4.05+用拉普拉斯变换法分析电路、S域元件模型

拉氏变换常用公式

常用拉普拉斯变换总结 1、指数函数 000)(≥

拉普拉斯变换公式总结

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ -- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域

若0σσ>时,lim ()0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ -- ? 存 在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() [ ]()(0)df t sF s f dt ζ-=- 1 1()0 ()[]()(0)n n n n r r n r d f t s F s s f dt ζ----==-∑ 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]t f F s f t dt s s ζ---∞ =+? 式中0(1) (0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---= (5) s 域平移

拉普拉斯变换和逆变换

第十二章 拉普拉斯变换及逆变换 拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。我们经常应用拉普拉斯变换进行电路的复频域分析。本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。 第一节 拉普拉斯变换 在代数中,直接计算 32 8 .95781 2028.6?? =N 5 3) 164.1(? 是很复杂的,而引用对数后,可先把上式变换为 164 .1lg 53 )20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N 然后通过查常用对数表和反对数表,就可算得原来要求的数N 。 这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法。 一、拉氏变换的基本概念 定义 设函数()f t 当0t ≥时有定义,若广义积分 ()pt f t e dt +∞ -? 在P 的某一区域内收 敛,则此积分就确定了一个参量为P 的函数,记作()F P ,即 dt e t f P F pt ? ∞ +-= )()( () 称()式为函数()f t 的拉氏变换式,用记号[()]()L f t F P =表示。函数()F P 称为()f t 的 拉氏变换(Laplace) (或称为()f t 的象函数)。函数()f t 称为()F P 的拉氏逆变换(或称为()F P 象原函数) ,记作 )()]([1t f P F L =-,即)]([)(1P F L t f -=。 关于拉氏变换的定义,在这里做两点说明: (1)在定义中,只要求()f t 在0t ≥时有定义。为了研究拉氏变换性质的方便,以后总假定在0t <时,()0f t =。 (2)在较为深入的讨论中,拉氏变换式中的参数P 是在复数范围内取值。为了方便起见,本章我们把P 作为实数来讨论,这并不影响对拉氏变换性质的研究和应用。 (3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换。一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的。 例 求斜坡函数()f t at = (0t ≥,a 为常数)的拉氏变换。 解:00 00[]()[]pt pt pt pt a a a L at ate dt td e e e dt p p p +∞ +∞+∞---+∞-= =- =-+? ?? 2020 ][0p a e p a dt e p a pt pt =-=+ =∞ +-∞+-? ) 0(>p

拉普拉斯变换公式总结

拉普拉斯变换公式总结Newly compiled on November 23, 2020

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ --==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ ==? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞--∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域 若0σσ>时,lim ()0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ -- ? 存在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质

(1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则 11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() []()(0)df t sF s f dt ζ-=- 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0) ()[()]t f F s f t dt s s ζ---∞ =+?式中0(1)(0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---= (5) s 域平移 若[()]()f t F s ζ=,则[()]()at f t e F s a ζ-=+ (6) 尺度变换 若[()]()f t F s ζ=,则1[()]()s f at F a a ζ= (a >0) (7) 初值定理lim ()(0)lim ()t o s f t f sF s + +→→∞ == (8) 终值定理lim ()lim ()t s f t sF s →+∞ →∞ = (9) 卷积定理 若11[()]()f t F s ζ=,22[()]()f t F s ζ=,则有1212[()()]()()f t f t F s F s ζ*= 12121[()()][()()]2f t f t F s F s j ζπ= *= 121 ()()2j j F p F s p dp j σσπ+∞ -∞ -? 3. 拉普拉斯逆变换 (1) 部分分式展开法

典型信号的拉普拉斯变换和拉普拉斯逆变换

成绩评定表

课程设计任务书

目录 1.Matlab介绍.............. 错误!未定义书签。 2.利用Matlab实现信号的复频域分析—拉普拉斯变化和拉普拉斯逆变换的设计 (5) 2.1.拉普拉斯变换曲面图的绘制 (5) 2.2.拉普拉斯变化编程设计及实现 (7) 2.3.拉普拉斯逆变化编程设计及实现 (8) 3.总结 (14) 4.参考文献 (15)

1.Matlab介绍 MATLAB语言是当今国际上在科学界和教育界中最具影响力、也最具活力的软件;它起源于矩阵运算,现已发展成一种高度集成的计算机语言;它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、丰富的交互式仿真集成环境,以及与其他程序和语言便捷接口的功能。 经过多年的开发运用和改进,MATLAB已成为国内外高校在科学计算、自动控制及其他领域的高级研究工具。典型的用途包括以下几个方面: 1)数学计算; 2)新算法研究开发; 3)建模、仿真及样机开发; 4)数据分析、探索及可视化; 5)科技与工程的图形功能; 6)友好图形界面的应用程序开发。 1.1Matlab入门 Matlab7.0介绍 Matlab7.0比Matlab的老版本提供了更多更强的新功能和更全面、更方便的联机帮助信息。当然也比以前的版本对于软件、硬件提出了更高的要求。 在国内外Matlab已经经受了多年的考验。Matlab7.0功能强大,适用范围很广。其可以用来线性代数里的向量、数组、矩阵运算,复数运算,高次方程求根,插值与数值微商运算,数值积分运算,常微分方程的数值积分运算、数值逼近、最优化方法等,即差不多所有科学研究与工程技术应用需要的各方面的计算,均可用Matlab来解决。 MATLAB7.0提供了丰富的库函数(称为M文件),既有常用的基本库函数,又有种类齐全、功能丰富多样的的专用工具箱Toolbox函数。函数即是预先编制好的子程序。在编制程序时,这些库函数都可以被直接调用。无疑,这会大大提高编程效率。MATLAB7.0的基本数据编程单元是不需要指定维数的复数矩阵,所以在MATLAB环境下,数组的操作都如数的操作一样简单方便。而且,MATLAB7.0界面友好,用户使用方便。首先,MATLAB具有友好的用户

第一章 电路模型和电路定律

第一章电路模型和电路定律 内容重点: 1)电压电流的参考方向 2)元件的特性 3)基尔霍夫定律 难点: 1)电压电流的实际方向和参考方向的联系和差别 2)理想电路元件与实际电路器件的联系和差别 3)独立电源与受控电源的联系和差别 本章内容是所有章节的基础,学习时要深刻理解,熟练掌握。 预习知识: 1)物理学中的电磁感应定律、楞次定律 2)电容上的电压与电流、电荷与电场之间的关系 §1-1 电路和电路模型 1.实际电路 实际电路——由电器设备组成(如电动机、变压器、晶体管、电容等等),为完成某种预期的目的而设计、连接和安装形成电流通路。 图1是最简单的一种实际照明电路。它由三部分 组成: 1)提供电能的能源(图中为干电池),简称电源 或激励源或输入,电源把其它形式的能量转换成电能; 2)用电设备(图中为灯泡),简称负载,负载把

电能转换为其他形式的能量。 3)连接导线,导线提供电流通路,电路中产生的 电压和电流称为响应。 任何实际电路都不可缺少这三个组成部分。图1 手电筒电路 实际电路功能: 1)进行能量的传输、分配与转换(如电力系统中的输电电路)。 2)进行信息的传递与处理(如信号的放大、滤波、调协、检波等等)。 实际电路的外貌结构、具体功能以及设计方法各不相同,但遵循同一理论基础,即电路理论。 2.电路模型 电路模型——足以反映实际电路中电工设备和器件(实际部件)的电磁性能的理想电路元件或它们的组合。 理想电路元件——抽掉了实际部件的外形、尺寸等差异性,反映其电磁性能共性的电路模型的最小单元。 发生在实际电路器件中的电磁现象按性质可分为: 1)消耗电能;2)供给电能;3)储存电场能量;4)储存磁场能量 假定这些现象可以分别研究。将每一种性质的电磁现象用一理想电路元件来表征,有如下几种基本的理想电路元件: 1)电阻——反映消耗电能转换成其他形式能量的过程(如电阻器、灯泡、电炉等)。 2)电容——反映产生电场,储存电场能量的特征。 3)电感——反映产生磁场,储存磁场能量的特征。

拉普拉斯变换及反变换.

拉普拉斯变换及反变换 1.拉氏变换的基本性质 表-1 拉氏变换的基本性质 1()([n n k f t dt s s -+=+∑? 个 2.常用函数的拉氏变换和z 变换表

表-2 常用函数的拉氏变换和z 变换表 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即

11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (2) 或 i s s i s A s B c ='= )() ( (3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ 11lim [()()]i r r s s d c s s F s ds -→=- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (5)

电路第1章习题电路模型和电路定律

1-1、求如图电路中的开路电压Uab。 答案-5V 1-2、 已知一个Us=10V的理想电压源与一个R=4Ω的电阻相并联,则这个并联电路的等效电路可用( A )表示. A. Us=10V的理想电压源; B. R=4Ω的电阻; C. Is=2.5A的理想电流源; D. Is=2.5A和R=4Ω的串联电路 1-3、求如图所示电路的开路电压。 (a) u=20-5×10=-30V (b) u=40/3V 1-4、求图示电路中独立电压源电流I1、独立电流源电压U2和受控电流源电压U3。

1-5、求图示电路中两个受控源各自发出的功率。 解:对节点②列KCL 方程求得i 1: A 3A 92111=?=+i i i 电阻电压 V 6)2(11-=?Ω-=i u 利用KVL 方程求得受控电流源端口电压(非关联) V 123112=+-=u u u 受控电流源发出的功率 W 72212cccs =?=i u p 受控电压源发出的功率为 W 1082321vcvs -=?=i u p 1-6、如图所示电路,求R 上吸收功率。 6A 4Ω 1Ω R 2Ω 2A 3Ω 答案:18W 1-7、求图示电路中的电压0U 。 1-8、求图示电路中的电流I 和电压U 。 ② ① +-Ω21u A 9i 1 3u 1 2i

1-9、求图示电路中A 点的电位V A 。 (a ) (b ) 解:(a )等效电路如下图所示: (b )等效电路如下图所示: 1-10、如图所示电路,求开关闭合前、后,AB U 和CD U 的大小。

1-11、求图示电路中,开关闭合前、后A 点的电位。 解:开关闭合时,等效电路如图所示: 开关打开时,等效电路如图所示: 1-12、计算图中电流I 和电压源吸收的功率。 解:设电流 1I ,则可得各支路电流如图:

拉普拉斯变换公式总结..

拉普拉斯变换公式总结..

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞-- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ =? (2) 定义域

若0 σσ>时,lim ()0 t t f t e σ-→∞ =则()t f t e σ-在0 σσ>的全部范围内 收敛,积分0()st f t dt e +∞ -- ? 存在,即()f t 的拉普拉斯变换 存在。0 σσ>就是()f t 的单边拉普拉斯变换的收敛域。0 σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若 11[()]() f t F S ζ=, 22[()]() f t F S ζ=, 1 κ, 2 κ为常数时,则 11221122[()()]()() f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() []()(0)df t sF s f dt ζ- =- 1 1()0 ()[]()(0)n n n n r r n r d f t s F s s f dt ζ----==-∑ 式中() (0) r f -是r 阶导数() r r d f t dt 在0- 时刻的取值。 (3) 原函数积分 若 [()]() f t F s ζ=,则 (1)(0) ()[()]t f F s f t dt s s ζ---∞ =+ ? 式中 (1)(0)()f f t dt ---∞ =? (4) 延时性 若[()]()f t F s ζ=,则0 [()()]() st f t t u t t e F s ζ---= (5) s 域平移 若[()]()f t F s ζ=,则[()]() at f t e F s a ζ-=+ (6) 尺度变换

(完整版)拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1 1 n 1 n n n 1 1 m 1 m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==----ΛΛ (m n >) 式中系数n 1 n 1 a ,a ,...,a ,a -,m 1 m 1 b ,b ,b ,b -Λ都是实常数;n m ,是正整数。按 代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n 1 i i i n n i i 2 2 1 1 s s c s s c s s c s s c s s c )s (F ΛΛ 式中,Sn 2S 1S ,,,Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c i s s i i -=→ 或 i s s i ) s (A ) s (B c ='= 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []t s n 1 i i n 1i i i 11i e c s s c L )s (F L )t (f -==--∑∑=??????-== ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为

电路原理习题答案第一章 电路模型和电路定理练习

第一章 电路模型和电路定律 电路理论主要研究电路中发生的电磁现象,用电流i 、电压u 和功率p 等物理量来描述其中的过程。因为电路是由电路元件构成的,因而整个电路的表现如何既要看元件的联接方式,又要看每个元件的特性,这就决定了电路中各支路电流、电压要受到两种基本规律的约束,即: (1)电路元件性质的约束。也称电路元件的伏安关系(VCR ),它仅与元件性质有关,与元件在电路中的联接方式无关。 (2)电路联接方式的约束(亦称拓扑约束)。这种约束关系则与构成电路的元件性质无关。基尔霍夫电流定律(KCL )和基尔霍夫电压定律(KVL )是概括这种约束关系的基本定律。 掌握电路的基本规律是分析电路的基础。 1-1 说明图(a ),(b )中,(1),u i 的参考方向是否关联(2)ui 乘积表示什么功率(3)如果在图(a )中0,0<>i u ;图(b )中0,0u i <>,元件实际发出还是吸收功率 解:(1)当流过元件的电流的参考方向是从标示电压正极性的一端指向负极性的一端,即电流的参考方向与元件两端电压降落的方向一致,称电压和电流的参考方向关联。所以(a )图中i u ,的参考方向是关联的;(b )图中i u ,的参考方向为非关联。 (2)当取元件的i u ,参考方向为关联参考方向时,定义ui p =为元件吸收的功率;当取元件的i u ,参考方向为非关联时,定义ui p =为元件发出的功率。所以(a )图中的ui 乘积表示元件吸收的功率;(b )图中的ui 乘积表示元件发出的功率。 (3)在电压、电流参考方向关联的条件下,带入i u ,数值,经计算,若0>=ui p ,表示元件确实吸收了功率;若0

拉普拉斯变换公式

拉普拉斯变换公式-CAL-FENGHAI.-(YICAI)-Company One1

附录A 拉普拉斯变换及反变换 419

3.用查表法进行拉氏反变换 420

421 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1)()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉普拉斯变换

拉普拉斯变换 Prepared on 22 November 2020

§13拉普拉斯变换 重点:1.拉普拉斯反变换部分分式展开 2.基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路 3.应用拉普拉斯变换分析线性电路的方法和步骤 难点: 1.拉普拉斯反变换的部分分式展开法 2.电路分析方法及定理在拉普拉斯变换中的应用 本章与其它章节的联系: 是后续各章的基础,是前几章基于变换思想的延续。 预习知识: 积分变换 §13-1拉普拉斯变换的定义 1.拉普拉斯变换法 拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t)与复变函数F(s)联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。 2.拉普拉斯变换的定义 一个定义在[0,+∞)区间的函数f(t),它的拉普拉斯变换式F(s)定义为 式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。 由F(s)到f(t)的变换称为拉普拉斯反变换,它定义为 式中c为正的有限常数。 注意: 1)定义中拉氏变换的积分从t=0-开始,即: 它计及t=0-至0+,f(t)包含的冲激和电路动态变量的初始值,从而为电路的计算带来方便。 2)象函数F(s)一般用大写字母表示,如I(s),U(s),原函数f(t)用小写字母表示,如 i(t),u(t)。 3)象函数F(s)存在的条件: 3.典型函数的拉氏变换 1)单位阶跃函数的象函数

最全拉氏变换计算公式

1 最全拉氏变换计算公式 1. 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑1 1 )1() 1(1 22 2) ()() 0()()(0)0()(])([)0()(]) ([ k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时 )(])([s F s dt t f d L n n n = 3 积分定理 一般形式 ∑???????????==+-===+=+ +=+= n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 10 102 2022 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L ) (]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

电路模型及定律习题

第一章电路模型和电路定律习题 一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错) .1. 电路理论分析的对象是电路模型而不是实际电路。 [ ] .2. 欧姆定律可表示成1u R i =?,1也可表示成,这与采用的参考方向有关。[ ] .3. 在节点处各支路电流的方向不能均设为流向节点,否则将只有流入节点的电流而无流出节点的电流。[ ] .4. 在电压近似不变的供电系统中,负载增加相当于负载电阻减少。 [ ] .5.理想电压源的端电压是由它本身确定的,与外电路无关,因此流过它的电流则是一定的,也与外电路无关。[ ] .6. 电压源在电路中一定是发出功率的。 [ ] .7. 理想电流源中的电流是由它本身确定的,与外电路无关。因此它的端电压则是一定的,也与外电路无关。 [ ] .8. 理想电流源的端电压为零。 [ ] .9. 若某元件的伏安关系为u=2i+4,则该元件为线性元件。 [ ] .10. 一个二端元件的伏安关系完全是由它本身所确定的,与它所接的外电路毫无关系。[ ] .11.元件短路时的电压为零,其中电流不一定为零。元件开路时电流为零,其端电压不一定为零。 [ ] .12. 判别一个元件是负载还是电源,是根据该元件上的电压实际极性和电流的实际方向是否一致(电流从正极流向负极)。当电压实际极性和电流的实际方向一致时,该元件是负载,在吸收功率;当电压实际极性和电流的 实际方向相反时,该元件是电源(含负电阻),在发出功率 [ ] .13.在计算电路的功率时,根据电压、电流的参考方向可选用相应的公式计算功率。若选用的公式不同,其结果有时为吸收功率,有时为产生功率。 [ ] .14.根据P=UI,对于额定值220V、40W的灯泡,由于其功率一定,电源电压越高则其电流必越小。 [ ] .15.阻值不同的几个电阻相串联,阻值大的电阻消耗功率小。 [ ] .16.阻值不同的几个电阻相并联,阻值小的电阻消耗功率大。 [ ] .17.电路中任意两点的电压等于所取路径中各元件电压的代数和。而与所取路径无关。 [ ] .18.当电路中的两点电位相等时,若两点间连接一条任意支路,则该支路电流一定为零。 [ ] .19.若把电路中原来电位为3V的一点改选为参考点,则电路中各点电位比原来降低3V,各元件电压不变。[ ] .20.电路中用短路线联接的两点电位相等,所以可以把短路线断开而对电路其他部分没有影响。[ ] 二、选择题 (注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论) .1. 通常所说负载增加,是指负载_______增加。 (A) 电流 (B) 电压 (C) 功率 (D) 电阻 .2. 图示电路中电压UAB为_____V。 (A) 21 (B)16 (C) -16 (D) 19 题2-2 题2-3 题2-4 .3. 图示电路中,下列关系中正确的是_______________。 (A)I1+I2=I3 (B)I1R1+I3R3+E1= 0 ; (C)当R3开路时U=E2 u R i =-? 3 R3

拉氏变换常用公式

附录A 拉普拉斯变换及反变换表A-1 拉氏变换的基本性质

表A-2 常用函数的拉氏变换和z变换表

用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设 )(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 1 1 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

Laplace拉氏变换公式表

附录A拉普拉斯变换及反变换

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10111) ()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++== ---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-= -+ +-+ +-+ -= n i i i n n i i s s c s s c s s c s s c s s c s F 1 2 21 1)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= ) ()( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []?? ????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ())()()() (11n r r s s s s s s s B s F ---=+ =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -+ +-+ +-+ -+ +-+ -++-- 1 1111111) () () ( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉普拉斯变换公式

附录A拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(l i m s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉普拉斯变换

§13 拉普拉斯变换 重点:1.拉普拉斯反变换部分分式展开 2.基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路 3.应用拉普拉斯变换分析线性电路的方法和步骤 难点: 1. 拉普拉斯反变换的部分分式展开法 2. 电路分析方法及定理在拉普拉斯变换中的应用 本章与其它章节的联系: 是后续各章的基础,是前几章基于变换思想的延续。 预习知识: 积分变换 §13-1 拉普拉斯变换的定义 1. 拉普拉斯变换法 拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t) 与复变函数F(s) 联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。由于解复变函数的代数方程比解 时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。 2. 拉普拉斯变换的定义 一个定义在[0,+∞) 区间的函数f(t) ,它的拉普拉斯变换式F(s) 定义为 式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。 由F(s) 到f(t) 的变换称为拉普拉斯反变换,它定义为 式中 c 为正的有限常数。 注意: 1)定义中拉氏变换的积分从t=0- 开始,即: 它计及t=0- 至0+ ,f(t) 包含的冲激和电路动态变量的初始值,从而为电路的计算带来方 便。 2)象函数F(s) 一般用大写字母表示, 如I(s),U(s) ,原函数f(t) 用小写字母表示,如i(t),u(t)。 3)象函数F(s) 存在的条件: 3.典型函数的拉氏变换 1) 单位阶跃函数的象函数

相关文档
最新文档