01背包问题题解

01背包问题题解
01背包问题题解

P01: 01背包问题

题目

有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本思路

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是

f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

注意f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N][V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[i][v-1],这样就可以保证f[N][V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。

优化空间复杂度

以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?

事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:

for i=1..N

for v=V..0

f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

总结

01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。

P02: 完全背包问题

题目

有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本思路

这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间则不是常数了,求解状态

f[i][v]的时间是O(v/c[i]),总的复杂度是超过O(VN)的。

将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01

背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。

一个简单有效的优化

完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足

c[i]<=c[j]且w[i]>=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。

转化为01背包问题求解

既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。最简单的想法是,考虑到第i种物品最多选V/c[i]件,于是可以把第i种物品转化为V/c[i]件费用及价值均不变的物品,然后求解这个01背包问题。这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。

更高效的转化方法是:把第i种物品拆成费用为c[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足c[i]*2^k for i=1..N for v=0..V

f[v]=max{f[v],f[v-c[i]]+w[i]};

你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P01中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v=0..V的顺序循环。这就是这个简单的程序为何成立的道理。

这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]},将这个方程用一维数组实现,便得到了上面的伪代码。

总结

完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN)的算法“的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如何得来,是加深对动态规划的理解、提高动态规划功力的好方法。

P03: 多重背包问题

题目

有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本算法

这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}。复杂度是O(V*Σn[i])。转化为01背包问题

另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n[i]件01背包中的物品,则得到了物品数为Σn[i]的01背包问题,直接求解,复杂度仍然是O(V*Σn[i])。

但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。

方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为

1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为13,就将这种物品分成系数分别为1,2,4,6的四件物品。

分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-1和2^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。

这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为

O(V*Σlog n[i])的01背包问题,是很大的改进。

O(VN)的算法

多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O(1)的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的“男人八题”幻灯片上。

小结

这里我们看到了将一个算法的复杂度由O(V*Σn[i])改进到O(V*Σlog n[i])的过程,还知道了存在应用超出NOIP范围的知识的O(VN)算法。希望你特别注意“拆分物品”的思想和方法,自己证明一下它的正确性,并用尽量简洁的程序来实现。

P04: 混合三种背包问题

问题

如果将P01、P02、P03混合起来。也就是说,有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢?

01背包与完全背包的混合

考虑到在P01和P02中最后给出的伪代码只有一处不同,故如果只有两类物品:一类物品只能取一次,另一类物品可以取无限次,那么只需在对每个物品应用转移方程时,根据物品的类别选用顺序或逆序的循环即可,复杂度是O(VN)。伪代码如下:

for i=1..N

if 第i件物品是01背包

for v=V..0

f[v]=max{f[v],f[v-c[i]]+w[i]};

else if 第i件物品是完全背包

for v=0..V

f[v]=max{f[v],f[v-c[i]]+w[i]};

再加上多重背包

如果再加上有的物品最多可以取有限次,那么原则上也可以给出O(VN)的解法:遇到多重背包类型的物品用单调队列解即可。但如果不考虑超过NOIP范围的算法的话,用P03中将每个这类物品分成O(log n[i])个01背包的物品的方法也已经很优了。

小结

有人说,困难的题目都是由简单的题目叠加而来的。这句话是否公理暂且存之不论,但它在本讲中已经得到了充分的体现。本来01背包、完全背包、多重背包都不是什么难题,但将它们简单地组合起来以后就得到了这样一道一定能吓倒不少人的题目。但只要基础扎实,领会三种基本背包问题的思想,就可以做到把困难的题目拆分成简单的题目来解决。

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题 一、问题描述: 有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 二、总体思路: 根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。 原理: 动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。 过程: a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i个物品选或不选),V i表示第i个物品的价值,W i表示第i个物品的体积(重量); b) 建立模型,即求max(V1X1+V2X2+…+VnXn); c) 约束条件,W1X1+W2X2+…+WnXn (V2X2+V3X3+…+VnXn)+V1X1;

回溯算法解决0-1背包问题(DOC)

《算法分析与设计》实验报告 2015-2016年第2学期 实验班级: 学生姓名: 学号: 指导老师: 信息工程学院

实验项目名称:回溯算法解决0-1背包问题 实验日期:2016年5 月18 日 一、实验类型:□√验证性□设计性 二、实验目的 掌握0—1背包问题的回溯算法 三、实验内容及要求 给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 四、实验步骤 #include using namespace std; class Knap { friend int Knapsack(int p[],int w[],int c,int n ); public: void print() { for(int m=1;m<=n;m++) { cout<

int cw;//当前重量 int cp;//当前价值 int bestp;//当前最优值 int *bestx;//当前最优解 int *x;//当前解 }; int Knap::Bound(int i) { //计算上界 int cleft=c-cw;//剩余容量 int b=cp; //以物品单位重量价值递减序装入物品while(i<=n&&w[i]<=cleft) { cleft-=w[i]; b+=p[i]; i++; } //装满背包 if(i<=n) b+=p[i]/w[i]*cleft; return b; } void Knap::Backtrack(int i) { if(i>n) { if(bestp

算法设计背包问题

算法实验报告 ---背包问题 实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优 值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 问题描述: 给定n种物品和一个背包。物品i的重量是wi,体积是bi,其价值为vi, 背包的容量为c,容积为d。问应如何选择装入背包中的物品,使得装入背包中 物品的总价值最大? 在选择装入背包的物品时,对每种物品只有两个选择:装入 或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量c,背包的 容积d,物品的个数n。接下来的n行表示n个物品的重量、体积和价值。输出 为最大的总价值。 问题分析: 标准0-1背包问题,MaxV表示前i个物品装入容量为j的背包中时所能产生的最大价值,结构体objec表示每一个可装入物品,其中w表示物品的重量,v表示物品的价值。如果某物品超过了背包的容量,则该物品一定不能放入背包,问题就变成了剩余i-1个物品装入容量为j的背包中所能产生的最大价值;如果该物品能装入背包,问题就变成i-1个物品装入容量为j-objec[i].w的背包所能产生的最大价值加上物品i的价值objec[i].v. 复杂性分析 时间复杂度,最好情况下为0,最坏情况下为:(abc) 源程序 #include #include #include #include #include int V [200][200][200]; int max(int a,int b) {

算法分析与程序设计动态规划及回溯法解背包问题

动态规划法、回溯法解0-1背包问题 2012级计科庞佳奇 一、问题描述与分析 1.动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会 有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。 不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。 多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。3.子问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 2.回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目 标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华 2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少包含问题的一个(最优)解。对于0-1背包问题,解空间由长度为n的0-1向量组成。该解空间包含对变量的所有0-1赋值。例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。当右子树中有可能含有最优解时,才进入右子树搜索。否则,将右子树剪去。设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。当cp+r<=bestp时,可剪去右子树。计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。 例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。 在实现时,由Bound计算当前节点处的上界。类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为上界预期父节点的上界相同。 三、回溯法实现代码: #include "stdafx.h" #include using namespace std; template class Knap { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i);

回溯法实验(0-1背包问题)

算法分析与设计实验报告第五次附加实验

附录: 完整代码(回溯法) //0-1背包问题回溯法求解 #include using namespace std; template class Knap //Knap类记录解空间树的结点信息 { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i); //计算上界的函数 void Backtrack(int i); //回溯求最优解函数

Typew c; //背包容量 int n; //物品数 Typew *w; //物品重量数组| Typep *p; //物品价值数组 Typew cw; //当前重量 Typep cp; //当前价值 Typep bestp; //当前最后价值 }; template Typep Knapsack(Typep p[],Typew w[],Typew c,int n); //声明背包问题求解函数template inline void Swap(Type &a,Type &b); //声明交换函数 template void BubbleSort(Type a[],int n); //声明冒泡排序函数 int main() { int n ;//物品数 int c ;//背包容量 cout<<"物品个数为:"; cin>>n; cout<<"背包容量为:"; cin>>c; int *p = new int[n];//物品价值下标从1开始 int *w = new int[n];//物品重量下标从1开始 cout<<"物品重量分别为:"<>w[i]; } cout<<"物品价值分别为:"<>p[i]; } cout<<"物品重量和价值分别为:"<

01背包问题不同算法设计、分析与对比报告

实验三01背包问题不同算法设计、分析与对比一.问题描述 给定n种物品和一背包。物品i的重量是w i ,其价值为v i ,背包的容量为c。 问题:应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。 说明:在选择装入背包的物品时,对每种物品i只有两个选择,装入背包或不装入背包,也不能将物品装入背包多次。 二.实验内容与要求 实验内容: 1.分析该问题适合采用哪些算法求解(包括近似解)。 ^ 动态规划、贪心、回溯和分支限界算法。 2.分别给出不同算法求解该问题的思想与算法设计,并进行算法复杂性分析。 动态规划: 递推方程: m(i,j) = max{m(i-1,j),m(i-1,j-wi)+vi} j >= wi; m(i-1,j) j < wi; 时间复杂度为O(n). 贪心法: ^ 算法思想:贪心原则为单位价值最大且重量最小,不超过背包最大承重量为约束条件。也就是说,存在单位重量价值相等的两个包,则选取重量较小的那个背包。但是,贪心法当在只有在解决物品可以分割的背包问题时是正确的。贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。 用贪心法设计算法的特点是一步一步地进行,根据某个优化测度(可能是目标函数,也可能不是目标函数),每一步上都要保证能获得局部最优解。每一步只考虑一个数据,它的选取应满足局部优化条件。若下一个数据与部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中, 直到把所有数据枚举完,或者不能再添加为止。 回溯法:

回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。这种具有限界函数的深度优先生成法称为回溯法。 对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。当右子树中有可能包含最优解时就进入右子树搜索。 时间复杂度为:O(2n) 空间复杂度为:O(n) : 分支限界算法: 首先,要对输入数据进行预处理,将各物品依其单位重量价值从大到小进行排列。在优先队列分支限界法中,节点的优先级由已装袋的物品价值加上剩下的最大单位重量价值的物品装满剩余容量的价值和。 算法首先检查当前扩展结点的左儿子结点的可行性。如果该左儿子结点是可行结点,则将它加入到子集树和活结点优先队列中。当前扩展结点的右儿子结点一定是可行结点,仅当右儿子结点满足上界约束时才将它加入子集树和活结点优先队列。当扩展到叶节点时为问题的最优值。 3.设计并实现所设计的算法。 4.对比不同算法求解该问题的优劣。 这动态规划算法和贪心算法是用来分别解决不同类型的背包问题的,当一件背包物品可以分割的时候,使用贪心算法,按物品的单位体积的价值排序,从大到小取即可。当一件背包物品不可分割的时候,(因为不可分割,所以就算按物品的单位体积的价值大的先取也不一定是最优解)此时使用贪心是不对的,应使用动态规划。 5.需要提交不同算法的实现代码和总结报告。 动态规划方法: public class Knapsack {

算法分析与复杂性理论 实验报告 背包问题

深圳大学实验报告课程名称:算法分析与复杂性理论 实验名称:实验四动态规划 学院:计算机与软件学院专业:软件工程 报告人:文成学号:2150230509班级:学术型 同组人:无 指导教师:杨烜 实验时间:2015/11/5——2015/11/18 实验报告提交时间:2015/11/18 教务处制

一. 实验目的与实验内容 实验目的: (1) 掌握动态规划算法设计思想。 (2) 掌握背包问题的动态规划解法。 实验内容: 1.编写背包问题的动态规划求解代码。 2.背包容量为W ,物品个数为n ,随机产生n 个物品的体积(物品的体积不可大于W )与价值,求解该实例的最优解。 3. 分别针对以下情况求解 第一组:(n=10,W=10),(n=10,W=20),(n=10,W=30) 第二组:(n=20,W=10),(n=20,W=20),(n=20,W=30) 第三组:(n=30,W=10),(n=30,W=20),(n=30,W=30) 4. 画出三组实验的时间效率的折线图,其中x 轴是W 的值,y 轴是所花费的时间,用不同的颜色表示不同n 所花费的时间。 二.实验步骤与结果 背包问题的问题描述: 给定n 种物品和一个背包。物品i 的重量是 i w , 其价值为i v , 背包容量为C 。问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大? 背包问题的算法思想: 考虑一个由前i 个物品(1<=i<=n )定义的实例,物品的重量分别为w1,…,w2、价值分别为v1,…,vi ,背包的承重量为j (1<=j<=w )。设v[i,j]为该实例的最优解的物品总价值,也就是说,是能够放进承重量为j 的背包中的前i 个物品中最有价值子集的总价值。可以把前i 个物品中能够放进承重量为j 的背包中的子集分成两个类别:包括第i 个物品的子集和不包括第i 个物品的子集。 1. 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V[i-1,j]。 2. 在包括第i 个物品的子集中(因此,j-wi>=0),最优子集是由该物品和前i-1个物品中能够放进承重量为j-wi 的背包的最优子集组成。这种最优子集的总价值等于vi+V[i-1,j-wi]。 因此,在前i 个物品中最优解得总价值等于这两个价值中的最大值。当然,如果第i 个物品不能放进背包,从前i 个物品中选出的最优子集的总价值等于从前i-1个物品中选出的最优子集的总价值。这个结果导致了下面的这个递推关系式: 初始条件:

用回溯法解决0-1背包问题

#include int c; //背包容量 int n; //物品数 int weight[100]; //存放n个物品重量的数组 int price[100]; //存放n个物品价值的数组 int currentWeight=0; //当前重量 int currentPrice=0; //当前价值 int bestPrice=0; //当前最优值 int bestAnswer[100]; //当前最优解 int bp=0; int bA[100]; //当前最优解 int times=0; void Print(); void Backtracking(int i) { times+=1; if(i>n) { Print(); if(bestPrice>bp) { bp=bestPrice; for(int j=1;j<=n;j++) bA[j]=bestAnswer[j]; } return; } if(currentWeight+weight[i]<=c) { //将物品i放入背包,搜索左子树 bestAnswer[i] = 1; currentWeight += weight[i]; bestPrice += price[i]; Backtracking(i+1); //完成上面的递归,返回到上一结点,物品i不放入背包,准备递归右子树 currentWeight -= weight[i]; bestPrice -= price[i]; } bestAnswer[i] = 0; Backtracking(i+1); } void Print() {

分支界限法解0-1背包问题实验报告

实验5 分支界限法解0-1背包问题 一、实验要求 1.要求用分支界限法求解0-1背包问题; 2.要求交互输入背包容量,物品重量数组,物品价值数组; 3.要求显示结果。 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++6.0 三、源程序 #include "stdafx.h" #include #include #include #include using namespace std; int *x; struct node //结点表结点数据结构 { node *parent;//父结点指针 node *next; //后继结点指针 int level;//结点的层 int bag;//节点的解 int cw;//当前背包装载量 int cp;//当前背包价值 float ub; //结点的上界值 }; //类Knap中的数据记录解空间树中的结点信息,以减少参数传递及递归调用所需的栈空间class Knap { private: struct node *front, //队列队首 *bestp,*first; //解结点、根结点 int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系long lbestp;//背包容量最优解 public: void Sort(); Knap(int *pp,int *ww,int cc,int nn);

~Knap(); float Bound(int i,int cw,int cp);//计算上界限 node *nnoder(node *pa,int ba,float uub);//生成一个结点ba=1生成左节点ba=0生成右节点 void addnode(node *nod);//向队列中添加活结点 void deletenode(node *nod);//将结点从队列中删除 struct node *nextnode(); //取下一个节点 void display(); //输出结果 void solvebag(); //背包问题求解 }; //按物品单位重量的价值排序 void Knap::Sort() { int i,j,k,kkl; float minl; for(i=1;i

回溯算法之0-1背包问题

1、实验目的 (1)掌握回溯法设计策略。 (2)通过0-1背包问学习回溯法法设计技巧2.实验内容 源程序: #include using namespace std; double c;//背包容量 int n; //物品数 double w[100];//物品重量数组 double p[100];//物品价值数组 double cw=0;//当前重量 double cp=0;//当前价值 double bestp=0;//当前最优值 double bound(int i) { double cleft,b; //计算上界 cleft=c-cw;//剩余容量 b=cp; //以物品单位重量价值递减序装入物品 while(i<=n&&w[i]<=cleft) { cleft-=w[i]; b+=p[i]; i++; } //装满背包 if(i<=n) b+=p[i]*cleft/w[i]; return b; } void Backtrack(int i) { if(i>n) { if(cp>bestp) bestp=cp; return;

} if(cw+w[i]<=c) //搜索左子树 { cw+=w[i]; cp+=p[i]; Backtrack(i+1); cp-=p[i]; cw-=w[i]; } if(bound(i+1)>bestp)//搜索右子树 Backtrack(i+1); } double Knapsack (double pp[],double ww[],double d) { int i; double TP=0,TW=0; cw=0.0;cp=0.0;bestp=0.0;//计算所有物品的重量及价值 for(i=1;i<=n;i++) { TP=TP+pp[i]; TW=TW+ww[i]; } if(TW<=d)//所有物品装入背包 bestp=TP; else { Backtrack(1); } return bestp; }; int main() {

人工智能之遗传算法求解01背包问题实验报告

人工智能之遗传算法求解0/1背包问题实验报告 Pb03000982 王皓棉 一、问题描述: 背包问题是著名的NP完备类困难问题, 在网络资源分配中有着广泛的应用,已经有很多人运用了各种不同的传统优化算法来解决这一问题,这些方法在求解较大规模的背包问题时,都存在着计算量大,迭代时间长的弱点。而将遗传算法应用到背包问题的求解,则克服了传统优化方法的缺点,遗传算法是借助了大自然的演化过程,是多线索而非单线索的全局优化方法,采用的是种群和随机搜索机制。 遗传算法(GA)是一类借鉴生物界自然选择和自然遗传机制的随机化的搜索算法,由美国J.Holland教授提出,其主要特点是群体搜索策略、群体中个体之间的信息交换和搜索不依赖于梯度信息。因此它尤其适用于处理传统搜索方法难于解决的复杂和非线性问题,可广泛应用于组合优化,机器学习,自适应控制,规划设计和人工生命领域。 GA是一种群体型操作,该操作以群体中的所有个体为对象。选择,交叉和变异是遗传算法的三个主要算子,他们构成了遗传算法的主要操作,使遗传算法具有了其它传统方法所没有的特性。遗传算法中包含了如下五个基本要素:1 .参数编码,2.初始群体的设置,3.适应度函数的设计, 4.遗传操作设计,5.控制参数设定,这个五个要素构成可遗传算法的核心内容。 遗传算法的搜索能力是由选择算子和交叉算子决定,变异算子则保证了算法能够搜索到问题空间的每一个点,从而使其具有搜索全局最优的能力.而遗传算法的高效性和强壮性可由Holland提出的模式定理和隐式并行性得以解释。 二、实验目的: 通过本实验,可以深入理解遗传算法,以及遗传算法对解决NP问题的作用。 三、算法设计: 1、确定种群规模M、惩罚系数 、杂交概率c p、变异概率m P、染色体长度n及最大 max. 进化代数gen x=1表 2、采用二进制n维解矢量X作为解空间参数的遗传编码,串T的长度等于n, i x=0表示不装入背包。例如X={0,1,0,1,0,0,1}表示第2,4,7示该物件装入背包, i 这三个物件被选入包中。

回溯法解0 1背包问题实验报告

实验4 回溯法解0-1背包问题 一、实验要求 1.要求用回溯法求解0-1背包问题; 要求交互输入背包容量,物品重量数组,物品价值数组;2.要求显示结果。3. 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++ 三、实验源码 #include \ #include #include #include<> #include using namespace std; template class Knap { public: friend void Init(); friend void Knapsack(); friend void Backtrack(int i); friend float Bound(int i); bool operator<(Knap a)const { if(fl< return true; else return false; } private: ty w; ; cout<>bag[i].v; for(i=0;i

{ bag[i].flag=0; bag[i].kk=i; bag[i].fl=*bag[i].v/bag[i].w; } }void Backtrack(int i){cw+=bag[i].w;if(i>=n) <=c) lag=1; cp+=bag[i].v; Backtrack(i+1); cw-=bag[i].w; cp-=bag[i].v; } if(Bound(i+1)>bestp)lag=0; Backtrack(i+1); }}<=cleft){; b+=bag[i].v; i++; } /bag[i].w * cleft; return b; } void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加 } cout<

分支界限法解0-1背包问题实验报告

实验5 分支界限法解0-1背包问题一、实验要求 1.要求用分支界限法求解0-1背包问题; 2.要求交互输入背包容量,物品重量数组,物品价值数组; 3.要求显示结果。 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++ 三、源程序 #include "" #include #include #include<> #include using namespace std; int *x; struct node //结点表结点数据结构 { node *parent;//父结点指针 node *next; //后继结点指针 int level;//结点的层 int bag;//节点的解 int cw;//当前背包装载量 int cp;//当前背包价值

float ub; //结点的上界值 }; //类Knap中的数据记录解空间树中的结点信息,以减少参数传递及递归调用所需的栈空间class Knap { private: struct node *front, //队列队首 *bestp,*first; //解结点、根结点 int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系 long lbestp;//背包容量最优解 public: void Sort(); Knap(int *pp,int *ww,int cc,int nn); ~Knap(); float Bound(int i,int cw,int cp);//计算上界限 node *nnoder(node *pa,int ba,float uub);//生成一个结点 ba=1生成左节点 ba=0生成右节点 void addnode(node *nod);//向队列中添加活结点 void deletenode(node *nod);//将结点从队列中删除 struct node *nextnode(); //取下一个节点 void display(); //输出结果 void solvebag(); //背包问题求解 }; //按物品单位重量的价值排序 void Knap::Sort() {

回溯法解决01背包问题

回溯法是一个既带有系统性又带有跳跃性的搜索算法。它在包含问题的所有解的解空间树中按照深度优先的策略,从根节点出发搜索解空间树。算法搜索至解空间树的任一节点时,总是先判断该节点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该节点为根的子树的系统搜索,逐层向其原先节点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。 运用回溯法解题通常包含以下三个步骤: ?针对所给问题,定义问题的解空间; ?确定易于搜索的解空间结构; ?以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索; 在0/1背包问题中,容量为M的背包装载。从n个物品中选取装入背包的物品,物品i的重量为Wi,价值为Pi。最佳装载指装入的物品价值最高,即∑PiXi(i=1..n)取最大值。约束条件为∑WiXi ≤M且Xi∈[0,1](1≤i≤n)。 在这个表达式中,需求出Xi的值。Xi=1表示物品i装入背包,Xi=0表示物品i不装入背包。 ?即判断可行解的约束条件是:∑WiXi≤M(i=0..n),Wi>0,Xi∈[0,1](1≤i≤n) ?目标最大值:max∑PiXi(i=0..n-1),Pi>0,Xi=0或1(0≤iS则前置条件错误,即背包体积输入错误,否则顺序将物品放入背包。假设放入前i件物品,背包没有装满,继续选取第i+1件物品,若该物品“太大”不能装入,则弃之继而选取下一件直到背包装满为止;如果剩余物品中找不到合适物品以填满背包,则说明“刚刚”装入的第i件

01背包实验报告

算法设计与分析实验报告实验二 0-1背包 院系: 班级: 学号: 姓名: 任课教师: 成绩: 年月

实验二 0-1背包 一. 实验内容 分别用编程实现动态规划算法和贪心法求0-1背包问题的最优解,分析比较两种算法的时间复杂度并验证分析结果 二.实验目的 1、掌握动态规划算法和贪心法解决问题的一般步骤,学会使用动态规划和贪心法解决实际问题; 2、理解动态规划算法和贪心法的异同及各自的适用范围。 三. 算法描述 1、动态规划法 01背包问题的状态转换公式为: (1) V(i, 0)= V(0, j)=0 (2) 公式表明:把前面i 个物品装入容量为0的背包和把0个物品装入容量为j 的背包,得到的价值均为0。如果第i 个物品的重量大于背包的容量,则装入前i 个物品得到的最大价值和装入前i -1个物品得到的最大价值是相同的,即物品i 不能装入背包;如果第i 个物品的重量小于背包的容量,则会有以下两种情况: (1)如果把第i 个物品装入背包,则背包中物品的价值等于把前i -1个物品装入容量为j -wi 的背包中的价值加上第i 个物品的价值vi ; (2)如果第i 个物品没有装入背包,则背包中物品的价值就等于把前i -1个物品装入容量为j 的背包中所取得的价值。显然,取二者中价值较大者作为把前i 个物品装入容量为j 的背包中的最优解。 2、贪心法 背包问题至少有三种看似合理的贪心策略: (1)选择重量最轻的物品,因为这可以装入尽可能多的物品,从而增加背包的总价值。但是,虽然每一步选择使背包的容量消耗得慢了,但背包的价值却没能保证迅速增长,从而不能保证目标函数达到最大。 (2)选择价值最大的物品,因为这可以尽可能快地增加背包的总价值。但是,虽然每一步选择获得了背包价值的极大增长,但背包容量却可能消耗得太快,使得装入背包的物品个数减少,从而不能保证目标函数达到最大。 (3)选择单位重量价值最大的物品,在背包价值增长和背包容量消耗两者 ?? ?>+---<-=i i i i w j v w j i V j i V w j j i V j i V }),1(),,1(max{) ,1(),(

(原创精品)n=3时的0-1背包问题(回溯法)

用回溯法解决3种可选择物品的0-1背包问题当n=3时,其解空间是 {(0,0,0)(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}n=3时的0-1背包问题: w=[16,15,15]p=[45,25,25]c=30 开始时,Cr=C=30,V=0,A为唯一活结点,也是当前扩展结点 扩展A,先到达B结点 Cr=Cr-w1=14,V=V+v1=45 此时A、B为活结点,B成为当前扩展结点 扩展B,先到达D Cr

Cr=30,V=0,活结点为A、C,C为当前扩展结点 扩展C,先到达F Cr=Cr-w2=15,V=V+v2=25,此时活结点为A、C、F,F成为当前扩展结点扩展F,先到达L Cr=Cr-w3=0,V=V+v3=50 L是叶结点,且50>45,皆得到一个可行解x=(0,1,1),V=50 L不可扩展,成为死结点,返回到F 再扩展F到达M M是叶结点,且25<50,不是最优解 M不可扩展,成为死结点,返回到F F没有可扩展结点,成为死结点,返回到C 再扩展C到达G Cr=30,V=0,活结点为A、C、G,G为当前扩展结点 扩展G,先到达N,N是叶结点,且25<50,不是最优解,又N不可扩展,返回到G 再扩展G到达O,O是叶结点,且0<50,不是最优解,又O不可扩展,返回到G G没有可扩展结点,成为死结点,返回到C C没有可扩展结点,成为死结点,返回到A A没有可扩展结点,成为死结点,算法结束,最优解X=(0,1,1),最优值 V=50

回溯算法——0-1背包问题

实验目的是使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。 上机实验一般应包括以下几个步骤: (1)、准备好上机所需的程序。手编程序应书写整齐,并经人工检查无误后才能上机。 (2)、上机输入和调试自己所编的程序。一人一组,独立上机调试,上机时出现的问题,最好独立解决。 (3)、上机结束后,整理出实验报告。实验报告应包括:题目、程序清单、运行结果、对运行情况所作的分析。 实验八 回溯算法——0-1背包问题 一、实验目的与要求 1. 熟悉0-1背包问题的回溯算法。 2. 掌握回溯算法。 二、实验内容 用回溯算法求解下列“0-1背包”问题: 给定n 种物品和一个背包。物品i 的重量是w i ,其价值为v i ,背包的容量为C 。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 三、实验步骤 1. 理解算法思想和问题要求; 2. 编程实现题目要求; 3. 上机输入和调试自己所编的程序; 4. 验证分析实验结果; 5. 整理出实验报告。 实验提示: (1)回溯算法求解0-1背包问题分析 回溯法通过系统地搜索一个问题的解空间来得到问题的解。为了实现回溯,首先需要针对所给问题,定义其解空间。这个解空间必须至少包含问题的一个解(可能是最优的)。 然后组织解空间。确定易于搜索的解空间结构。典型的组织方法是图或树。一旦定义了解空间的组织方法,即可按照深度优先策略从开始结点出发搜索解空间。并在搜索过程中利用约束函数在扩展结点处剪去不满足约束的子树,用目标函数剪去得不到最优解的子树,避免无效搜索。用回溯法解题的步骤: 1)针对所给问题定义问题的解空间; 2)确定易于搜索的解空间结构; 3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效的搜索。 0-1背包问题的数学描述为:n 个物品,物品i 的重量是w i 、其价值为v i ,其中0≤i ≤n-1,背包的容量为C 。用x i 表示物品i 被装入背包的情况,如果物品Pi 被选中,则x i =1;否则x i =0。求满足目标函数∑-=?=10max n i i i v x F 和约束方程C w x n i i i ≤?∑-=1 0的物品组合(x 0,x 1,x 2,…,x n-1) 与相应的总价值V 。

相关文档
最新文档