SOLO耳放制作

SOLO耳放制作
SOLO耳放制作

SOLO耳放

SOLO耳放分析:

输入电容:LC1、RC1这个电容的大小会直接影响信号输入到运放时的失真,按这个电路而言,2是一个100P的电容,当1是1UF时,运放输入端信号,方波从300HZ开始,已经开始失真。表现为放电时电容容量不够,也就是说,低频响应不够好。当这个电容加到10UF时。低频从30HZ才开始失真,这是才保证了输入信号的保真。

反馈电容:LC4、RC4这个电容的大小也直接影响低音的动态和丰满度,越大越好,图上的470UF根据实验和仿真,是一个比较中性的值。存在一定失真,但已经很小的,如果继续减小这个电容到100UF,会发现,低频的结束相当快,也就是说,如果在一个低频结束后,电容上能快速响应,而且按照要求把电容的电放完,那就是比较完美的低音,如果还没放完,稍微拖一点,那就是有点厚的中音和低音,如果很长时间都没放完,那就是肥了,拖泥带水,收不住了。所以这个电容的冲放电速度很要紧,如果是冲放电速度很快的电容,可以尽量取大点,来保证低音,但如果是垃圾电容,则可以有范围选择容量,用小容量来拟补电容放电不够快的缺点。这样就会有两种声音趋向了,一个是干净有力度的,一种是浑厚的。而且听感比较明显。旁边的0.47UF的电容,就是为了拟补大电容在高频的瞬态响应不足。因为SOLO用的是大环路反馈,反馈直接从最后的输入端取信号。所以反馈电路上的瞬间响应直接关系到声音好坏,大电解在这里可以对低频和中频响应的比较好,但高频就需要高速的小电容来帮忙,这也是为什么SOLO的高音那么出色的原因,而莱蔓的听感会厚实,温暖些。因为莱蔓没用大环路反馈。后级的缓冲会降低高频的响应。

反馈电阻:LR6、8,RR6、8就是电路的信号“放大倍数"

输出缓冲电阻 LR7、RR7 这个电阻比较有可玩性,耳机实际上是一个电感并上一个电阻,在前面串上一个纯电阻,会使声音有十分明显的改变,特别是低阻耳机,加了电阻回减少高频,但音色会暖一点,至于具体多少,要大家自己根据自己的耳机调试。串联电阻,可以调节耳放输出的阻尼系数,因此可以直接影响瞬态响应,可以参考莱曼,耳放输出电阻,绝对不同于功放电路,不能把输出阻抗做成0,否则阻尼不够,耳机会出现振荡现象,声音会发飘,另听感恶化。

电阻LR4、LR5、RR4、RR5这两个电阻决定的末及两个管子的静态电流,,11越大,电流越小。同时两个二极管决定了两个三极管的基极偏压。如果在两个二极管中串一个电阻,就可以调节三极管静态电流,同时,这两个电阻越大,允许的负载就越大,就是说你用10欧姆,那你用32欧姆耳机,你用200欧姆,那你最好用300欧姆的耳机。因为这个电阻也决定了输出电流能力的大小。同时,若选取一定的值,可以保证三极管在任何过载情况下,不损坏。耳机也是。

电阻LR2、LR10,RR2、RR10这个电阻其实有两个作用。运放的输出有关,运放的输出和两个二极管和电阻组成一个回路,在运放输出有变化时,电阻就直接可以看成运放的输出负载了,这点是比较重要的,同时这两个电阻还给两个二极管提供了电流,同时保证了偏压电压。

SOLO耳放原理图:

SOLO耳放PCB:

超重低音耳机放大器

超重低音耳机放大器 发布:电子diy来源:萬用電路板发布时间:2013-09-05 01:01:22 ?标签:超重低音耳机功放 ?成本:10元 ?人气:2563 ?器件:TDA2822 ?难度:1 ?得分:719分 这不是一款普通的耳机放大器,我在它前级加入低音提升电路后,可以让你使用耳机听到高保真的音响效果,特别是重低音效果,逼真感很强以至于用它听的时间长了会让人感到头晕,使用它必须得注意:你的耳机要能经得住低音的考验! 电路原理图(点击放大) 该电路中,前级采用无源衰减式音调控制电路,后级是用小功放芯片TDA2822M做的功率放大器,以便更强劲地驱动耳机。电路元件除了C5-C8这四个电容使用电解电容外,其它小电容全部使用涤纶电容。按照如上的电路,高低音均提升近10DB。为了增大低音成

分的比例,建议大家把R3和R4短路掉,以减小高音提升量,这时从耳机中出来的声音也更加柔和。如果还要增大低音提升量,可以减少C3和C4的取值。 使用这个超重低音耳机放大器大家必须了解一些问题: 1、耳机的素质,喜欢听低音的朋友,一定不能只在电路上下功夫,耳机的作用更大,一个好的耳机能将电路产生的音频信号淋漓尽致地发挥,听感也更加自然。而有些耳机本不具备很宽的频率响应,再怎么提升音源的低音成分都听不到很明显的效果,这种耳机不要使用。再者,有些国产耳机在低音增强时明显失真了,此时如果长时间在很强低音的情形下,势必会损伤耳机。 2、不要过分追求低音效果,毕竟是耳机不是音响,不能采取像重低音放大器那样的分频放大法,电路能有10DB的提升量就足矣。 3、不要使用大音量,对听力是相当有害的。 作品实物图:

AC-AUDIO H1004四通道耳机放大器 耳机分配器 说明书

Contents 1.OVERVIEW (1) 2.BEFORE YOU START (1) 1)Utilizing the User Manual (1) 2)Safety Precautions (2) 3.INSTALLATION (4) 1)Front panel (4) 2)Rear panel (5) 4.GETTING STARTED (6) 1)Using the MAIN IN connectors (6) 2)Connecting multiple headphones (6) 3)Audio connections (6) 5.SERVICE (7)

1. OVERVIEW Welcome to purchase the equipment by AC-AUDIO! With the H series, you have acquired a high-end headphone amplifier. Both H units were developed with the most demanding applications in mind: professional recording, radio and television studios, as well as CD/digital sound production. They were developed as benchmark units for judging mix-down quality as well as distribution amplifiers for flexible playback applications in studio environments. Balanced inputs and outputs The equipment features electronically servo-balanced inputs and outputs. The servo function automatically recognizes when unbalanced pins are assigned. It internally modifies the nominal signal level, thus preventing any occurrence of signal level difference between inputs and outputs (6 dB correction). 2. BEFORE YOU START 1) Utilizing the User Manual This user manual has been written in such a way to enable you an overview over the control elements of the unit and offers at the same time detailed information about possible applications. To facilitate quick look-ups, control elements have been described in groups depending on their function. Should you need detailed information about specific topics not covered in this manual, please visit our website at https://www.360docs.net/doc/f913866142.html,. For example, additional information about power amps and effects processors is found there. The following user manual is intended to familiarize you with the unit’s control elements, so that you can master all the functions. After having thoroughly read the user manual, store it at a safe place for future reference.

耳放制作HIFI耳机放大器 PCB 电路图 及全套设计资料

对于47耳放的完美改进制作高保真耳机放大器 之前一直折腾功放听桌面音箱,半年前忽然打算用用耳机了,于是入了森海的HD595。 虽然50欧的阻抗不算高,但是要发挥出设备的实力耳放还是少不了的。 所以,决定自己动手做一个耳放。 这期间参考了大量关于耳放的资料,最终决定以47耳放电路为基础并加以改进制作一个比较完美的耳机放大器。便动手做了起来。 一、放大部分 47耳放是一位外国人设计的电路,电路如图。 因为电路中有较多以47为参数的元件所以称作47耳放。 传说中的47耳放结构其实是很简单的, 第一级运放进行负反馈控制放大倍数进行比例放大, 第二个运放进行电压跟随,降低放大器内阻,增加了输出电流,并做声音修饰。 两个运放输出经过两个47欧匀流电阻输出致耳机。 因为反馈取样点在47电阻之后,所以不用考虑电阻带来的损耗。 曾经在网上看过很多47耳放的PCB设计,虽然47耳放的电路十分简单,但是很多PCB却存在着或多或少的布线问题,有些抗干扰能力不是很强,甚至在淘宝上看到很多看似很漂亮的板子却有很大的交流声。所以自己决定做一个比较完美的47耳放以便把这个电路的能力发挥出来。 于是,开工了。 首先线路图

电路没有添加音量电位器,只做了放大部分。这样一来功能比较独立,方便以后的各种组合。 47原设计使用的运放是OPA2132,这个运放是FET输入型的,所以内阻极高。而且在低电压下可以正常工作,失调电压与失调电流极小,算是比较高档的运放了。当然OPA2132的价格也是很高档的。我作为0收入人士必然不能把这种高档传承下去,于是我选用了这年头满大街都是的NE5532。NE5532虽然指标相对于OPA2132较差,但是工作于+-15V时音色总体来说还是比较讨人喜欢的。单片5532耗电相对较大,两片并联就更不用说了,双15V下耗电可想而知。这就意味着这款耳放将要脱离便携式耳放的范畴转型向台式耳放了。 由于5532失调电压较高而且又是NPN管输入的,如果使用原设计必然会引来较大的输出中点漂移,经过测试最大有30多MV。所以我在反馈电阻的位置串联了电容,也就是C03 C04两个电容,将直流反馈变为交流反馈,这样可以使输出中点控制在1MV以下。换成其他运放如果没有中点问题这个电容的位置可以直通。 反馈采样部分依然从输出取,并在R05 R06 上面并联了C05 C06,作用是超前补偿,不需要的话可以留空。 电源部分增加了两个退耦电解电容C07 C08,并习惯性的在两个电解上并联了小电容C09 C10。 最后增加伏地电阻R。伏地可以吸收一部分地线的干扰信号让信号地更加纯净。当然还有一个作用,那就是在布线的时候可以在视觉上隔离信号地与电源地,为合理布线带来方便。 线路做好了,接下来的工作就是布线了。 话说这个47耳放市面上卖的款式很多,但是在设计PCB的时候好像只注重外观而忽略了对布线的要求,最终导致一些电路声音不好,严重的甚至出现交流声。 吸取了别人的经验教训,所以在画这个板子的时候就注意了很多。 退耦电容两两一组,原则为电源经过退耦电容再连接至IC,这样可以有效吸收放大器工作时候产生的耦合信号,也可以避免由于电源线过长引起的干扰信号进入放大器。 简单说下地线。地线主要分为电源地和信号地,这两个地也可能是连在一起的,但是作用不同。电源地主要提供大电流电源,一般功率输

6SA7(6N5P)阴极输出耳放的制作

6SA7(6N5P)阴极输出耳放的制作 在95年的audio&techniek杂志上看到了一篇Rudy Van Stratum先生发表的一个电子管的耳机放大器电路,不过,Stratum先生也没有实作过,仅仅是一个电路,这个电路引起了我的注意,因为我发现他具有以下特点: 1。电路简洁,两个声道一个只需要2只双三极管,这个是我见到最简单的耳机放大器电路。 2。可以驱动低阻耳机。 3。两级放大之间使用直接偶合电路。 4。无大环路负反馈。 5。单端甲类输出。

我按照这个电路实作了一台,经过这段时间的试听(超过三个月时间,使用CD、磁带等不同信号源)我可以告诉大家,这是一台非常好的耳机放大器。经过我略微修正的电路如图1所示,它第一级使用双三极管ECC88中的一个作共阴极放大,第二级使用双三极管6AS7G中的一个作阴极输出,两级之间直接藕合,在原来电路图上我加了一个音量电位器和ECC88的栅漏电阻,输出电容也由100uF增加到200uF,增加电容容量的原因很简单,一个是我要使用低阻抗的32-60欧的耳机,另外我手中也恰好有这种电容,经过测试,使用60欧耳机,-3db的下降点在12Hz,使用32欧耳机,-3db的下降点在22Hz。这台机器的外观处理很简单,我的第一台原型机使用了装饰用的宝丽板作机壳,我几乎是立刻就喜欢上了它,他的声音细节非常精确,可以听出更多的细节和空气感,本来阴极输出器有声音暗淡的名声,令人厌烦不敢恭维,但是这个电路改变了我的认识,呈现一种与之完全相反的并能紧紧抓住你注意力的声音,弱音之间的区别变得非常明显,举个例子,你可以听出不同大提琴之间音色的区别,我的晶体管耳机放大器与之比较,就显得声音发硬,呆滞,高频有毛刺感,结像力不足,我想这是因为这台电子管耳放电路简洁,并且没有大环路负反馈的结果,当然本机为单端输出,而那台晶体管机器电路为推挽也是原因之一。通过一段时间的试听,我非常满意这种声音风格,最后我使用了一个4*8*1英寸的铝合金壳子作为我这台机器的机壳,制作我使用了搭棚焊接,没有使用商品机常见的PCB电路板形式,经过搭配使用森海塞尔HD465,HD580,AKG K240,松下EAH-S30试听,低阻抗耳机的表现要比高阻耳机好,说明本电路适合搭配低阻耳机使用。因为本机电路简单,所以电源对声音的影响至观重要,最初我认为稳压电路效果会好一点,使用了复杂的晶体管稳压电路提供能量,用了两个BC459作稳压调整管,发现使用稳压电路对声音并没有带来想像中的改善,甚至声音风格也变得和我的那台晶体管的一样,只好放弃这种想法,采用了传统的电子管整流,不过整流管EZ81非常不好找,最后我定型的电源电路使用了如图的晶体管整流滤波电路,抛弃了稳压部分,电路虽然简单,效果却非常好,和使用电子管整流区别不大。灯丝使用直流供电,这里我使用了可调稳压集成块LT1084CP来作调整,这块IC 要消耗大约10瓦的功率,必须要加散热器来散热,可以把他固定在铝机壳上,整流二极管因为通过电流大,也会变得很热,最好安装空间宽敞一些,有足够的空间通风散热,1K的电阻用于调整输出电压为6.3V。在电源电路中,我没有列出电源变压器的详细资料,可以根据手中的变压器参数变通,保险管使用恰当的数值,开关我使用了两个,主开关控制交流电输入和灯丝接通,次开关控制电子管的高压接入,大约在主开关打开后30秒打开即可。电源电路也使用了搭棚焊接,放在另外的机箱中,与主放大电路分体,尺寸为12*6*2英寸。 测量数据:因为我条件所限,以下列出我所能测量的参数结果: 1、频率响应:10-100KHz-1db(0.775V输出,负载电阻在60-600欧,我的信号发生器所提供的频带就是这个范围,因此我怀疑如果加大输出电容的话,它的参数可能更好); 2、最大输出功率170mW600欧28mW60欧; 3、电压增益8倍(负载600欧,输入100mV输出800mV,音量电位器拨到最大位置)1KHz,10KHz,20KHz 的曲线看起来非常完美,而低频和极高频(小于100Hz,大于50KHz)的曲线和所用输出电容的品质有很大的关系。我想这些数据表明这台耳机放大器的品质很好,但是最好的测量仪器还是人的耳朵。 元件选择:放大电路:P1-ALPS RK-27112100K电位器R1-1M/1瓦炭质电阻R2-33欧/0.5瓦金属膜电阻R3-47K/1瓦炭质电阻R4-820欧/1瓦炭质电阻R5-4.7K/5瓦线绕电阻R6-3.3K/10瓦阻C1,C2-220uF/400V,日本Nichicon电解电容C3-220uF/100V,日本Nichicon电解电容C4-0.22uF/250V,聚丙烯电容V1-E88CC/Brimar V2-6AS7G/RCA其他元器件尽量使用性能较好的,这个对声音的影响也不可忽视。需要注意以下几点:1.C1,R5,C2为两声道共用。2.灯丝供电不要悬浮起来,要良好接地以避免引入交流哼声。当短路输入端子或者接一个低阻抗的信号源,可以发现本机的信噪比非常高,几乎没有交流哼声和噪声,音量电位器转到最大,事实上,噪声增加也不多。电源电路P2-1K可调电阻R8,R9-6.8欧/1瓦炭质电阻R10,R11-180欧/0.25瓦金属膜电阻C5,C6-22nF/1000V聚丙烯电容C7,C8-100uF/450V F&T电解C9-1uF/250V飞利浦聚丙烯电容C10-22000uF/25V思碧电解C11-10uF/63V飞利浦电解C12-100uF/35V Roederstein电解IC1-LT1084CP Linear Technology公司产D1,D2-IN4007D3-D6-P600A 6A/50V T1-30瓦电源变压器,次级2×115V T2-50瓦电源变压器,次级9V L1-扼流圈,10H/90mA,直流电阻270欧www.ShareDIY线绕电阻R7-10K/0.5瓦炭质电阻。

RSA XP7 耳放 制作 资料

耳放DIY初级教程——RSA XP7 图片: 图片: 图片:

一、Ray Samuels Audio Emmeline XP-7介绍 来自美国的RSA厂商在国内没有代理商,故知名度不高。其比较热门的机器大多集中在随身耳放领域,如The Predator、The Shadow、P51什么的。还有名气很大的经典机型SR-71,虽然定位为随身,但是推动高阻耳机如HD650等也毫不含糊。RSA的XP-7定位于台式机耳放,官方定价机身495美刀,外接电源225美刀,一起合买695美刀。使用两节9V电池作为电源,同时也可使用自配的外置电源。耳放架构为成熟经典的单运放OP + 缓冲BUF结构,原机搭配运放为AD797AN作为前级放大,缓冲BUF634P作为后级推动。可以注意到,以两节的9V电池作为电源供电和GRADO RA1的手法很类似,同时自家的SR71也同样为两节9V电池供电,SR71的电路架构也和XP7极其类似,也为OP+BUF形式,只是所用元件都是贴片元件,相当于小号版本的XP7。 最初购入XP7的原因是为了歌德PSK寻找耳放,纵观市场,合适歌德的低阻耳放并不多见,RA1推力合适但是声音素质有限。SOLO声音透明中空,适合又蒙又闷的HD650但不适合歌德,莱曼不用考虑直接KO掉,RUDI的万金油RPX33没试过,估计还可以但是不会出彩,意大利的味道和美国歌德味也不一定对路,RUDI RP8一位朋友在安润试过,推歌德也是很不满意。德国的SPL推歌德素质还可以但是比较白开水,会冲淡很多歌德味,不过这耳放推什么都开水。日本ATH HA2002是有名的低阻耳机,但是甜美细腻的风格也明显不对歌德的胃口。日本另外一个低阻耳放是P1,风格上也不会很适合美国声。另外本人对胆机比较抵制,EMP和HP-4这些东西就不考虑了。国内耳放作品几乎90%都是推高阻的,推低阻耳机都是不给力的感觉。SR71和XP7让我眼前一亮,直觉告诉我这种电源的推力很适合歌德,同时又是美国佬的东西,风格上和歌德一定搭调。德国的2MOVE耳放也是不错的选择,声音中性清淡,曾经有购入的冲动,不过相对于RSA的美国声来说,RSA还是首选。

从零开始DIY一台耳机放大器电路设计与分析

几个问题 现在喜爱听音乐的朋友是越来越多了,为了听到更好的声音,很多朋友都购买了品质比较高的音源,比如高档声卡或HiFi入门级的CD台机,但却还是无法得到心目中的高品质声音表现。问题到底出在哪里? 在音响店里聆听高档音响,留下了难以磨灭的印象,想来不少朋友都有过这样的经历吧。虽说一分钱一分货,但自己能否构建与之表现稍相近的系统呢? HiFi耳机的优异表现相信给过很多朋友以惊喜,但在很多地方都会留下一些底气不足的遗憾,这个问题应该怎么解决? 关注HiFi音响的朋友们如果见识过名厂或高手制作的胆机,观摩过那如镜光滑的机箱和灵性四溢的胆管,再聆听过柔美醇和的声音,可能都会不禁揣测一下内部的结构。如果打开外壳,见到内部并没有预想中的电路板,而是几根粗铜线纵横交错地搭成一个网状框架,各个元件都整齐地焊接在这个框架上,之间再用各色导线连接,不免会惊叹连连。高手会说,这样的手法叫做搭棚焊接,简称搭焊,既是最传统的,也是最好声和最艺术的手法。也许朋友们会想:我能不能拥有这样的一个艺术品呢? 希望在大家看完本文后,这些疑问能够得到有价值的回答。音响本是学无止境,笔者言语中若有不周或谬误,希望能与大家展开商榷和得到斧正。 下文的很多内容都涉及到DIY,如果要进行操作,请大家特别注意安全,在有经验的朋友的指导下进行。由于实际电路中变数甚多,所以只有严格仔细地跟随必要步骤并加以耐心细致的调整,才会得到尽量好的声音品质。由于具体情况有别且无法完全考虑到,所以请大家具体问题具体分析,笔者只尽量保证陈述的真实和贴切,而不对效仿操作的后果负责。 寻求解决 众所周知,自从真正被运用到计算机上以来,音频技术的发展不断为我们创造着惊喜,从8bit到44.1KHz/16bit再到96KHz/24bit、从单声道到立体声再到多声道、从MIDI 到MP3再到APE和FLAC,无一不在刺激着我们对听觉享受的渴望和对声音品质的追求。应该说随着“发烧级”声卡创新AWE64GOLD和帝盟MX200先后的横空出世,一群狂热的电脑音频发烧友开始形成,电脑也成了很多朋友的音乐欣赏中心。 对很多狂热地喜爱音乐的朋友来说,音频技术给他们带来实实在在的最大快乐是在APE 格式被广泛使用之时——来自中规中矩的44.1KHz、16bit、立体声和无损压缩(96KHz、24bit和多声道这样高指标虽然更加能吸引人们的眼光,但是我们能欣赏的音乐只能来自唱片公司,而SACD和DVD-Audio高高在上的价格是我们无法轻松负担的;实际上高手们

抑制耳机放大器RF噪音的两种方法

由于一直有朋友反映说耳放接电脑后会有底噪让我一直困恼之中今天找到了底噪的原因和消除底噪的办法跟大家分享 有两种方法能够抑制耳机放大器RF噪音:通过屏蔽并缩短输入信号引线降低输入放大器的RF能量;选择具有RF抑制功能的放大器,使耦合到输出端的噪声最小。 很多现代音频放大器的设计没有考虑高频RF问题,而这些放大器却越来越多地暴露在强RF干扰环境中。对于没有解决RF干扰的音频放大器设计,会将RF载波信息解调到音频频带。 一个非常突出的例子是GSM(全球移动通信系统)蜂窝电话系统。GSM标准采用时分多址(TDMA)方式实现多部手机与一个基站的同时通信。GSM手机以217Hz突发频率发送数据,从而产生一个受217Hz频率调制的强电场,恰好处于音频频带。虽然GSM手机工作在800MHz至1900MHz频率范围,但217Hz的包络是固定的。 GSM手机内的放大器必须能够抑制RF载波的217Hz包络频率,或完全屏蔽其电场。放大器与音频信号源之间的引线相当于天线。对于1/4波长与引线长度匹配的频率,天线效应最明显。对于900MHz信号,1/4波长为7.5cm;对于1900MHz信号,1/4波长为3.5cm。因此,长度接近于上述两种规格的引线对附近功率放大器的干扰信号最敏感,会接收到较强的干扰信号。 将音频放大器集成到基带IC 一种改善耳机放大器RF敏感度的方法是将耳机放大器集成到基带处理器,可缩短音频源与放大器之间的引线长度。这种方案不仅降低了天线效应,而且提高了电路的集成度。由于在敏感频率处输入不再有天线效应,从而避免RF对音频信号的干扰。 虽然采用集成技术可降低系统的RF敏感度,但基带处理器通常采用的是低成本耳机放大器,会在一定程度上降低音质。此外,这些放大器采用单电源供电,其输出信号的偏压在VDD/2左右。在将这些信号接至耳机扬声器时需要隔直电容,而隔直电容会占据很大的PCB 面积,降低系统的低频响应,同时还会导致音频信号的失真。 改善输入和电源布线 为了避免集成耳机放大器带来的问题,必须选择专用的耳机放大器IC。即使选用了不是专门为抑制RF噪音而设计的耳机放大器,对电路板的仔细布局也可获得良好的音质和低RF敏感度。输入端的引线最有可能影响RF敏感度,这些引线应该布设在两个地层之间,以屏蔽外部RF电场。为了降低输入引线的天线效应,须尽可能缩短引线,使引线长度远小于敏感频率的1/4波长。 放大器电源也是拾取RF噪音的一个途径,电路板设计通常采用旁路电容来降低电源噪音,但在RF频率处,这些电容的自感应降低了高频率波的效能。在音频范围内,1μF电容对地阻抗较低,具有较好的噪音抑制能力。当频率高于1MHz时,其自感产生的阻抗高于容抗,使阻抗增大。如果在1μF电容处并联一只10pF电容,在800MHZ至1900MHzGSM 频率范围内,小电容会旁路掉1μF电容的自感。

各种耳机放大器应用电路分析

各种耳机放大器应用电路分析 耳机放大器的要求 ---耳机放大器主要用于使携式音频装置中,它与其他便携式电子产品一样,要求器件具有低工作电压、低功耗、小尺寸封装。耳机放大器还有自身的技术参数要求,要求总谐波失真加噪声(THD+N)小、电源变动抑制率(PSSR)高、信噪比(SNR)高、效率高等。不同的放大器还有不同的附加功能,如内置数字音量控制、内置DAC等。具体性能指标如下。 ● 输出功率POUT ---耳机放大器输出功率较小,一般为20~100mW(实际输出功率与工作电压大小有关,并且与负载电阻大小及THD+N大小有关)。立体声耳机的负载电阻一般为16Ω或32Ω,负载电阻小的输出功率大一些。 ● THD+N ---THD+N的指标一般在0.01%~0.2%的范围内,Hi-Fi级则小于0.01%。该指标与负载电阻RL大小及输出功率POUT大小有关,若RL不同、POUT不同,则其指标有较大差别。例如,同一耳机放大器,在RL=32Ω,POUT=12mW,f=1kHz时,THD+N=0.006%;而在RL=16Ω、POUT=15mW,f=1kHz时,THD+N=0.015%。所以在比较不同耳机放大器的THD+N指标时,必须在基本条件相差不多时才有可比性。 ● SNR ---SNR一般在60~90dB范围内,其大小与POUT有关,有一些产品的SNR可达到100dB 左右。 ● PSRR ---PSRR高的耳机放大器,其性能受电源电压变动的影响小(PSRR高的放大器可以不需稳压电源供电)。PSRR一般为60~80dB,性能好的可达90dB。 降低工作电压 ---为减小便携式产品的体积和重量,最有效的办法是采用能量密度高、体积小的锂离子电池,但锂离子电池价格贵。采用1~2节碱性电池或充电电池来供电,则制造和使用成本会减少很多。近年来,一些厂商开发出仅用1节电池供电的耳机放大器(1节5#或7#碱性电池或镍氢、镍镉电池)更受到消费者欢迎,其工作电压为0.9V~1.8V,既可用1节碱性电池,也可用1节充电电池供电,使一些低档MP3播放机的成本大幅下降,销售量随之大增。 ---由于是单电源供电,耳机放大器输出的电压幅值受到工作电压的影响。虽然可采用输出满幅值(rail-to-rail)的放大器,但1V工作电压的输出总是小于1V。 ---为了降低工作电压,还要保证足够大的输出电压幅值,在耳机放大器中集成了一个电压反转的电荷泵电路,使输入的VDD转换成-VDD,则耳机放大器由单电源供电变成正负电源供电,输出电压幅值增大了一倍,。 减少外围元件的措施 ---德州仪器公司的TPA611xA2耳机放大器的典型应用电路。放大器内部的两个325kΩ电阻组成分压器,提供两个通道运放的偏置电压(1/2VDD),并有关闭控制(SHUTDOWN)端(低电平有效),实现关闭放大器,使耗电小于10μA。 ---减少外围元件,不但可节省印刷电路板面积,还能改善性能。图3所示是德州仪器公司2004年8月推出的耳机放大器TPA4411的内部结构及外围元件。TPA4411采用固定增益(AV=-1.5V/V),无需输出隔直电容器,简化外围元件,并且有如下的优点:减少PCB板面积;

LM4811_DataSheet双105mW数字音量耳机放大器

LM4811 Dual105mW Headphone Amplifier with Digital Volume Control and Shutdown Mode General Description The LM4811is a dual audio power amplifier capable of delivering105mW per channel of continuous average power into a16?load with0.1%(THD+N)from a5V power supply. Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components.Since the LM4811does not require bootstrap capacitors or snubber networks,it is optimally suited for low-power portable systems. The LM4811features a digital volume control that sets the amplifier’s gain from+12dB to?33dB in16discrete steps using a two?wire interface. The unity-gain stable LM4811also features an externally controlled,active-high,micropower consumption shutdown mode.It also has an internal thermal shutdown protection mechanism. Key Specifications n THD+N at1kHz,105mW continuous average output power into16?0.1%(typ) n THD+N at1kHz,70mW continuous average power into 32?0.1%(typ) n Shutdown Current0.3μA(typ) Features n Digital volume control range from+12dB to?33dB n LD and MSOP surface mount packaging n"Click and Pop"suppression circuitry n No bootstrap capacitors required n Low shutdown current Applications n Cellular Phones n MP3,CD,DVD players n PDA’s n Portable electronics Connection Diagrams MSOP Package 20006102 Top View Order Number LM4811MM See NS Package Number MUB10A LD Package 20006162 Top View Order Number LM4811LD See NS Package Number LDA10A Boomer?is a registered trademark of National Semiconductor Corporation. December2002LM4811 Dual 105mW Headphone Amplifier with Digital Volume Control and Shutdown Mode ?2002National Semiconductor Corporation https://www.360docs.net/doc/f913866142.html,

47耳放_完整版(转自中国音响DIY)

47耳放完整版(2010年参赛作品) 网通发贴表示压力很大 之前一直折腾功放听桌面音箱,半年前忽然打算用用耳机了,于是入了森海的HD595。 虽然50欧的阻抗不算高,但是要发挥出设备的实力耳放还是少不了的。 所以,决定自己动手做一个耳放。 这期间参考了大量关于耳放的资料,最终决定以47耳放电路为基础并加以改进制作一个比较完美的耳机放大器。便动手做了起来。下面分贴发一下耳放各部分的设计和制作过程个大家分享。、 因为本人对电路没有进行过系统的学习文章中存在大量文字存在自己的主观性理解可能错在大量问题希望高手及时指出 虫虫小林 2010-12-07 23:12:49 一放大部分 47耳放是一位外国人设计的电路,电路如图。 图1.gif 因为电路中有较多以47为参数的元件所以称作47耳放。 传说中的47耳放结构其实是很简单的, 第一级运放进行负反馈控制放大倍数进行比例放大, 第二个运放进行电压跟随,降低放大器内阻,增加了输出电流,并做声音修饰。 两个运放输出经过两个47欧匀流电阻输出致耳机。 因为反馈取样点在47电阻之后,所以不用考虑电阻带来的损耗。

曾经在网上看过很多47耳放的PCB设计,虽然47耳放的电路十分简单,但是很多PCB却存在着或多或少的布线问题,有些抗干扰能力不是很强,甚至在淘宝上看到很多看似很漂亮的板子却有很大的交流声。所以自己决定做一个比较完美的47耳放以便把这个电路的能力发挥出来。 于是,开工了。 首先是线路见图 图2.jpg 电路没有添加音量电位器,只做了放大部分。这样一来功能比较独立,方便以后的各种组合。 47原设计使用的运放是OPA2132,这个运放是FET输入型的,所以内阻极高。而且在低电压下可以正常工作,失调电压与失调电流极小,算是比较高档的运放了。当然OPA2132的价格也是很高档的。我作为0收入人士必然不能把这种高档传承下去,于是我选用了这年头满大街都是的NE5532。NE5532虽然指标相对于OPA2132较差,但是工作于+-15V 时音色总体来说还是比较讨人喜欢的。单片5532耗电相对较大,两片并联就更不用说了,双15V下耗电可想而知。这就意味着这款耳放将要脱离便携式耳放的范畴转型向台式耳放了。 由于5532失调电压较高而且又是NPN管输入的,如果使用原设计必然会引来较大的输出中点漂移,经过测试最大有30多MV。所以我在反馈电阻的位置串联了电容,也就是C03 C04两个电容,将直流反馈变为交流反馈,这样可以使输出中点控制在1MV以下。换成其他运放如果没有中点问题这个电容的位置可以直通。 反馈采样部分依然从输出取,并在R05 R06 上面并联了C05 C06,作用是超前补偿,不需要的话可以留空。 电源部分增加了两个退耦电解电容C07 C08,并习惯性的在两个电解上并联了小电容C09 C10。 最后增加伏地电阻R。伏地可以吸收一部分地线的干扰信号让信号地更加纯净。当然还有一个作用,那就是在布线的时候可以在视觉上隔离信号地与电源地,为合理布线带来方便。

高保真耳机放大器设计方案

高保真耳机放大器设计方案 1 引言 在高保真音响电路中,电子管放大器由于其独特的韵味和音乐听感,一直备受广大音响爱好者的喜爱和关注。近年来,高保真耳机由于其使用的便捷性和相对较低的价格,受到越来越多的音乐爱好者和音响发烧友的青睐。在高保真耳机家族中,耳机阻抗从低阻、中阻到高阻均有分布:如爱科技的271S额定阻抗为48Ω,拜亚动力的Dt48额定阻抗为200Ω,森海尔的HD580,HD600,HD650额定阻抗为300Ω等。对于阻抗较高的耳机,通常需要专门的配套电路,才能展现其优异的性能。同用于音箱的扬声器单元相比,耳机对于它的驱动电路性能指标的要求更加严格。与晶体管相比,电子管静态工作点电压高、内阻大,更适合输出摆幅大、电流小的驱动信号。这个特点使得电子管适用于驱动对品质要求高,但功率要求低的高保真耳机。 在音频前置放大器中,并联调整推挽(ShuntRegulatedPush-Pull,SRPP)电路具有高增益、低失真、低输出阻抗等特点,能够获得优异的音质表现,因而在音响电路中广泛应用。本文设计了一款以共阴极放大器为输入级,SRPP放大电路为输出级的耳机放大器电路。对该电路建立了微变等效模型,选择合理的器件,通过理论计算控制相应的参数,使放大器能够较好地驱动耳机工作。 2 输入级 输入级采用一只电子管三极管构成的共阴极放大电路,其电路原理图如图1所示。图中电阻RL1,Rk1和Rg1分别同电子管的阳极、阴极和栅极相连接,使电子管建立稳定的工作点,同时具有合适的增益和适当的局部负反馈。V1可选择常用的电子三极管,如单三极管ECC92,或者是双三极管ECC82,12AU7,5814等型号中的一只电子管三极管工作原理与晶体管中的双极性三极管不同,但和场效应管类似,属于电压型放大器件,其主要参数为跨导gm,内阻rp和放大系数μ,且三者之间满足: 该电路的微变等效电路如图2所示,这里将电子管看成是受控电压源。图中,输入电压可表示为:

LME49600耳放制作指南

LME49600 Headphone Amplifier Evaluation Board User's Guide National Semiconductor Application Note 1768Kevin Hoskins February 29, 2008 Quick Start Guide Apply a ±2.5V to ±17V power supply’s voltage to the respec-tive “V +”, “GND” and “V -” pins on JU19 Apply a stereo audio signal to the RCA jacks J1 (Right) and J2 (Left) or jumpers JU1 (Right) and JU17 (Left), observing the signal input pin and the ground (GND) pin. Though not typically installed, a stereo signal can also be applied to head-phone jack HPJ1. Connect a load to JU14 (Left) and another load to JU15(Right), observing the signal output pin and the ground (GND)pin. The stereo signal output is also available on the 1/8”stereo headphone jack located in the board's “OUTPUT” sec-tion Use VR1 to control the output signal amplitude. Apply power. Make measurements. Plug in a pair of head-phones. Enjoy. Introduction To help the user investigate and evaluate the LME49600's performance and capabilities, a fully populated demonstration board was created. Please contact the National Semiconduc-tor Corporation's Audio Products Group for availability. This board is shown in Figure 1. Connected to an external power supply (±2.5V to ±17V ) and a signal source. The LME49600demonstration board easily demonstrates the amplifier's fea-tures. 30047312 FIGURE 1. The LME49600/LME49720 Stereo Headphone Amplifier Demonstration Board ? 2008 National Semiconductor Corporation https://www.360docs.net/doc/f913866142.html, LME49600 Headphone Amplifier Evaluation Board User's Guide AN-1768

虫版47耳放折腾贴 虫虫小林版本47耳放DIY详细操作指南

虫版47耳放折腾贴虫虫小林版本47耳放DIY详细操作指南 之前发了一个但是由于网络不好没能编辑完成如果管理员看到麻烦删除一下 https://www.360docs.net/doc/f913866142.html,/read.php?tid=1141711 虫版47耳放折腾说明虫虫小林版本47耳放DIY详细操作指南 这篇文章已经在本人的个人主页无线电杂志以及个别论坛发表在大家谈发貌似有些晚不过还是希望更多人看到对大家DIY有一定的帮助 大约在一年前,本人开发了一套耳机放大器。其原型是比较著名的47耳放。原版47耳放是由外国朋友设计的,由于电路中有很多以47为参数的元件所以取名为47耳放。本人在原版47的基础上,对布线、参数、以及电路结构做了一定的优化并同时开发了耳机保护电路和稳压电源。为了和大家分享已经公开了全部技术资料, 详情请察看https://www.360docs.net/doc/f913866142.html,/read.php?tid=1107591 或本人空间https://www.360docs.net/doc/f913866142.html,/ccxiaolin/blog/item/0e394ced143d8dc6b31cb18a.html。 自本人开发47耳放以来已经有一段时间了,由于结构简单、元件好配、设计合理、工作稳定等诸多优点得到了不少朋友的支持。一部分朋友已经装出来了并向我反馈了装机心得,还有一些朋友装好后一直使用至今。 但当初设计47耳放的时候并非只想让它成为单一用途的47耳放,通过仔细观察发现此电路的兼容性很强,能够使用现有的47耳放PCB板并通过简单的修改轻易的改造成其他结构,而且品种很多,效果立竿见影!但是出板至今却很少见到有人发现这一强大动能,更别说完全发挥出47的能力来了,有的改造也仅仅是更换发烧零件等投入大且效果不明显的方案。毕竟DIY在于折腾,通过自己的改造得到自己最满意、最适合的声音,并从中得到快乐才是DIY的意义所在。所以今天发一篇文章详细的介绍47耳放应该如何折腾,希望能给大家带来帮助。 (由于本人昵称为:虫虫小林,所以下文中本人设计的47耳放简称为“虫版47”) PCB是电路的一种表现形式,而电路中元件的参数不会是唯一的。为满足不同需要使用者在必要的时候会对参数进行调整以达到自己的要求,所以本人设计的PCB从来都是不标参数的,但是会标明元件符号并提供电路图。这样就能看清楚元件在电路中的位置,改进或维修也会比较方便。 言归正传,首先看一下虫版47的原电路图。为了方便大家看清结构,用一个基本电路结构表示两个声道的放大电路,元件符号为一个声道并用括号标注另一声道元件符号。C05、C06两个超前补偿电容对电路结构影响不大,所以为看清结构直接删掉。浮地电阻和电源部分也直接无视了,仅讨论放大部分。

多种耳机放大器电路

多种耳机放大器电路 LC-KING 耳机放大电路 对音响发烧友来说,发烧音响就等于烧钱,对一些经济条件不十分宽裕的发烧族来说,玩耳机就是一个很好的不需要太多的钱的最佳发烧途径了,原因很简单,一般来说,花两三百块钱连市面上劣质的音响器材都难买下来,但是却能买到一副很不错的发烧耳机,而且耳机的频率附应和各项指标一点都不逊于高档的扬声器单元,这也是耳机放大器DIY在国内外流行的主要原因,耳机放大器中,一般优秀的分立组件电路在国内外网站上都见过不少,还有电子管制作的,但是对一般的爱好者来说就是元器件难以寻找,管子的配对也是一个头痛的问题,电子管制作主要的变压器难已解决。 下面应网友的要求,特找来一些易于制作的耳机放大电路,供动手能力好一点的爱好者参考制作,电路图的来源于国内外网站,以及电子杂志。如果有侵犯了你的版权,请通知我,我会删去。 LC-KING A(甲)类耳机放大电路 上图为电路图,电路很简洁,前级放大推展为NE5532或其它类型的OP,U2A为DC SERVER,用于稳定中点的电位,推展级2SD882为NPN型功率晶体管,该管工作在甲类状态,因此发热量较大,流经的R11,R31的电流可以透过改变它的阻值来调整,在制作时晶体管要加散热器。

LC-KING的AB类放大器电路 上图为LC-KING 的甲乙类功率放大电路,后级的放大由对管2SD882(NPN)和2SB772(PNP)TL072为直流伺服电路,起稳定电位的作用。 LC-KING的放大电路比较简洁,制作上并不困难,可以用万用板来完成,后极的晶体管也可以换成其它的管子。放大器的电源对音质的影响也很大,用洼田电源当然是很好的,也可以用伺服电源,原图的电源有一点复杂,关键是有些元器件很偏,因此没有放到网上。 用OPA2604等双运算放大器做的耳机放大器

相关文档
最新文档