校满意,就是尽量减少因出现问题而不得不为老师调课的次数。根据实际情况在具体模型建立过程中采用了0-1矩阵法,矩阵的乘法等数学方法,建立优化类数学模型来求解有效矩阵,根据有效矩阵初排课表,结合多方面因素建立修正矩阵,对初排课表逐层修改,得出最优排课表。并通过matlab实现算法和给出模型的解。 先将123班级课表和20张老师课表转换为0-1变量,有课改为0,没课改为1,组成两个矩阵,然后可用VB编程得到一个新的矩阵,两矩阵中元素都为1时,新的矩阵对应的元素就为1,即老师和班级同时有空时为1。将多目标函数转换为单目标函数,其他的要求可直接在约束条件中满足。然后用lingo软件编程解决(其约束条件和目标函数都可用lingo的语句表示出来)

关键词:排课问题 0-1矩阵矩阵的乘法优化目标矩阵 lingo VB 1 问题重述 排课是教务运作中的一项重要工作,同时排课问题也是一个复杂的组合优化问题,对此问题的建模和求解,难度都非常大。多数情况下我们只是满足于求解问题的一个可行解,而对此可行解的进一步优化往往通过手工完成,效率很低。目前有很多计算机专家和数学专家都致力于对大规模排课问题的研究,在此我们给出一个规模相对较少,约束相对较少的较为简单的排课问题,请同学们加以解决。 目前,某校的计算机上机课大都安排在计算机学院,计算机学院有5个机房用于学生上机,每个机房大约容纳90人。安排上机的课程共有4门,指导上机的教师共有24人,其中20人为课程的授课教师,见附件1,其他四人为机房的管理人员,依次为陆老师,章老师,张老师和彭老师,其中陆老师负责2个机房。共有123个班级需要上机,详细名单见附件1。教师和学生的上机时间不能和他们的授课课程时间冲突,为此我们给出了各位教师和各个班级学生的课程表,见文件夹附件2。四名管理人员可全天进行上机指导,但只能在自己负责的机房进行. 要求: (1)为了保证授课效果,学院规定每个老师在同一个时间段只能为1个班级进行指导;而同一时段允许有两名教师在同一个机房分别指导一个班级; (2)上机指导老师尽可能指导自己授课班级的学生; (3)周末尽可能不安排上机;其次晚上尽可能不安排上机。 (4)为了减少教师到新校区的次数,上机时间尽可能与其授课时间安排在同一天。 (5)还有其它要求可根据高校教学的情况,酌情给出,给出时要充分考虑教学规律、教学效果和大部分老师、学生的要求。

初等数学建模方法示例

第2章初等数学建模方法示例 公平的席位分配问题 席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即:某单位席位分配数 = 某单位总人数比例总席位如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这种分配方法公平吗下面来看一个学院在分配学生代表席位中遇到的问题: 某学院按有甲乙丙三个系并设20个学生代表席位。它的最初学生人数及学生代表席位为 系名甲乙丙总数 学生数 100 60 40 200 学生人数比例 100/200 60/200 40/200 席位分配 10 6 4 20 后来由于一些原因,出现学生转系情况,各系学生人数及学生代表席位变为: 系名甲乙丙总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200

按比例分配席位 20 按惯例席位分配 10 6 4 20 由于总代表席位为偶数,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见。为改变这一情况,学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 21 按惯例席位分配 11 7 3 21 这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。这个结果也说明按惯例分配席位的方法有缺陷,请尝试建立更合理的分配席位方法解决上面代表席位分配中出现的不公平问题。 模型构成 先讨论由两个单位公平分配席位的情况,设 单位 人数 席位数 每席代表人数 单位A 1p 1n 1n 单位B 2p 2n 2n 要公平,应该有=1n 2n , 但这一般不成立。注意到等式不成立时有 若21n n >,则说明单位A 吃亏(即对单位A 不公平 ) 若21n n <,则说明单位B 吃亏 (即对单位B 不公平 ) 因此可以考虑用算式2 211n p n p p -= 来作为衡量分配不公平程度,不过此公式

数学建模论文(分配问题)(精编文档).doc

【最新整理,下载后即可编辑】 公平席位的分配 系别:机电工程系模具班学号:1号 摘要: 分配问题是日常生活中经常遇到的问题,它涉及到如何将有限的人力或其他资源以“完整的部分”分配到下属部门或各项不同任务中。分配问题涉及的内容十分广泛,例如:大到召开全国人民代表大会,小到某学校召开学生代表大会,均涉及到将代表名额分配到各个下属部门的问题。代表名额的分配(亦称为席位分配问题)是数学在人类政治生活中的一个重要应用,应归属于政治模型。而当代表的人数在总和没有发生变化的情况下,所占比例却发生了变化时,一个如何分配才能使分配公平的问题就摆在了我们的面前。因此,我们要通过建立数学模型来确定一种能够使分配公平的方法来分配 关键字:理想化原则; 整数规划; 席位公平分配

问题的提出: 某学院有3个系共200名学生,其中甲系100人,乙系60人,丙系40人,现要选出20名学生代表组成学生会。 如果按学生人数的比例分配席位,那么甲乙丙系分别占10、6、4个席位,这当然没有什么问题(即公平)。 但是若按学生人数的比例分配的席位数不是整数,就会带来一些麻烦。比如甲系103人,乙系63人,丙系34人,怎么分? 问题重述 学院的最初人数见下表,此系设20个席位代表。 甲乙丙 总人数 1006040 200 学生人数比例:100/200 60/200 40/200 按比例分配方法:分配人数=学生人数比例初

按比例分配席位:甲乙丙共 10 6 4 20 若出现学生转系情况: 甲乙丙总人数 103 63 34 200 学生人数比例:103/200 63/200 34/200 按例分配方法:比例分配出现最小数时,先按整数分配席位,余下的按小数的大小分配席位 按比例分配席位:甲乙丙 10.815 6.615 3.57 按比例分配席位,丙系却缺少一席的情况,按比例分配席位的方法有缺陷,试建立更合理的分配方法.

数学建模各类竞赛时间

数学建模竞赛时间汇总(仅供参考) 国家竞赛: ?全国大学生数学建模竞赛 每年9月(一般在中旬某个周末的星期五至下周星期一共3天,72小时)举行 ?全国研究生数学建模竞赛 (从9月24日上午8时开始,至9月28日中午12时结束。 竞赛报名时间顺延至9月18日。) ?数学中国数学建模挑战赛 数学中国数学建模网络挑战赛于4月-6月举行,竞赛分为“建模基础” 及“模型改进、应用”两个阶段进行,第一阶段比赛于4月22日-4 月25日进行,第二阶段比赛于5月20日-23日进行。 ?美国大学生数学建模竞赛 美国大学生数学建模竞赛将于:2012年2月9号晚上8:01分(美国东部时间)——2012年2月13号晚上8:00(美国东部时间)举行!(注明:北京时间2012年2月10日早上9:01分——2012年2月14日早上9:00截止) ?全国大学生电工建模竞赛 两年一次,竞赛于11月下旬 地区赛: ?华东数学建模邀请赛

报名时间:3月21日—4月30日,各校组织报名; 比赛时间:5月4日—5月10日,正式比赛为三个题目,选做一个; 收题时间:5月11日,各校完成答卷回收工作。 ?苏北数学建模联盟赛 ?东北三省数学建模联赛 ?华中数学建模联盟赛 报名时间: 2011年3月30日开始至2011年4月22日晚上9:00截止。 4月25日至4月27日为报名信息公示时间,届时将在华中数学建网(https://www.360docs.net/doc/fe12299895.html,)上公布报名参赛队伍信息(为保护大家隐私只公布部分信息)请大家认真核对报名信息。 竞赛时间: 开始时间:2011年4月29日,上午9:00 结束时间:2011年5月3日,上午9:00 竞赛共为连续的96小时,各参赛队竞赛结束时应在规定时间、地点提交论文。

数学建模论文(分配问题)

公平席位的分配 系别:机电工程系模具班学号:1号 摘要: 分配问题是日常生活中经常遇到的问题,它涉及到如何将有限的人力或其他资源以“完整的部分”分配到下属部门或各项不同任务中。分配问题涉及的内容十分广泛,例如:大到召开全国人民代表大会,小到某学校召开学生代表大会,均涉及到将代表名额分配到各个下属部门的问题。代表名额的分配(亦称为席位分配问题)是数学在人类政治生活中的一个重要应用,应归属于政治模型。而当代表的人数在总和没有发生变化的情况下,所占比例却发生了变化时,一个如何分配才能使分配公平的问题就摆在了我们的面前。因此,我们要通过建立数学模型来确定一种能够使分配公平的方法来分配 关键字:理想化原则; 整数规划; 席位公平分配 问题的提出: 某学院有3个系共200名学生,其中甲系100人,乙系60人,丙系40人,现要选出20名学生代表组成学生会。 如果按学生人数的比例分配席位,那么甲乙丙系分别占10、6、4个席位,这当然没有什么问题(即公平)。

但是若按学生人数的比例分配的席位数不是整数,就会带来一些麻烦。比如甲系103人,乙系63人,丙系34人,怎么分? 问题重述 学院的最初人数见下表,此系设20个席位代表。 甲乙丙总人数 1006040200学生人数比例:100/200 60/200 40/200 按比例分配方法:分配人数=学生人数比例初 按比例分配席位:甲乙丙共 10 6 4 20 若出现学生转系情况: 甲乙丙总人数 103 63 34 200 学生人数比例:103/200 63/200 34/200

按例分配方法:比例分配出现最小数时,先按整数分配席位,余下的按小数的大小分配席位 按比例分配席位:甲乙丙 10.815 6.615 3.57 按比例分配席位,丙系却缺少一席的情况,按比例分配席位的方法有缺陷,试建立更合理的分配方法. 模型假设 分配席位的情况 单位人数席位数 A单位X n m B单位Y n。m。 若公平分配,则会出现的情况应当是m=m1,即X/n=Y/m1

数学建模之时间序列模型

一、时间序列 时间序列分析是当前对动态数据处理的一种有效方法,它不要求考虑影响观测值的各种力学因素,而只是分析这些观测数据的统计规律性。通过对时间序列统计规律性进行分析,构造拟合出这些规律的可能数值,最后给出预测结果的精度分析。 1.1AR 模型: 1.1.1 模型的应用 ①年降雨水量的预测, ②城市税收收入的预测。 1.1.2步骤 ①模型识别 令均值为零的时间序列(1,2,,)t x t n =L ,延迟k 周期的自协方差函数是 [],k k t t k E y y γγ-+== (1) 用?k γ、?k ρ分别表示自协方差函数的估计值和自相关函数的估计值,则自相关系数为 k k k γρργ-== (2) 1 1??,0,1,2,,1n k k k t t k t y y k n n γγ-+==-==-∑L (3) ???,0,1,2,,1k k k k n γρργ-== =-L (4)

(1)对p 阶AR(P)模型有 01122t t t p t p t x x x x φφφφε---=+++++L (5) {}00,()t x AR p φ=当为中心化序列, 当00φ≠ ,可通过平移得到中心化()AR p 序列。 用B 表示移位算子,1;t t j t t j Bx x B x x --==,则AR(P)模型的算子形式: 212(1)p p t t B B B x φφφε----=L 即 ()p t t B x φε= (5)两边同乘t k x +后再取均值得: 1122[,][,()]t k t t k t t p t p t E x x E x x x x φφφε++---=++++L 由协方差函数函数得: 211220k k k p k p k r εφγφγφγσδ---=++++L (6) 取0,1,2,,k p =L ,再将得到的差分方程两边同时除以0γ得: 1121121122 1122p p p p p p p p ρφφρφρρφρφφρρφρφρφ----=+++=+++ =+++L L M L (7) 由上式(7)可得,k ρ应该满足: ()0,0p k B k φρ=> (8) 解得通解为 1122k k k k p p c c c ρλλλ---=+++L (9) 其中,1,2,,i c i p =L 可以由p 个初值021,,,p ρρρ-L 代入计算得到, ,1,2,,i i p λ=L 是特征方程()0p B φ=的根。 平稳条件:P 个特征根都在单位圆外,即||1i λ>。

数学建模---汽车

数学建模---汽车生产计划

汽车生产计划问题: 汽车厂生产三种类型汽车,一直各类型每辆车对应的钢材,劳动时间要求是。利润及工厂每月现有量。 小型汽车中型汽车大型汽车现有量 钢材(吨) 1.5 5 5 600 时间(小时)280 250 400 60000 利润(万元)2 3 3 制定月生产计划,使工厂利润最大。 如果生产某一类型汽车,则至少要生产80辆,那么最优的生产计划用如何改变?

汽车生产计划问题 机电工程学院数设101 吕猛 摘要: 汽车在生活中越来越普及,汽车的生产规模也越来越大。随之而来的最具代表性问题就是涉及到生产的优化问题。本模型就是这样的对汽车生产工艺进行优化从而获得最大利润的一个模型。 对于问题一由表格和问题可以列出求最大利润的目标函数MAXZ,再根据表格中的约束条件列出优化模型,最终将该模型输入LINGO软件进行求解,即可得到最优的月生产计划,即每月生产0.9辆小型汽车,0辆中型汽车,1.2辆大型汽车。 对于问题二,基本上模型的构建思路基本上与问题一一样,同样是求最大利润的目标函数MAXZ,再根据表格中的约束条件列出优化模型,只不过最后多了一个生产某一类型汽车,则至少要生产80辆的约束条件,将该约束补上然后将最终模型输入LINGO软件进行求解,即可得到最优的月生产计划为生产小型汽车1.1辆,生产中型汽车0.17辆,生产大型车0.99辆。 关键字:汽车生产优化模型LINGO软件最大利润 一、问题重述 汽车在生活中的普及,导致汽车的生产规模也越来越大。随之而来的最具代表性问题就是涉及到生产的优化问题。在此,针对已知原材料数量,生产时间的一些条件进行优化从而求出最大利润。 问题一、根据表格中所给的约束条件制定月生产计划,使工厂利润最大。 问题二、在问题一的基础上,根据表格中所给的约束条件,再加上生产某一类型汽车,则至少要生产80辆的约束制定月生产计划,使工厂利润最大。 二、模型分析

相关文档
最新文档