飞秒激光脉冲在空气中传输成丝的演化过程

飞秒激光脉冲在空气中传输成丝的演化过程
飞秒激光脉冲在空气中传输成丝的演化过程

激光脉冲测距实验报告讲解

激光脉冲测距

1 目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7) 2 一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫

反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图激光脉冲测距仪光学原理结构2() 3

图二)测距仪的大致结构组成(3 时钟脉冲门控电路、脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、 振荡器以及计数显示电路组成4)主要的工作过程(其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。参考信号和回波信号先后由光电探测器转换成为电脉冲,并加以放大和整形。整形后的参考信号能触发器翻转,控制计数器开始对晶格振荡器发出的时钟脉冲进行计数。整形后的回波信号使触发器的输出翻转无效,从而使计数器停实验装置实止工作。这样,根据计数器的输出即可计算出待测目标的距离。三单片机开放板和激光脉冲发射、接收电路验装置包括“”“”。 4 (5)激光脉冲发射、接收电路板组成及工作原理 激光脉冲发射/接收电路板原理框图如图2.3所示。图中EPM3032为CPLD;MAX3656为激光驱动器;MAX3747为限幅放大器;T22为单端信号到差分信号转换芯片;T23为差分信号到单端信号转换芯片;LD为半导体激光器;PD为光电探测器。板子上端的EPM3032被编程为脉冲发生器,输出重复频率为1KHz,脉冲宽度为48ns的电脉冲信号。此信号经MAX3656放大后驱动LD发光。板子下端的EPM3032被编程为计数器,对125MHz晶振进行计数。其计数的开门信号来自上端的TX信号,关门信号来自PD的输出。计数器的计数结果采用12 位二进制数据输出,对应的时间范围为0~32.7?s。 二激光脉冲测距的应用领域 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法.脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收.测距仪同时记录激光往返的时间.光速和往返时间的乘积的一半.就是测距仪和被测量物体之间的距离.脉冲法测量距离的精度是一般是在+/-1米左右.另外.此类测距仪的测量盲区一般是15米左右。 激光测距仪已经被广泛应用于以下领域:电力.水利.通讯.环境.建筑.地质.警务.消防.爆破.航海.铁路.反恐/军事.农业.林业.房地产.休闲/户外运动等。 由于激光在亮度、方向性、单色性以及相干性等方面都有不俗的特点,它一出现就吸引了众多科学工作者的目光,并被迅速地被应用在工业生产方面、国防军工方面、房地产业、各级科研机构、工程、防盗安全等各个行业各个领域:激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等。有关于激光的研究与生产制造也如火如荼地开展了起来。 5

太赫兹简介及特点和应用

太赫兹简介及特点和应用 嘉兆科技 THz波(太赫兹波)或成为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896年和1897年,Rubens和Nichols就涉及到这一波段,红外光谱到达9um(0.009mm)和20um (0.02mm),之后又有到达50um的记载。之后的近百年时间,远红外技术取得了许多成果,并且已经产业化。但是涉及太赫兹波段的研究结果和数据非常少,主要是受到有效太赫兹产生源和灵敏探测器的限制,因此这一波段也被称为THz间隙。 随着80年代一系列新技术、新材料的发展,特别是超快技术的发展,使得获得宽带稳定的脉冲THz源成为一种准常规技术,THz技术得以迅速发展,并在实际范围内掀起一股THz研究热潮。2004年,美国政府将THz科技评为“改变未来世界的十大技术”之四,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。THz研究领域的开拓者之一,美国著名学者张希成博士称:“Next ray,T-Ray !” 目前国内已经有多家研究机构开展太赫兹领域的相关研究,其中首都师范大学,是入手较早,投入较大的一家,并且在毒品和炸药太赫兹光谱、成像和识别方面,利用太赫兹对非极性航天材料内部缺陷进行无损检测方面做出了许多开拓性的工作,同时由于太赫兹射线在安全检查方面的独特优势,首都师范大学太赫兹实验室正集中力量研发能够用于实景测试的安检原型设备。 目前,国际上对太赫兹辐射已达成如下共识,即太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。

光电探测技术实验报告

光电探测技术实验报告 班级:08050341X 学号:28 姓名:宫鑫

实验一光敏电阻特性实验 实验原理: 光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、 各种光源、遮光罩、激光器、光照度计(由用户选配) 实验步骤: 1、测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩 盖,用万用表测得的电阻值为暗电阻 R暗,移开遮光罩,在环境光照下测得的光敏电阻的 阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光 电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻, 试作性能比较分析。 2、光敏电阻的暗电流、亮电流、光电流 按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 分别测出两种光敏电阻的亮电流,并做性能比较。 图(2)几种光敏电阻的光谱特性 3、伏安特性: 光敏电阻两端所加的电压与光电流之间的关系。 按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果填入表格并作出V/I曲线。 注意事项: 实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

太赫兹波的特点

太赫兹波的特点 ?(1)高透射性:太赫兹对许多介电材料和非极性物质具有良好的穿透性,可对不透明物体进行透视成像,是X 射线成像和超声波成像技术的有效互补,可用于安检或质检过程中的无损检测。 (2)低能量性:太赫兹光子能量为4.1meV(毫电子伏特),只是X 射线光子能量的108 分之一。太赫兹辐射不会导致光致电离而破坏被检物质,非常适用于针对人体或其他生物样品的活体检查。进而能方便地提取样品的折射率和吸收系数等信息。 (3)吸水性:水对太赫兹辐射有极强的吸收性,因为肿瘤组织中水分含量与正常组织明显不同,所以可通过分析组织中的水分含量来确定肿瘤的位置。 (4)瞬态性:太赫兹脉冲的典型脉宽在皮秒数量级,可以方便地对各种材料包括液体、气体、半导体、高温超导体、铁磁体等进行时间分辨光谱的研究,而且通过取样测量技术,能够有效地抑制背景辐射噪声的干扰。 (5)相干性:太赫兹的相干性源于其相干产生机制。太赫兹相干测量技术能够直接测量电场的振幅和相位,从而方便地提取样品的折射率、吸收系数、消光系数、介电常数等光学参数。 (6)指纹光谱:太赫兹波段包含了丰富的物理和化学信息。大多数极性分子和生物大分子的振动和转能级跃迁都处在太赫兹波段,所以根据这些指纹谱,太赫兹光谱成像技术能够分辨物体的形貌,分析物体的物理化学性质,为缉毒、反恐、排爆等提供相关的理论依据和探测技术。 太赫兹波的产生 ?(1)通过FTIR(Fourier Transform Infrared Spectrometer)使用热辐射源产生,如汞灯和SiC棒; (2)是通过非线性光混频产生; (3)是通过电子振荡辐射产生,如反波管、耿式振荡器及肖特基二极管产生; (4)是通过气体激光器、半导体激光器、自由电子激光器等THz激光器直接产生。目前产生THz脉冲常用的方法有光导天线法、光整流法、THz参量振荡器法、空气等离子体法等,其中空气等离子体能产生相对较高强度的THz波而备受关注,此外,还可以用半导体表面产生THz波。 太赫兹波的研究现状 ?太赫兹波现象其实早已为人们所发现,然而早期因缺乏有效的太赫兹波产生和探测技术,使得相关研究进展极其缓慢[2]。进入20世纪80年代后,激光技术的迅速发展为研究有效太赫兹波的产生和探测技术孕育了基础。据文献报道,1983年 D.H.Anston[3]首次利用光学技术,通过超短激光脉冲激发光电导天线产生了相干脉 冲宽带THz辐射。鉴于D.H.Auston做出的巨大贡献,光导天线后来常被称为“Auston switeh”。紧接着,D.Grischkowsky和D.H.Auston等又开发出了基于超短激光脉冲激发光电导天线的THz时域光谱探测技术。这种基于基于超短激光脉冲激发光电导天线的太赫兹波产生和探测技术至今仍然是实验设备应用的主流。1990-1992年,X.C.zhang和D.H.Auston[4]等又提出了原理上完全不同的太赫兹波产生与探测方法一基于瞬态电光取样及其逆过程的THz产生与探测技术。 至此,太赫兹波的产生与探测技术虽然还不成熟,但已经能够用于相关仪器的制造与生产,为科研人员研究太赫兹波与物质相互作用提供了必备的实验手段。太赫兹科学和技术有极大的应用潜力,但目前还受太赫兹辐射源的限制,比如:产生的太赫兹辐射强度不高、带宽不够宽、能量转化效率低等因素,所以太赫兹领域的发展还需更大的努力。

激光脉冲测距实验报告

百度文库- 让每个人平等地提升自我 激光脉冲测距 组长:孙汉林(制作PPT) 组员:张莹(讲解) 吕富敏(制作报告)

目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7)

一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速 c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图 (2)激光脉冲测距仪光学原理结构

自相关仪超快飞秒脉冲激光测量

超快飞秒脉冲激光测量 一、超快激光是什么? 我们所说的超快激光器,一般是指脉冲宽度达到 皮秒 量级的脉冲激光器。其具有一下特点: (1)具有极短的激光脉冲。脉冲持续时间只有几个皮 秒或飞秒。 (2)具有极高的峰值功率。其电场远远强于原子内库 仑场,具有极高的电场强度,足以使任何材料发生电 离。 近十几年来,由于啁啾脉冲放大(chirped pulse amplification, 简称CPA)技术的提出和应用,宽带 激光晶体材料(如掺钛蓝宝石)的出现,以及克尔透 镜锁模技术的发明,使超强超快激光技术得到迅猛发 展。小型化飞秒太瓦(1012瓦)甚至更高数量级的超 强超快激光系统已在各国实验室内建成并发挥重要作用。图1、100飞秒激光器时域分布最近,更短脉冲和更高功率的激光输出,如直接由激光振荡器产生的短于5飞秒的激光脉冲,小型化飞秒100太瓦级超强超快激光系统,以及 CPA技术应用到传统大型钕玻璃激光装置 上获得1拍瓦(1015瓦)级激光输出已有 报道,激光功率密度达到1019~1020瓦 / 厘米2的超强超快激光与物质相互作用研 究也已开始进行。 传统的激光放大采用直接的行波放大,而 对超短激光脉冲来说,随着能量的提高, 其峰值功率将很快增加,并出现各种非线 性效应及增益饱和效应,从而限制了能量的进一步放大。图2、脉冲序列分布 CPA技术的原理是,在维持光谱宽度不变的情况下通过色散元件将脉冲展宽好几个数量级,形成 所谓的啁啾脉冲。这样,在放大过程中,即使激光脉冲的 能量增加很快,其峰值功率也可以维持在较低水平,从而 避免出现非线性效应及增益饱和效应,保证激光脉冲能量 的稳定增长。当能量达到饱和放大可获得的能量之后,借 助与脉冲展宽时色散相反的元件将脉冲压缩到接近原来 的宽度,即可使峰值功率大大提高。 为了突破CPA技术的一些局限性,目前国际上正在积 极探索发展新一代超强超快激光的新原理与新方法,如啁 啾脉冲光学参量放大(OPCPA)原理,目标是创造更强更 快的强场超快极端物理条件,特别是 图3、钛蓝宝石超快激光器

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

激光脉冲测距实验报告

激光脉冲测距 组长:孙汉林(制作PPT) 组员:张莹(讲解) 吕富敏(制作报告)

目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7)

一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速 c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图 (2)激光脉冲测距仪光学原理结构

图二 (3)测距仪的大致结构组成 脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、门控电路、时钟脉冲振荡器以及计数显示电路组成 (4)主要的工作过程 其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。参考信号和回波信号先后由光电探测器转换成为电脉冲,并加以放大和整形。整形后的参考信号能触发器翻转,控制计数器开始对晶格振荡器发出的时钟脉冲进行计数。整形后的回波信号使触发器的输出翻转无效,从而使计数器停止工作。这样,根据计数器的输出即可计算出待测目标的距离。三实验装置实验装置包括“激光脉冲发射、接收电路”和“单片机开放板”。

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

LDV与全飞秒的比较

LDV与全飞秒的比较 飞秒激光是目前最先进最安全的近视矫正手术,这是一种全程无刀的手术方法,它使用计算机控制先进的飞秒激光来制作角膜瓣,这样制作出的角膜瓣表面平滑、厚度均匀,其精确程度远高于机械式角膜板层刀,让手术更安全、视力更完美。目前,飞秒激光已成为角膜屈光手术的最新工具,也是美国航天局和美国海军陆战队指定的近视激光手术方式。 现在主流的飞秒有美国的IntraLase、德国的FEMTEC、瑞士的LDV、德国的VisuMax等四种主流品牌。近期德国ZEISS公司研制了新型全飞秒设备,号称是技术的革新和时代的进步。全飞秒技术简单来说就是手术全程利用飞秒激光通过提前设定在角膜基质层激光爆破成一个一定屈光度的透镜,然后再通过一个小切口拉出此透镜组织,从而改变角膜的屈光度,达到近视矫正的目的。但是我认为,受其手术原理和特性限制,其安全性和适用范围都有一定的缺陷。例如,对于高度近视和有角膜疾病的人群则无法应用,对手术操作医生的技术要求较高,必须有一定的手术量才可以操作。并且因为是直接飞秒做透镜组织,因此如果术后视觉质量不好或有其他问题是无法做二次手术矫正的。因此,虽然是新技术,但是要达到高安全性和广适应性还需一段时间的检验和摸索。 因此,目前作为美国航天局和美国海军陆战队指定的以全激光近视手术仍然是主流手术方式。其中LDV飞秒技术以其高安全性(全国

装机100多台,手术超100万眼,至今无手术事故)、优秀的术后视觉质量和适中的手术费用,在未来几年内仍然是近视矫正手术的主流。因此,如果您有近视矫正手术的需求,一定要好好思量,究竟是选择高风险高费用的全飞秒手术,还是选择经过市场检验的高安全性费用适当的主流飞秒手术,我相信您一定会有个理智的答案。

激光脉冲测距实验报告

激光脉冲测距实验报告 一.实验目的 通过学习激光脉冲测距的工作原理,了解激光脉冲测距 系统的组成,搭建室模拟激光器系统进行正确测距,为今后 的工程设计奠定理论基础和工程实践基础。 二.实验原理 激光脉冲测距与雷达测距在原理上是完全相同的,如图2.1所示。 在测距点激光发射机发射激光脉冲,光脉冲经过光纤到达接收端,并被测距机上的探测系统接收。测出从激光发射时刻到被接收时刻之间的时间间隔t,根据已知光速,即可求出光纤的长度R为 R=/2 (2-1) 式中c为光速。真空中的光速是一个精确的物理常数 C1=299792458 m/s 光纤中的平均折射率n为 n=1.45(查阅得知) 故光纤中的光速为 C=299710000 可见,激光测距的任务就是准确地测定时间间隔t。当不考虑光纤中光速的微小变化时,测距精度⊿R主要是由测时精度⊿t确定的 ⊿R=C⊿t/2 (2-2) 实际脉冲激光测距机中是利用时钟晶体振荡器和脉冲计数器来测定时间间隔 t的。时钟晶体振荡器用于产生固定的频率的电脉冲振荡,脉冲计数器的作用是对晶体产生的电脉冲个数进行计数。设晶体振荡器产生的电脉冲频率为f,则脉冲间隔T=1/f。若从激光脉冲发出时刻脉冲计数器开始计数,到光脉冲被接收时刻停止计数。设这段时间脉冲计数器共计得脉冲个数为m,则可计算出被测光纤的长度为 R=cmT=cm/f=1.6m (2-3) 相应的测距精度为

⊿R =Ct=c/f (2-4) 可见,脉冲激光测距机的测距精度由晶振的频率决定。常用军用激光测距仪的晶振频率有15MHz、30MHz、75MHz和150MHz等,与其相对应的测距精度分别为正负10m、正负5m 、正负2m和正负1m。晶振的频率愈高,测距精度就愈高, 但随之而来的,不仅是计数器的技术难度增加,而且要求激光脉冲的宽度愈窄,激光器的难度也增加。 对脉冲测距系统,计数器的“开门”信号是由取出一小部分发射激光脉冲经光探测器转换成电信号形成的。这两个信号既可由同一探测器提供,也可以用两个探测器提供。 激光脉冲测距机由激光器、发射光学系统、接收及瞄准光学系统、取样及回波探测放大系统、技数及显示器和电源几部分组成,如图2.2所示 系统操作人员一旦下达发射激光命令,激光器发射一束窄激光脉冲,经发射光学系统扩束后射向接收系统,其中一小部分经取样后启动计数器开始计数。激光回波经测距机的接收和瞄准光学系统,聚焦到前面有窄带滤光片的光探测器上。由探测器将其转换成电信号,再经取样及回波探测放大系统处理后产生“关门”信号用于关闭计数器。由计数器计得的脉冲个数计算出光纤得电源计数及显示器激光器长度,再通过显示器显示出来。 三.实验装置 实验装置包括“激光脉冲发射/接收电路板”、电脑和“单片机开放板”。 1.激光脉冲发射/接收电路板组成及工作原理 激光脉冲发射/接收电路板原理框图如图2.3所示。图中EMP 3032为CPLD;MAX3656为激光驱动器;MAX3747为限幅放大器;T22为单端信号到分差信号转换芯片;T23为差分信号单短信号转换芯片;LD为半导体激光器;PD为光探测器。板子上端的EMP3032被编程为脉冲发生器,输出重复频率为1KHz,脉冲宽度为48ns的电脉冲信号。此信号经MAX3656放大后驱动LD发光。板子下端的EMP 3032被编程为计数器,对125MHz 晶振计数器。其计数的开门信号来自上端的TX信号,关门信号来自PD的输出。计数器的计数结果采用12位二进制数据输出,对应时间围为0~32.76us.

激光散斑测量实验报告

实验报告 陈杨 PB05210097 物理二班 实验题目:激光散斑测量 实验目的: 了解单光束散斑技术的基本概念,并应用此技术测量激光散斑的大小和毛玻璃的面内位移。 实验内容: 本实验中用到的一些已知量:(与本次实验的数据略有不同) 激光波长λ = 0.0006328mm 常数π = 3.14159265 CCD像素大小=0.014mm 激光器内氦氖激光管的长度d=250mm 会聚透镜的焦距f’=50mm 激光出射口到透镜距离d1=650mm 透镜到毛玻璃距离=d2+P1=150mm 毛玻璃到CCD探测阵列面P2=550mm 毛玻璃垂直光路位移量dξ和dη, dξ=3小格=0.03mm,dη=0 光路参数:P1=96.45mm ρ(P1)=96.47mm P2= 550mm dξ=3小格=0.03mm (理论值) 数据及处理: 光路参数: P1+d2=15cm P2=52.5cm

d1=激光出射口到反射镜的距离+反射镜到透镜距离=33.6+28.5=62.1cm f ’=5cm d=250mm λ=632.8nm (1)理论值S 的计算: 经过透镜后其高斯光束会发生变换,在透镜后方形成新的高斯光束 由实验讲义给的公式: 2'2 012'11 '' 2)()1(d f W f d d f f λπ+--- = πλd W 01= 201W d πλ= 代入数据,可得: '' 1 21 221''12 2 22 01 02 2 2 2101102 d 15(1)() 5 62.11559.6332439.63362.12515511f d f cm P d d f f cm cm P cm cm cm cm cm cm cm cm d W W d d W d f f W λπ πλ???? ? ? ???? ?????? ?? ? ? ? ? ? ? ? ????? ???? -=-=--+-=-+ =≈-+= = -+-+= 可得 由公式-31.80010cm ≈? 此新高斯光束射到毛玻璃上的光斑大小W 可以由计算氦氖激光器的

太赫兹脉冲远程测距和散射测量

雷达探测 导体和介质圆柱体 初始目标的测量和测距校准可以通过圆柱导体来实现。由于圆柱体的几何结构简单,所以可以求其散射解的精确值。而且,较之于球体来说,圆柱体所反射的信号强度要强一些。另外,长圆柱体的横截面会阻挡住太赫兹光束的很大一部分。 散射系数的测量所采用的是直径分别为0.26mm、0.51mm和1.02mm的铜柱体(铜线),并且铜柱大于太赫兹光束的覆盖范围,这样在分析数据的时候,就可以利用无限长圆柱体近似了。探测装置采用图9-3所示的雷达系统。铜丝位于可偏转反射镜中心的64cm远处,入射波与所测量的散射波之间的角度小于70。 图9-6给出了3种直径铜丝的测量所得的(圆点)和计算所得的(线)时域脉冲波形图。实验中金属丝的轴线垂直于入射波的电场矢量。从图中可以看出计算结果与实验结果(振幅归一化)都吻合的很好。 图9-6 三种直径的铜圆柱体的测量结果(圆点)和计算结果(实线)对比 太赫兹脉冲主峰后面所出现的波峰(图9-6中用箭头标出的部分)是由“爬行波”所导致的。当柱体导体的轴向垂至于入射场时,太赫兹辐射的电场会在铜导线上感生出电流脉冲来,而这个电流脉冲会以“爬行波”的形式在铜丝表面传播。当电流脉冲在铜丝曲面上传播时,它的功率会不断地损耗,以此来辐射出电磁波。如图9-6所示,第二个脉冲在时间上的延迟正比于铜丝的直径,并且随着金属丝直径的增大,它的衰减会越来越强。其余所出现的振荡则是由残留的金属丝上的水蒸气所导致的。当电场矢量平行于圆柱体的轴向时,产生的脉冲会沿着柱体传播,而且用探测器也观察不到它。图9-7对这一现象做了图解,图中画出了0.51mm直径铜丝的散射脉冲,其中有铜丝轴向垂至于电场的(实线),也有平行于电场的(圆点)实验结果,再辐射脉冲即爬行波脉冲同样也以箭头标出。从图中可以看出只有在铜丝轴向和太赫兹电场垂直的情况下,才会出现爬行波脉冲。

飞秒激光术后感言

不得不说24岁的我已经有了12年戴眼镜的历史,眼镜戴久了眼镜会变成鱼眼,眼睛无神,戴上眼镜会被人起外号“四眼妹”“二饼”,吃热饭时,戴着眼镜眼前确是白茫茫的一片,摘掉眼镜之后,远处的建筑物看不清,远处的路人性别也分不清,红绿灯也会晕染成一大片,近视眼除了给我生活上造成不便之外,也使我变的特别自卑,不自信,但是从来没有想过自己会和眼镜真正的说再见。 去年12月份报名参加了屈光手术爱心公益活动,就在1月16日大奖砸到了我的头上,来到医院做了系统的检查,非常幸运的是,我各方面都适合全飞秒激光手术,虽然是免费的,但是心里还是不自觉的对于这次手术的安全性做了一次估量,从里宣传资料和网上查询了解到全飞秒激光手术和其他近视眼手术相比更加精确,更加安全,更加舒适,因此我也更加信任这次手术。 手术当日从进手术室到手术结束,大概不到十分钟的时间,术中医生一直让我盯着前方的绿点看,做完右眼还鼓励我说做的非常完美,别紧张,放松,在那么轻松的环境下不知不觉的做完了手术,术后视力恢复的特别好,坚持滴眼药水,现在左右眼都达到了1.0以上。全飞秒激光手术搬开了我在生活中的“绊脚石”,现在夜间醒来不用戴眼镜就能看清周围的事物,早晨起来洗漱的时候不用趴到镜子上去看自己了,做饭时不用担心自己眼前白茫茫一片了,每当早晨第一缕阳光照到房间时我比以前更敏锐的感觉到阳光的灿烂,甩掉眼镜后的我变的更加有自信,偷偷的跑到镜子跟前会自恋一翻,自言自语的说鼻梁这次不会再委屈你了,甚至会到视力表之前牛哄哄的告诉家人我

现在都能看到倒数第三行了。 现在的我还会不由自主的扶一下眼镜框,反应过来之后心中会偷偷的窃喜,当我把全飞秒激光手术给我生活带来的改变分享到了QQ空间时,朋友同学们在为了我的改变高兴的同时都在问我恢复的效果,我也一一给他们推荐了全飞秒激光手术,我希望身边的每一位朋友同学都能像我一样能够通过全飞秒激光手术挣脱眼镜,让眼睛重获自由,最后感谢公益活动给我的这次机会,让我更加清晰的去看清我眼中的世界。

飞秒激光脉冲的发展及其应用

飞秒激光脉冲的发展及其应用 飞秒激光是过去20年间由激光科学发展起来的最强有力的新工具之一。飞秒脉冲时域宽度是如此的短,目前已经达到了4fs以内。1飞秒(fs) ,即10-15s ,仅仅是1千万亿分之一秒,如果将10fs作为几何平均来衡量宇宙,其寿命仅不过1min而已;飞秒脉冲又是如此之强,采用多级啁啾脉冲放大(CPA)技术获得的最大脉冲峰值功率可达到百太瓦(TW,即1012W)甚至拍瓦(PW,即1015W)量级,其聚焦强度比将太阳辐射到地球上的全部光聚焦成针尖般大小后的能量密度还要高。飞秒激光完全是人类创造的奇迹。 近二十年来,从染料激光器到克尔透镜锁模的钛宝石飞秒激光器,以及后来的二极管泵浦的全固态飞秒激光器和飞秒光纤激光器,虽然说脉冲宽度和能量的记录在不断刷新,但最大进展莫过于获得超飞秒脉冲变得轻而易举了。桑迪亚国家实验室的R.Trebino说:“过去10年中,(超快)技术已有显著改善, 钛蓝宝石激光器和现在的光纤激光器正在使这种(飞秒) 激光器的运转变得简洁和稳定。这种激光器现在人们已可买到, 而10年前, 你却必须自己建立。”比如,著名的飞秒激光系统生产商美国Clark-MXR公司将产生高功率飞秒脉冲的所有部件全部集成到一个箱子里,采用掺铒光纤飞秒激光器作为种子源,加上无需调整(NO Tweak)的特殊设计,形成了世界上独一无二,超稳定、超紧凑的CPA2000系列钛宝石啁啾脉冲放大系统。这种商品化的系统不需要飞秒专家来操作,完全可以广泛应用于科研和工业上的许多领域里。 根据飞秒激光超短和超强的特点,大体上可以将应用研究领域分成超快瞬态现象的研究和超强现象的研究。它们都是随着激光脉冲宽度的缩短和脉冲能量的增加而不断的得以深入和发展。飞秒脉冲激光的最直接应用是人们利用它作为光源, 形成多种时间分辨光谱技术和泵浦/探测技术。它的发展直接带动物理、化学、生物、材料与信息科学的研究进入微观超快过程领域, 并开创了一些全新的研究领域, 如飞秒化学、量子控制化学、半导体相干光谱等。飞秒脉冲激光与纳米显微术的结合, 使人们可以研究半导体的纳米结构(量子线、量子点和纳米晶体)中的载流子动力学。在生物学方面,人们正在利用飞秒激光技术所提供的差异吸收光谱、泵浦/ 探测技术, 研究光合作用反应中心的传能、转能与电荷分离过程。超短脉冲激光还被应用于信息的传输、处理与存贮方面。 第一台利用啁啾脉冲放大技术实现的台式太瓦激光的成功运转始于1988年,这一成果标志着在实验室内飞秒超强及超高强光物理研究的开始。在这一领域研究中,由于超短激光场的作用已相当于或者大大超过原子中电子所受到的束缚场,微扰论已不能成立,新的理论处理有待于发展。在1020W/cm2的光强下,可以实现模拟天体物理现象的研究。 飞秒激光的另一个重要的应用就是微精细加工。通常,按激光脉冲标准来说,持续时间大于10皮秒(相当于热传导时间)的激光脉冲属于长脉冲,用它来加工材料,由于热效应使周围材料发生变化,从而影响加工精度。而脉冲宽度只有几千万亿分之一秒的飞秒激光脉冲则拥有独特的材料加工特性,如加工孔径的熔融区很小或者没有;可以实现多种材料,如金属、半导体、透明材料内部甚至生物组织等的微机械加工、雕刻;加工区域可以小于聚焦尺寸,突破衍射极限等等。一些汽车制造厂和重型设备加工厂目前正研究用飞秒激光加工更好的发动机喷油嘴。使用超短脉冲激光,可在金属上打出几百纳米宽的小孔。在最近于奥兰多举行的美国光学学会会议上,IBM公司的海特说,IBM已将一种飞秒激光系统

超声波测距实验报告

目录 1、课题设计的目的和意义 (3) 2、课题要求 (3) 2.1、基本功能要求 (3) 2.2、提高要求 (4) 3、重要器件功能介绍 (4) 3.1、CX20106A红外线发射接收专用芯片 (4) 3.2、AT89C51系列单片机的功能特点 (5) 3.3、ISD1700优质语音录放电路 (6) 4、超声波测距原理 (8) 4.1、超声波测距原理图 (8) 4.2、超声波测距的基本原理 (9) 5、硬件系统设计 (10) 5.1、超声波发射单元 (10) 5.2、超声波接收单元 (11)

5.3、显示单元 (11) 5.4、语音单元 (12) 5.5、硬件设计中遇到的难题: (12) 6、系统软件设计 (14) 7、调试与分析 (15) 7.1调试 (15) 7.2误差分析 (15) 8、总结 (16) 9、附件 (17) 9.1、总电路 (17) 9.2、主要程序 (18) 10、参考文献 (22)

1课题设计的目的及意义 随着科学技术的快速发展,超声波在测距仪中的应用越来越广,但就目前技术水平而言,人们可以利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距作为一种新型的非常重要有用的工具在各方面都有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。如声纳的发展趋势:研究具体的高定位精度的被动测距声纳,以满足军事和渔业等的发展需求,实现远程的被动探测和识别。毋庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。 超声波测距在某些场合有着显著的优点,因为这种方法是利用计算超声波在被测物体和超声波探头之间的传输来测量距离的,因此它是一种非接触式的测量,所以他就能够在某些场合或环境比较恶劣的环境下使用。比如测有毒或者有腐蚀性化学物质的液面高度或者高速公路上快速行驶汽车之间的距离。 随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最注重发展到具有创造力。在新的时代,测距仪将发挥更大的作用。 2课题要求 以单片机AT89C51为中心控制单元,配以超声波发射、接收装置,实现超声波发射及接收其遇到障碍物发生反射形成的回波信号,并根据超声波在介质中的传播速度及超声波从发射到接收到回波的时间,计算出发射点距障碍物的距离,设计出一套基于单片机的脉冲反射式超声波测距系统,利用单片机进行操作控制,用数码管作输出显示,设计发射、接收、检测、显示硬件电路和测距系统软件。

太赫兹脉冲

太赫兹脉冲损伤DNA同时诱导DNA修复 来源:https://www.360docs.net/doc/fa13105716.html,; 电子科技大学太赫兹研究中心四川太赫兹应用研究联合课题组李琳编译 太赫兹辐射迅速找到在医疗诊断、安全和科学研究方面的重要用途,但代价是对我们的健康有什么样的危害呢? 一项新的研究结果,在加拿大实验室培养的人体皮肤表明,短波、高能量太赫兹辐射的爆发可能导致DNA的损伤,但也促成蛋白质生成,帮助身体对抗癌症。 “虽然关于强烈太赫兹脉冲生物影响的研究才刚刚开始,但强烈太赫兹脉冲能引发人类皮肤组织的DNA损伤又能触发其修复的机理表明,强烈太赫兹脉冲需要在可能的治疗运用中得到评估。”艾伯塔大学的研究人员Lyubov Titova说到。 一种被用于检测特定蛋白质的基于凝胶分析方法显示表征DNA损伤的蛋白质γH2AX水平升高,表明,暴露在太赫兹脉冲辐射下的组织与未暴露在太赫兹脉冲辐射下的组织相比,该种蛋白质的含量水平明显较高。 ---生物医学光学快报 和他们在微波范围内的其他表兄弟一样,太赫兹光子都没有足够的能量来打破化学键结合的DNA细胞核。然而这些波的频率正好能够使水分子活化,引起它们的振动,从而产生热量。因此,认为热相关的损伤是由太赫兹辐射所带来的主要风险。 然而,最近的理论研究表明,强烈的太赫兹脉冲皮秒时间可以通过放大连接DNA两股螺旋的氢键固有振动直接影响DNA。这样就形成了“泡沫”或开口的DNA链。根据这些研究,研究人员一个新的疑问产生了:“强烈的太赫兹脉冲能否动摇DNA的结构足以引起DNA链断裂?” 早期的动物细胞培养研究表明,在特定的环境下(大功率、长时间暴露)如暴露在太赫兹下可能影响生物功能,但对于人类来说很难得出同样的结论。 如今,来自阿尔伯塔大学和布里奇大学的物理学家和分子生物学家将实验室培养的人体皮肤组织暴露在强烈的太赫兹电磁辐射之下,通过使用一种叫做磷酸化H2AX的化学标记来检测DNA破坏的迹象。与此同时,他们观察到了太赫兹脉冲能够抑制多种肿瘤的物质和能够修复DNA的细胞周期调节蛋白增加。这可

小切口全飞秒激光角膜基质透镜切除术_SMILE_的护理_郑华 (1)

《中外医学研究》第11卷 第29期(总第217期)2013年10月 现代护理 Xiandaihuli 等处置及患者大小便时,随时给予遮挡。注意尊重患者的隐私,防止患者因为不安而导致ICU 并发症的反生。 1.3. 2.4 保障患者的睡眠质量 尽量减少在夜间对患者进行日常治疗,如个别患者需要进行夜间护理时,应当轻声叫醒患者,操作时应降低噪音,以免影响其他患者。护理人员在夜间进入病房是,应调暗手电筒的光,避免直接照射患者面部。遇到失眠或者紧张不安的患者额,应当进行合理的心理干预,必要时可遵医嘱给予适当的镇静药物[4]。 有计划地安排治疗护理,除必须的治疗外,避免在夜间惊醒病人,并减少语言的干扰,使患者保持安定的心境入睡。ICU 特殊的环境和持续的检测、监护,使患者没有完整的睡眠周期,应鼓励患者白天少睡,夜间减暗灯光,减低噪音,营造良好的睡眠环境,以助其入睡。对有失眠和紧张不安的病人给予镇静剂和心理疏导,以保证充足的睡眠。2 结果 对照组在进行基础护理后,发生ICU 并发症患者37例,占总病例的61.6%。干预组在基础护理的基础上根据每位患者的情况进行合理的护理干预,其发生ICU 并发症患者11例,占总病例的18.3%。干预组较对照组ICU 综合征的发病率有效地减 少了43.3%。3 讨论 引起ICU 综合征的原因很多,预防比治疗更重要,一旦发生,将影响患者的治疗及康复,延长住院时间,增加患者的经济负担[5]。而临床研究证明,进行合理的护理干预可以有效缓解ICU 综合征的发生,值得临床广泛推广应用。 参考文献 [1]杨巧玲,刘洁,王洋.ICU 综合征研究概况[J].实用医药杂志,2011,11(20):126-128. [2]孙叶萍.关于ICU 综合征产生的原因及护理方法研究[J].中外健康文摘,2010,35(7):101-102. [3]王凤玲,高辉,高华,等.浅谈围手术期患者的心理护理[J].中国医学创新,2012,9(10):75-76. [4]罗红.术后ICU 患者精神障碍相关因素的分析[J].中国现代医学杂志,2003,10(15):41. [5]陈玉红.ICU 综合征的心理护理[J].黑龙江护理杂志,1998,6(13):51-52. (收稿日期:2013-04-26) (编辑:连胜利) ①中山大学中山眼科中心 广东 广州 510060 小切口全飞秒激光角膜基质透镜切除术(SMILE)的 护理 郑华① 刘颖慧① 【摘要】 目的:探讨小切口全飞秒激光角膜基质透镜切除术(SMILE)的手术配合及护理。方法:对54例(108眼)小切口全飞秒激光角膜基质透镜切除术患者行严谨高效的手术配合,做好术前心理护理、检查、术后护理。结果:54例(108眼)患者均顺利完成手术。术后3个月等效球镜屈光度均在±0.50D 以内;达到术前最佳矫正视力者52例(104)眼,占96%;术后一周对患者进行术中满意度调查,满意度达到96.95%。结论:全面细致的护理是小切口全飞秒激光角膜基质透镜切除术(SMILE)获得成功的关键。 【关键词】 全飞秒激光角膜基质透镜切除术; 护理 中图分类号 R778.1 文献标识码 B 文章编号 1674-6805(2013)29-0111-02 全飞秒激光手术是目前全球最新型的角膜屈光手术模式[1],手术中不需使用角膜刀制作角膜瓣,手术过程中完全应用飞秒激光系统完成。手术时首先启动低负压固定眼球,然后通过飞秒激光的两次扫描,产生水和二氧化碳分离角膜组织,经过精确计算形成微透镜状的角膜组织薄片,通过角膜浅层2~5 mm 小切口取出,从而改变角膜屈光力以达到矫正近视及散光的目的,实现了手术过程的安全、微创、无刀、无瓣、无痛,且整个手术过程只需3~5 min。现将本院行小切口全飞秒激光角膜基质透镜切除术(SMILE)手术护理和配合体会报道如下。1 资料与方法 1.1 一般资料 选择2013年1-2月在本院行小切口全飞秒激光角膜基质透镜切除术(SMILE)的近视眼患者54例(108眼),其中男29例, 女25例。年龄18~51岁,球镜度数-2.00~-10.00 D,柱镜度数0~-3.50 D,术前裸眼视力0.01~0.3,术前最佳矫正视力0.7~1.5。排除手术禁忌证。术中采用德国蔡司Visumax 飞秒激光仪全飞秒激光系统(SMILE)制作角膜瓣厚度120 μm,透镜直径6.0~6.3 mm,角膜瓣直径大于透镜直径1 mm,切口位置130°,切口直径为3 mm。 1.2 设备及手术室要求 本院采用德国蔡司Visumax 飞秒激光系统。手术室温度控制在18 ℃~22 ℃,湿度为40%~50%,以保持激光仪器的性能处于最佳状态[1]。严格控制非手术人员进入手术室,禁止使用产尘棉质物品,避免灰尘,纤维等脱落影响激光能量[2]。手术前须检查仪器各方面的性能是否正常。1.3 手术方法 本组患者采用德国蔡司Visumax 全飞秒激光行小切口全飞 DOI:10.14033/https://www.360docs.net/doc/fa13105716.html,ki.cfmr.2013.29.038

相关文档
最新文档