空气介质阻挡放电不同放电模式的光谱特性

空气介质阻挡放电不同放电模式的光谱特性
空气介质阻挡放电不同放电模式的光谱特性

介质阻挡放电的基本原理和应用(英文版)

FUNDAMENTALS AND APPLICATIONS OF DIELECTRIC-BARRIER DISCHARGES U. Kogelschatz ABB Corporate Research Ltd, 5405 Baden, Switzerland, ulrich.kogelschatz@https://www.360docs.net/doc/f014320542.html, Received: 24.05.2000 1. Introduction Dielectric-barrier discharges (DBDs), also referred to as barrier discharges or silent discharges have found a number of interesting industrial applications in addition to the historical ozone generation. The generation of powerful coherent infrared radiation in CO 2 lasers and of incoherent ultraviolet (UV) or vacuum ultraviolet (VUV) excimer radiation in excimer lamps are examples of more recent developments. VUV excimer radiation generated in DBDs can excite phosphors to emit visible light. This is the basis of mercury-free fluorescent lamps and of flat plasma display panels that will be used as wall hanging TV sets. Processes like pollution control and surface treatment with DBDs show great promise for the future. The most important characteristic of DBDs is that non-equilibrium plasma conditions can be provided at elevated pressure, for example atmospheric pressure. In DBDs this can be achieved in a much simpler way than with other alternative techniques like low pressure discharges, fast pulsed high pressure discharges or electron beam injection. The flexibility of DBD configurations with respect to geometrical shape, operating medium and operating parameters is remarkable. In many cases discharge conditions optimized in small laboratory experiments can be scaled up to large industrials installations. Efficient low cost power supplies are available up to very high power levels. 2. Discharge physics Typical electrode configurations of planar and cylindrical dielectric-barrier discharges are given in Fig. 1. DBDs are characterized by the presence of one or more insulating layers in the current path between metal electrodes in addition to the discharge gap(s). High Voltage Barrier Dielectric Discharge Gap Electrode AC Fig. 1: Common dielectric-barrier discharge electrode configurations A discharge having one or two dielectric boundaries has many similarities with discharges operated between metal electrodes. For the first ignition breakdown in a homogeneous electrical field is governed by the same Paschen law that is known from breakdown between metal electrodes. One fundamental difference is, of course, that DBDs cannot be operated with dc voltages because the capacitive coupling of the dielectric(s) necessitates an alternating electric field to drive a displacement current. Prudent utilization of the current limiting properties of the dielectric barriers is one of the major features in designing DBD configurations and their matching to the power supplies. As soon as charges are deposited on the dielectric they have an influence on local fields. After the first ignition these memory charges soon dominate DBD behavior. DBDs can be operated with sinusoidal or square-wave currents between line frequency and microwave frequencies or with special pulsed wave forms. For large-scale industrial applications power supplies operating between 500 Hz and 500 kHz are preferred.

双介质阻挡废气处理技术原理

介质阻挡放电低温等离子工业废气处理设备技术 介质阻挡放电形式产生等离子体,所产生等离子体的非常密度高。最初用于氟利昂类(Freon)、哈隆类(Halong)物质的分解处理,是国家为了研究保护地球臭氧层而设立的科研项目。延伸至工业恶臭、异味、有毒有害气体处理。该技术节能、环保,应用范围广,所有化工生产环节产生的恶臭异味几乎都可以处理,并对二恶英有良好的分解效果, 该技术世界首创、国际领先。 山东双成环保科技有限公司公司已研制出标准化废气处理设备,利用所产生的高能电子、自由基等活性粒子激活、电离、裂解工业废气中的各组成份,使之发生分解,氧化等 一些列复杂的化学反应。再经过多级净化,从而消除各种污染源排放的异味、臭味污染物,使有毒有害气体达到低毒化、无毒化,保护人类生存环境。 介质阻挡等离子废气的处理开辟了一条新的思路。该技术的应用,具有现代化工业生产里程碑的意义。 技术作用原理 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程 中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物 作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物 的目的。(注:低温等离子体相对于高温等离子体而言,属于常温运行。)介质阻挡等离子体反应区富含极高的物质,如高能电子、离子、自由基和激发态分子等,废气中的污染物质可与这些具有较高能量的物质发生反应,使污染物质在极短的时间内发

低温等离子体(介质阻挡放电)

低温等离子体技术简介(介质阻挡放电) 所谓等离子体是继固体、气体、液体三态后,列为物质的第四态,由正离子、负离子、电子和中性离子组成,因体系中正负电荷总数相等,故称为“等离子体”。 等离子体按粒子温度可分为平衡态(电子温度=离子温度)与非平衡态(电子温度>>离子温度)两类。 非平衡态等离子体电子温度可上万度,离子及中性离子可低至室温,即体系表观温度仍很低,故称“低温等离子体”,一般由气体放电产生。 气体放电有多种形式,其中工业上使用的主要是电晕放电(在去除废气中的油尘上应用已相当成熟)和介质阻挡放电(用于废气中难降解物质的去除)两种。 低温等离子体技术是近年发展起来的废气处理新技术,低温等离子体处理废气的原理为: 当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,以达到降解污染物的目的。 低温等离子体的产生途径很多,我们使用的低温等离子体工业废气处理技术采用的放电形式为双介质阻挡放电(Dielectric Barrier Discharge,简称DBD)。装置示意图如图1所示。 图1 介质阻挡放电示意图

DBD放电净化设备优点: 介质阻挡放电是一种获得高气压下低温等离子体的放电方法,由于电极不直接与放电气体发生接触,从而避免了电极的腐蚀问题。介质阻挡放电等离子体技术具有以下优点: ①介质阻挡放电产生的低温等离子体中,电子能量高,几乎可以和所有的气体分子作用。 ②反应快,不受气速限制。 ③电极与废气不直接接触,不存在设备腐蚀问题。 ④只需用电,操作极为简单,无需专人员看守,基本不占用人工费。 ⑤设备启动、停止十分迅速,随用随开,不受气温的影响。 ⑥气阻小,适用于高流速,大风量的废气处理。 ⑦工艺已相对成熟。 低温等离子体技术(介质阻挡放电)净化原理为: 在外加电场的作用下,介质放电产生的大量携能电子轰击污染物分子,使其电离、解离和激发,然后便引发了一系列复杂的物理、化学反应,使复杂大分子污染物转变为简单小分子安全物质,或使有毒有害物质转变为无毒无害或低毒低害物质,从而使污染物异味得以降解去除。因其电离后产生的电子平均能量在1eV~10eV,适当控制反应条件可以实现一般情况下难以实现或速度很慢的化学反应变得十分快速。其能量传递过程为: 电场+电子高能电子 受激电子 高能电子+受激分子活性基因 自由基 活性基因+分子(或原子)生成物+热

介质阻挡放电及其应用

介质阻挡放电及其应用 王新新 (清华大学电机系,北京100084) 摘 要:为使读者比较全面地了解介质阻挡放电,根据气体放电理论和实验结果,对介质阻挡放电进行了综述。 首先提出了只有拍摄曝光时间为10ns 左右的放电图像才能判断放电是否为均匀放电,即使是均匀放电,也不能统称其为大气压辉光放电,还必须进一步区分它是辉光放电还是汤森放电。其次,说明了只有增加放电的种子电子,使放电在低电场下进行才有可能实现大气压下均匀放电。最后,根据放电图像、电流电压波形、数值模拟结果,证明了大气压氦气均匀放电为辉光放电,而大气压氮气均匀放电为汤森放电。最后还简要介绍了3种介质阻挡放电的主要工业化应用—大型臭氧发生器、薄膜表面的流水线处理、等离子体显示屏。 关键词:介质阻挡放电;大气压辉光放电;汤森放电;辉光放电;气体放电;等离子体表面处理中图分类号:TM213;TM89文献标志码:A 文章编号:100326520(2009)0120001211 基金资助项目:国家自然科学基金重点项目(50537020);博士点专项基金项目(20040003011)。 Project Supported by National Natural Science Foundation (50537020),Special Research Fund for t he Doctoral Program of Higher Education (20040003011). Dielectric B arrier Discharge and Its Applications WAN G Xin 2xin (Depart ment of Elect rical Engineering ,Tsinghua University ,Beijing 100084,China ) Abstract :In order to comprehensively understand DBD ,we reviewed the investigations of dielectric barrier discharge (DBD )by focusing on the physics related to the uniform discharge at atmospheric pressure.It is suggested that the best way to distinguish a uniform discharge f rom a filamentary one is to take a picture with an exposure time of about 10ns.Even for a real uniform discharge ,it is important to f urther distinguish a glow discharge f rom a Townsend discharge.The only way to get a uniform discharge at atmospheric pressure is to make the discharge at a lower elec 2tric field by increasing the seed electrons initiating the discharge.Recently ,the uniform discharges at atmospheric pressure have been obtained in helium and nitrogen ,i.e.,subnormal glow discharge in helium and Townsend dis 2charge in nitrogen.Moreover ,we briefly introduced three industrial applications of DBD plasmas ,including the ad 2vanced ozone generator ,continuous double 2sided treatment of foil surface ,plasma display panel. K ey w ords :dielectric barrier discharge ;atmospheric pressure glow discharge ;Townsend discharge ;glow discharge ;gas discharge ;plasma surface modification 0 引言 近20年来,气体放电产生的低温等离子体得到越来越广泛的应用,等离子体处理技术应运而生。而介质阻挡放电(Dielect ric Barrier Discharge :DBD )可以在大气压下产生低温等离子体,特别适合于低温等离子体的工业化应用[1]。虽然人们对DBD 的研究已经有100多年的历史,仍然有一些问 题没有解决。因此,DBD 至今还是气体放电领域的 研究热点。目前,DBD 的研究可分为放电物理研究和应用技术研究两个方面。前者主要集中在放电属性的界定(细丝放电、均匀放电、汤森放电、辉光放电);大气压下均匀放电产生的条件和物理机制等。 后者主要集中在如何提高等离子体处理效率,减小能耗等。本文将根据本人和他人的研究成果,对DBD 及其应用进行综述,重点集中在放电物理方面 的最新研究成果。本文结构安排如下:首先简要回顾DBD 研究的历史,接着介绍DBD 细丝放电模式的产生机制和主要物理参数,然后重点论述DBD 均匀放电模式的关键问题,包括均匀放电的判定方法、均匀放电的分类、均匀放电产生的物理机制和条件、大气压氦气辉光放电和氮气汤森放电的认定。最后对DBD 等离子体的3种工业化应用作简要介绍。 1 介质阻挡放电研究简史 所谓介质阻挡放电(Dielect ric Barrier Dis 2charge :DBD )如图1所示,它是在两个金属电极之 间的气隙中插入至少一块绝缘介质,以阻挡贯穿气隙的放电通道,故称之为介质阻挡放电,或简称DBD 。DBD 通常采用两种电极结构,平行平板电极 结构和同轴圆筒电极结构。 ? 1? 第35卷第1期 2009年 1月 高 电 压 技 术 High Voltage Engineering Vol.35No.1 Jan. 2009

介质阻挡放电生成低温等离子的实验研究

介质阻挡放电生成低温等离子的实验研究 【摘要】低温等离子技术在环境治理方面具备独特的优势。介质阻挡放电法不仅操作简单,反应区域可控,并且在常温常压下也能进行,优势明显。本论文主要研究电压值、电极间距、相对湿度和温度对低温等离子生成效率的影响,探索介质阻挡放电生成低温等离子的最佳工作条件。 【关键词】低温等离子;介质阻挡放电 0.前言 低温等离子技术由于在环境治理方面具备效率高,操作简单,经济便捷等特点,从而受到广泛的研究。目前主要运用强电场、高能射线以及高温等方法,通过加速电子、离子或高能中性粒子的非弹性碰撞作用使得气体分子电离,从而产生低温等离子。 目前产生低温等离子的主要技术有弧光放电、辉光放电、介质阻挡放电等。弧光放电方法产生的等离子体温度过高,仅适合运用于高温领域;常用的辉光放电方法一般需要在低压下进行,在使用过程当中需要配备真空系统,因此使用步奏繁琐,操作复杂,难以满足连续生产的要求。介质阻挡放电法产生的低温等离子能够有效地控制在一定的区域范围内,并且操作简单,能在常温常压下进行,生产低温等离子的浓度可以通过电压、电极间距、温度等因素来控制,因此介质阻挡放电法得以广泛的运用。 介质阻挡放电是有绝缘介质插入放电空间的一种非平衡态气体放电。工作原理是在两个放电电极之间充满某种工作气体,并将其中一个或两个电极用绝缘介质覆盖,也可以将绝缘介质直接悬挂在放电空间或采用颗粒状的介质填充其中,当两电极间施加足够高的交流电压时,电极间的气体会被击穿而产生放电,即产生了介质阻挡放电。介质阻挡放电的电极结构可以根据实际需求而设计得多种多样。 目前虽然介质阻挡放电技术已被开发和广泛应用,但对它的研究仍不够全面和完善,本文主要研究不同条件对低温等离子生成效率的影响。 1.实验仪器和实验方法 低温等离子浓度测试目前分为直接测量法和间接测量法,直接测量法常用的方法有Langmuir探针法,间接测量法形式多,比如检测低温等离子对某物质的分解率。本实验采取间接测量法,通过检测甲醛的分解率来检测低温等离子的生成效率。 实验仪器包括低温等离子发生装置,反应容器(0.4m*0.4m*0.5m),甲醛检测仪,甲醛源,电源等。低温等离子发生装置电极为两圆柱形电极,电极材料为

流场空气间隙放电特性的高海拔校正

2005年8月第6卷第8期电力设备 ElectricalEauipment Agu.2005 VOI.6NO.8 换流站直流场空气间隙放电特性的高海拔校正 宿志一1,尚涛2,王代荣3 (1.中国电力科学研究院,北京市100085;2.中国南方电网有限公司,广东省广州市510620; 3.西南电力设计院,四川省成都市610021) 寨 摘要:整理和分析了中国电力科学研究院和云南电力试验研究所有关换流站直流场典型电极的操作波放电特性模拟试验数据,讨论了不同海拔高度下典型间隙的操作冲击放电电压的校正方法。文章指出:可以根据IEC和国家标准提出的g参数法以及文中得出的典型间隙公式确定海拔2000m以下的换流站直流场的空气间隙。 关键词:换流站;直流场;空气间隙;操作冲击 中图分类号:TM721;TM852 经研究表明,无论是棒一板问隙,还是导线一塔间隙,预加的直流电压都可以改善正极性操作冲击的绝缘强度。因此,可用纯正极性操作冲击来确定换流站直流场空气问隙的距离。由于空气间隙的正极性操作冲击放电电压低于负极性操作冲击放电电压,因此本文只对空气间隙的正极性操作冲击放电电压进行研究。此次试验主要是在中国电力科学研究院(简称电科院,处在低海拔地区,海拔高度为50m)高压试验大厅完成的,同时结合云南电力试验研究所(简称云南所,处在高海拔地区,海拔高度为l970m)高压试验基地的试验结果,进行了高海拔验证,从而提出了高海拔修正意见。 当换流站直流场设备空气间隙结构不同时,其操作冲击击穿电压是不一样的。根据我国葛州坝一南桥(简称葛南)高压直流换流站和天生桥一广州(简称天广)高压直流换流站以及国#1-直流工程换流站(如美国太平洋联络线Sylmar站和IPP工程Adelanto站等)直流场设备的布置情况,选取管母线一构架与遮栏、软母线一构架与遮栏作为典型电极。 1不同海拔高度下操作冲击模拟试验 1.1试验装置与试品 低海拔和高海拔的直流场典型间隙操作冲击模拟试验分别在电科院高压试验大厅(43mX30mX26.5m)和云南所户外高压试验场(1000m2)进行。试验装置与模拟试品的主要尺寸及参数见表1。 表1试验装置与模拟试品的主要尺寸及参数 试验地点电科院高压大厅(43m×30111×26.5in)云南所户外高压试验场 海拔高度/rll501970 3600kV、180kJ冲击电压发生器,可产生+250/2500妒的3600kV、180l【J冲击电压发生器,可产生试验装置 标准操作波+200/1500斗s的操作波 管母线长10in,直径110mm,两端装屏蔽环长9.6in,直径150inm,两端装屏蔽环 长10m,由4根西34mm镀锌铁管组成的分裂导线(分裂问长10In,由4根4,34mm镀锌铁管组成的分裂软母线 距为170mill),两端装屏蔽环导线(分裂间距为170mm),两端装屏蔽环 构架与遮拦模拟钢构架高1.85nl,模拟遮栏高1.8m,二者相距2.5m模拟钢构架高1.85nl,模拟遮栏高1.8in,二者 相距2.5111 导线对地距离/nl66 软母线与构架和遮栏平行(软母线在遮栏侧构架正上方); 软、硬母线与构架和遮栏垂直(软母线最低点在试品布置软母线与构架和遮栏垂直(软母线最低点在构架正上方)。硬 构架正上方) 母线只与构架和遮栏垂直(软母线最低点在构架正上方)布置 1.2试验条件与试验方法 气象参数的测量,两地统一使用动槽式水银气压计和通风式干湿温度计记录气压和干、湿球温度。为使两地试验结果易于比较,尽可能选取较干燥的晴好天气,保障试验期间天气的稳定,特别是每一间隙的试验要在同一气象条件下完成。 试验采用+250/2500灿(电科院)或+200/1500炉(云南所)操作波进行,采用升降法求取50%放电电压,每种工况放电次数为30一40次,间隙距离的试 ?本文是贵州一广州-t-500kV直流工程咨询项目“±500kV贵广直流输电工程安顺换流站外绝缘设计与高海拔修正”的子课题之一。主要工作人员还有李庆峰、梁宝生、李鹏、李明、陈磊、马仪、吴泽辉、龚天森、胡晓、余波等。

低温等离子体产生方法介质阻挡放电

介质阻挡放电(Dielectric Barrier Discharge, DBD) 介质阻挡放电(DBD)是有绝缘介质插入放电空间的一种非平衡态气体放电又称介质阻挡电晕放电或无声放电。介质阻挡放电能够在高气压和很宽的频率范围内工作,通常的工作气压为104~106。电源频率可从50Hz至1MHz。电极结构的设计形式多种多样。在两个放电电极之间充满某种工作气体,并将其中一个或两个电极用绝缘介质覆盖,也可以将介质直接悬挂在放电空间或采用颗粒状的介质填充其中,当两电极间施加足够高的交流电压时,电极间的气体会被击穿而产生放电,即产生了介质阻挡放电。在实际应用中,管线式的电极结构被广泛的应用于各种化学反应器中,而平板式电极结构则被广泛的应用于工业中的高分子和金属薄膜及板材的改性、接枝、表面张力的提高、清洗和亲水改性中。(To top) 介质阻挡放电(DBD)常用结构 介质阻挡放电通常是由正弦波型(sinusoidal)的交流(alternating current, AC)高压电源驱动,随着供给电压的升高,系统中反应气体的状态会经历三个阶段的变化,即会由绝缘状态(insulation)逐渐至击穿(breakdown)最后发生放电。当供給的电压比较低时,虽然有些气体会有一些电离和游离扩散,但因含量太少电流太小,不足以使反应区内的气体出现等离子体反应,此时的电流

为零。随着供给电压的逐渐提高,反应区域中的电子也随之增加,但未达到反应气体的击穿电压(breakdown voltage; avalanche voltage)时,两电极间的电场比较低无法提供电子足够的能量使气体分子进行非弹性碰撞,缺乏非弹性碰撞的结果导致电子数不能大量增加,因此,反应气体仍然为绝缘状态,无法产生放电,此时的电流随着电极施加的电压提高而略有增加,但几乎为零。若继续提高供給电压,当两电极间的电场大到足够使气体分子进行非弹性碰撞时,气体将因为离子化的非弹性碰撞而大量增加,当空间中的电子密度高于一临界值时及帕邢(Paschen)击穿电压时,便产生许多微放电丝(microdischarge)导通在两极之间,同时系統中可明显观察到发光(luminous)的現象此时,电流会随着施加的电压提高而迅速增加。 在介质阻挡放电中,当击穿电压超过帕邢(Paschen)击穿电压时,大量随机分布的微放电就会出现在间隙中,这种放电的外观特征远看貌似低气压下的辉光放电,发出接近兰色的光。近看,则由大量呈现细丝状的细微快脉冲放电构成。只要电极间的气隙均匀,则放电是均匀、漫散和稳定的。这些微放电是由大量快脉冲电流细丝组成,而每个电流细丝在放电空间和时间上都是无规则分布的,放电通道基本为圆柱状,其半径约为0.1~0.3mm,放电持续时间极短,约为10~100ns,但电流密度却可高达0.1~1kA/cm2,每个电流细丝就是一个微放电,在介质表面 上扩散成表面放电,并呈现为明亮的斑点。这些宏观特征会随着电极间所加的功率、频率和介质的不同而有所改变。如用双介质并施加足够的功率时,电晕放电会表现出“无丝状”、均匀的兰色放电,看上去像辉光放电但却不是辉光放电。这种宏观效应可通过透明电极或电极间的气隙直接在实验中观察到。当然,不同的气体环境其放电的颜色是不同的。 虽然介质阻挡放电已被开发和广泛的应用,可对它的理论研究还只是近20 年来的事,而且仅限于对微放电或对整个放电过程某个局部进行较为详尽的讨论,并没有一种能够适用于各种情况DBD的理论。其原因在于各种DBD的工作条件大不相同,且放电过程中既有物理过程,又有化学过程,相互影响,从最终结果很难断定中间发生的具体过程。 由于DBD在产生的放电过程中会产生大量的自由基和准分子,如OH、O、NO 等,它们的化学性质非常活跃,很容易和其它原子、分子或其它自由基发生反应而形成稳定的原子或分子。因而可利用这些自由基的特性来处理VOCs,在环保 方面也有很重要的价值。另外,利用DBD可制成准分子辐射光源,它们能发射窄带辐射,其波长覆盖红外、紫外和可见光等光谱区,且不产生辐射的自吸收,它是一种高效率、高强度的单色光源。在DBD电极结构中,采用管线式的电极结构还可制成臭氧O3发生器。现在人们已越来越重视对DBD的研究与应用。(To top)

介质阻挡无声放电中电子温度和

介质阻挡无声放电中电子温度和 电子能量分布的探极诊断 凌一鸣,徐建军 (东南大学电子工程系,南京210018) 摘 要: 用对称双探极和非对称双探极分别诊断氖气中介质阻挡无声放电的电子温度和电子能量分布.本文概述其诊断技术的原理、装置和实验结果,并分析讨论了实验结果.实验表明,这种放电的电子温度随着气压的增加而减少,并明显高于相应气压下的直流放电电子温度,而且,其电子能量分布明显偏离Max wellian 能量分布. 关键词: 探极诊断;电子能量分布;介质阻挡放电;无声放电;等离子体诊断;等离子体显示中图分类号: O461 文献标识码: A 文章编号: 037222112(2001)022******* Probe Diagno sis of Electron Temperature and Electron Energy Distribution in Dielectric Barrier Silent Discharge LI NG Y i 2ming ,X U Jian 2jun (Dept.o f Electronic Engineering ,Southeast University ,Nanjing 210018,China ) Abstract : The symmetrical and asymmetrical double probes have been used to diagnose the electron temperature and the elec 2tron energy distribution in the dielectric barrier discharge ,respectively.In this paper ,the principle and setup of the diagnosis are de 2scribed briefly ,and the experimental results are discussed.It can be proven from these results that its electron temperature can be in 2creased by decreasing the filled pressure and can be higher than that in DC discharge ,and its electron energy distribution is obviously deviated from Max wellian. K ey words : probe diagnosis ;electron energy distribution ;dielectric berrier discharge ;silent dischange ;plasma diagnosis ;plas 2ma display 1 引言 介质阻挡无声放电是一种特殊类型的气体放电,属非平 衡态等离子体,其结构特征之一是它的电极(至少有一个)是被绝缘介质层所覆盖[1].它的机理主要包括两种物理过程:一种是放电空间的带电粒子在电场作用下的电子繁流;另一种是这些带电粒子由于漂移运动而沉积在绝缘介质层上所形成的壁电荷抵消了外电场,又使电子繁流猝灭.因此这是一种放电着火又猝灭的暂态过程,属无声放电机理范畴.只有在交变电场作用下,放电才呈准连续工作状态.这种放电已被广泛应用于臭氧合成[2,3],紫外与真空紫外的获得[4,5],气体激光器的激励[6,7],环境保护[8,9]等方面.尤其是近几年,等离子体显示技术的高度发展[10,11],它将成为21世纪初大屏幕显示技术的重要支柱.这种交流等离子体显示板的工作机制就是介质阻挡无声放电.因此,对它的深入研究对所涉及的一系列应用领域的理论、技术和开发具有重要的实用意义. 由于气体放电机理的复杂性以及有关物理过程的随机 性,尽管当前各种运算手段相当先进,但终究由于原始数据的局限性和理论假设的近似性,以致往往使理论分析结果与实际放电现象和内在机制有明显差异.因此,对它的研究还有赖于各种实验诊断手段.本文将采用实验研究的手段诊断这种放电中的电子温度和电子能量分布. 2 诊断原理 气体放电现象是相当复杂的,它把电源的电能转变成光、声、电、化学等多种形式的能量.其能量的主要输运者就是电子.它们在气体导电过程中的运动和频繁碰撞,使它们在一定能量分布的状态下达到平衡,其电子的平均能量可用电子温度表示.上述的无声放电也是这样,只不过其电子温度和电子能量分布均随时间而变化.为方便起见,这里主要研究整个放电周期内放电参量的平均值,故采用直流诊断技术.况且,它的许多应用都注重总的效果.因此,这种诊断结果仍有实用价值. 收稿日期:1999209227;修回日期:2000208218基金项目:国家自然科学基金(N o.69578003)   第2期2001年2月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.29 N o.2 Feb. 2001

甲醇在介质阻挡放电条件下的反应

甲醇在介质阻挡放电条件下的反应 摘要:采用介质阻挡放电的方法,对甲醇在非平衡等离子体体系中的反应进行研究。对甲醇蒸汽进行放电实验,分析其产物并考察放电参数和反应条件等对甲醇转化率和产物分布的影响。结果表明,在介质阻挡放电条件下,甲醇的主要转化产物是乙醇、乙二醇、丙三醇、甲烷、一氧化碳、水和其他的高碳化合物。 关键词:甲醇,低温等离子体,介质阻挡放电 1引言 目前我国煤化工发展快速,煤制甲醇技术逐步成熟,各大煤炭产地煤制甲醇严重过剩,因此甲醇转化制取高附加值化工产品意义远大。传统技术领域中甲醇转化制高附加值产品,都是采用常规热催化法技术路线以及光催化法技术路线,但是这些方法设备庞大,操作流程复杂,原料利用率低,需用催化剂,且对环境污染严重。从而如何把甲醇进行清洁、高效的转化并利用,已经成为了人们关注的一个重点。 在等离子体空间内部含有大量高活性粒子,如原子、电子、分子、离子和自由基等,其内部电子的高能量足以将反应物分子激发、解离和电离,从而产生高活化状态的反应物种粒子[1~4]。等离子体放电条件温和、洁净,操作简便,容易控制,受到广大等离子体科研工作者的青睐,并已广泛的应用到等离子体化学品合成领域,如氮氧化物气体处理[5],煤液化[6],甲醇分解制氢[7]等。低温等离子体技术具有工艺简单、操作方便、加工速度快、处理效果好、环境污染小、节能等优点,在表面改性中广泛的应用。 2实验 原料气空气首先进入甲醇储瓶,将甲醇气体带出,流量通过气体流量计显示,混合气体进入介质阻挡放电反应器(DBD)中进行反应,最后用气相色谱分析出口端气体的成分。分别考察放电间距、输入功率、原料进气量对甲醇转化率和产物产率的影响。 气相色谱色谱柱:中科院兰州物化所OV-1701改性毛细管柱(30m×0.32mm×1μm),柱温:50℃,汽化室温度:240℃,检测室温度:240℃,柱压:0.04MPa,检测器:FID检测器,氮气流量:30ml/min,氢气流量:30ml/min,进样体积400uL。程序升温;起始温度50℃,保留时间10 min,以10°C /min升至240℃,保留10 min,降温。 本实验考察的主要评价指标是CH3OH转化率和以碳为基准的产物(CH4,CO,CH3CH2OH,CH2OHCH2OHCH2OH)的产率。其计算式如下: X CH3OH(%)= 反应的甲醇摩尔数/甲醇总摩尔数×100%

长空气间隙负极性操作冲击放电特性研究-间隙系数

第34卷第24期中国电机工程学报V ol.34 No.24 Aug.25, 2014 2014年8月25日Proceedings of the CSEE ?2014 Chin.Soc.for Elec.Eng. 4145 DOI:10.13334/j.0258-8013.pcsee.2014.24.019 文章编号:0258-8013 (2014) 24-4145-07 中图分类号:TM835 长空气间隙负极性操作冲击放电特性研究 (II)-间隙系数 安韵竹1,戴敏2,李志军2,蓝磊1,文习山1,王羽1,叶奇明2 (1.武汉大学电气工程学院,湖北省武汉市 430072; 2. 中国电力科学研究院,湖北省武汉市 430074) Research on Typical Long Air Gaps With Negative Switching Impulses(II)-Gap Factor AN Yunzhu1, DAI Min2, LI Zhijun2, LAN Lei1, WEN Xishan1, WANG Yu1, YE Qiming2 (1. School of Electrical Engineering, Wuhan University, Wuhan 430072, Hubei Province, China; 2. China Electric Power Research Institute, Wuhan 430074, Hubei Province, China) ABSTRACT: The negative discharge characteristics of long air gaps vary with atmospheric environment, tests’ setup and gap type. Two waveforms of ?20/2500μs and ?80/2500μs were employed in present tests to study the factors influencing the negative switching discharge characteristics of long air gaps, such as atmospheric condition, applied voltage waveform, grounded rod height and conductor grounded method. The gap factors of rod-rod gaps and rod-conductor gaps were calculated based on the rod-plane gaps. The tests results indicated that the air humidity and conductor grounded method had significant influences on negative discharge characteristics of long air gaps; the 50% discharge voltage of these typical air gaps were higher with applied voltage of ?20/2 500μs than that with applied voltage of ?80/2 500μs when the gap distance exceeded 4m and versus when the gap distance was smaller than 3m. Grounded rod height had some effects on 50% discharge voltage of these typical air gaps. Gap factors increased nonlinearly with gap distance and gap factors between rod-rod gap and rod-conductor gap tended to level off to 1.05. KEY WORDS: long air gaps; switching discharge; atmospheric correction coefficient; grounded rod height; conductor grounded method; gap factor 摘要:大气环境、电极布置方式和间隙类型等对长空气间隙的负极性操作冲击放电特性均有不同程度的影响。分别采用20/2500μs和80/2500μs两种负极性操作冲击电压波进行放电试验,研究了气象条件、波头时间、下电极高度及导线接地方式等对空气间隙放电特性的影响,并对以棒–板间隙为基准,分析计算棒–棒间隙、棒–线间隙的间隙系数。试验结果显示:湿度对长空气间隙的负极性操作冲击放电特性试验具有明显的影响;间隙距离大于3m时,20/2500μs负极性操作冲击电压波作用下空气间隙的50%放电电压较高,间隙距离小于3m时,80/2500μs负极性操作冲击电压波作用下空气间隙的50%放电电压较高;下电极高度对棒–棒间隙放电特性具有一定的影响;导线接地方式对棒–线间隙的50%负极性操作冲击放电电压具有显著影响。间隙系数随间隙距离呈非线性变化趋势,棒–线间隙对棒–棒间隙的间隙系数随间隙距离增大基本趋于稳定值1.05。 关键词:长空气间隙;操作中击放电;大气修正系数;下电极高度;导线接地方式;间隙系数 0 引言 由于目前观测手段的限制,无法全面对雷电放电过程进行研究。近50年来,大量典型电极间隙放电试验表明,可以利用实验室长间隙放电试验近似模拟自然雷电最后一击的放电过程。棒–棒间隙、棒–板间隙、棒–线间隙可分别模拟雷击独立垂直目标物、雷击大地及雷击水平线型目标物放电过程,其负极性放电特性的研究对研究雷击放电物理过程以及雷电放电过程的模拟具有十分重要的意义。然而,实验室长间隙放电过程受试验对象几何结构、大气条件、施加电压类型等因素的影响,使得放电试验结果存在一定的差异。 国内外在大气修正系数方面持续开展了大量放电试验研究。长空气间隙放电间隙尺寸大,放电过程受大气条件的影响较大,其修正系数应综合考虑空气相对密度、海拔高度及空气湿度三方面因素。对此,IEC60-1—1989和GB/T 16927.1—1997推荐采用基于g参数进行大气修正,该方法适应于环境条件与标准大气条件相差不明显的情况。 施加冲击电压波形对长空气间隙的放电特性

相关文档
最新文档