惠普66312电源维修手册

Service Manual

Agilent Model 66312A

Dynamic Measurement DC Source

and Agilent Model 6612B

System DC Power Supply

For instruments with Serial Numbers:

Agilent 66312A: US37442096 and up

Agilent 6612B: US37470826 and up

5

Agilent Part No. 5962-0874Printed in U.S.A. Microfiche No 6962-0875September, 2000

Warranty Information

CERTIFICATION

Agilent Technologies certifies that this product met its published specifications at time of shipment from the factory. Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Agilent Technologies hardware product is warranted against defects in material and workmanship for a period of three years from date of delivery. Agilent Technologies software and firmware products, which are designated by Agilent Technologies for use with a hardware product and when properly installed on that hardware product, are warranted not to fail to execute their programming instructions due to defects in material and workmanship for a period of 90 days from date of delivery. During the warranty period Agilent Technologies will, at its option, either repair or replace products which prove to be defective. Agilent Technologies does not warrant that the operation for the software firmware, or hardware shall be uninterrupted or error free.

For warranty service, with the exception of warranty options, this product must be returned to a service facility designated by Agilent Technologies. Customer shall prepay shipping charges by (and shall pay all duty and taxes) for products returned to Agilent Technologies. for warranty service. Except for products returned to Customer from another country, Agilent Technologies shall pay for return of products to Customer.

Warranty services outside the country of initial purchase are included in Agilent Technologies’ product price, only if Customer pays Agilent Technologies international prices (defined as destination local currency price, or U.S. or Geneva Export price).

If Agilent Technologies is unable, within a reasonable time to repair or replace any product to condition as warranted, the Customer shall be entitled to a refund of the purchase price upon return of the product to Agilent Technologies.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by the Customer, Customer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation and maintenance. NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. AGILENT TECHNOLOGIES. SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE THE CUSTOMER'S SOLE AND EXCLUSIVE REMEDIES. AGILENT TECHNOLOGIES SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

ASSISTANCE

The above statements apply only to the standard product warranty. Warranty options, extended support contacts, product maintenance agreements and customer assistance agreements are also available. Contact your nearest Agilent Technologies. Sales and Service office for further information on Agilent Technologies' full line of Support Programs.

2

Safety Summary

The following general safety precautions must be observed during all phases of operation of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies, Inc. assumes no liability for the customer's failure to comply with these requirements.

WARNING

Servicing instructions are for use by service-trained personnel. To avoid dangerous electrical shock, do not perform any servicing unless you are qualified to do so. Some procedures described in this manual are performed with power supplied to the instrument while its protective covers are removed. If contacted, the energy available at many points may result in personal injury. BEFORE APPLYING POWER.

Verify that the product is set to match the available line voltage, the correct line fuse is installed, and all safety precautions (see following warnings) are taken. In addition, note the instrument's external markings described under "Safety Symbols" GROUND THE INSTRUMENT.

Before switching on the instrument, the protective earth terminal of the instrument must be connected to the protective conductor of the (mains) power cord. The mains plug shall be inserted only in an outlet socket that is provided with a protective earth contact. This protective action must not be negated by the use of an extension cord (power cable) that is without a protective conductor (grounding). Any interruption of the protective (grounding) conductor or disconnection of the protective earth terminal will cause a potential shock hazard that could result in personal injury.

FUSES

Only fuses with the required rated current, voltage, and specified type (normal blow, time delay, etc.) should be used. Do not use repaired fuses or short-circuited fuseholders. To do so could cause a shock or fire hazard.

KEEP AWAY FROM LIVE CIRCUITS.

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified service personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power, discharge circuits and remove external voltage sources before touching components.

DO NOT SERVICE OR ADJUST ALONE.

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. Any adjustment, maintenance, and repair of this instrument while it is opened and under voltage should be avoided as much as possible. When this is unavoidable, such adjustment, maintenance, and repair should be carried out only by a skilled person who is aware of the hazard involved.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT.

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to an Agilent Technologies, Inc. Sales and Service Office for service and repair to ensure that safety features are maintained.

SAFETY SYMBOLS

Refer to the table on the following page

WARNING The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING sign

until the indicated conditions are fully understood and met.

Caution The CAUTION sign denotes a hazard. It calls attention to an operating procedure, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not

proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

3

Safety Symbol Definitions

Symbol Description

Direct current

Alternating current

Both direct and alternating current

Three-phase alternating current

Earth (ground) terminal

Protective earth (ground) terminal

Frame or chassis terminal

Terminal is at earth potential (Used for measurement and control circuits designed to be

operated with one terminal at earth potential.)

Terminal for Neutral conductor on permanently installed equipment

Terminal for Line conductor on permanently installed equipment

On (supply)

Off (supply)

Standby (supply)

Units with this symbol are not completely disconnected from ac mains when this switch

is off. To completely disconnect the unit from ac mains, either disconnect the power

cord or have a qualified electrician install an external switch.

In position of a bi-stable push control

Out position of a bi-stable push control

Caution, risk of electric shock

Caution, hot surface

Caution (refer to accompanying documents)

4

Notice

The information contained in this document is subject to change without notice. Agilent Technologies makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability, and fitness for a particular purpose.

Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated into another language without the prior written consent of Agilent Technologies.

? Copyright 1997, 2000 Agilent Technologies, Inc.

Printing History

The edition and current revision of this manual are indicated below. Reprints of this manual containing minor corrections and updates may have the same printing date. Revised editions are identified by a new printing date. A revised edition incorporates all new or corrected material since the previous printing date.

Changes to the manual occurring between revisions are covered by change sheets shipped with the manual. In some cases, the manual change applies only to specific instruments. Instructions provided on the change sheet will indicate if a particular change applies only to certain instruments.

First Edition ............February, 1997

Second Edition ...... September, 2000

Instrument Identification

The power supply is identified by a unique serial number such as, US36310101. The items in this serial number are explained as follows:

US36310101The first two letters indicate the country of manufacture. US = United States.

The next four digits are the year and week of manufacture or last significant design change.

Add 1960 to the first two digits to determine the year. For example, 36=1996. The third and

fourth digits specify the week of the year (31 = the thirty-first week).

The last four digits (0101) are a unique number assigned to each unit.

5

Table of Contents

Warranty Information2 Safety Summary3 Notice4 Printing History5 Instrument Identification5 Table of Contents6 INTRODUCTION9 Organization9 Safety Considerations9 Related Documents9 Revisions10 Manual Revisions10 Firmware Revisions10 Electrostatic Discharge10 VERIFICATION AND PERFORMANCE TESTS11 Introduction11 Test Equipment Required11 Measurement Techniques12 Setup for Most Tests12 Electronic Load13 Current-Monitoring Resistor13 Operation Verification Tests13 Performance Tests13 Programming13 Constant Voltage (CV) Tests14 CV Setup14 Voltage Programming and Readback Accuracy14 CV Load Effect14 CV Source Effect15 CV Noise (PARD)15 Transient Recovery Time16 Constant Current (CC) Tests16 CC Setup16 Current Programming and Readback Accuracy16 Current Sink (CC-) Operation17 CC Load and Line Regulation17 CC Load Effect18 CC Source Effect18 CC Noise (PARD)19 Performance Test Equipment Form19 Performance Test Record Form20 6

TROUBLESHOOTING21 Introduction21 Test Equipment Required22 Overall Troubleshooting22 Flow Charts22 Specific Troubleshooting Procedures33 Power-on Self-test Failures36 CV/CC Status Annunciators Troubleshooting37 Bias and Reference Supplies37 J307 Voltage Measurements38 Manual Fan Speed Control39 Disabling Protection Features39 Post-repair Calibration40 Inhibit Calibration Switch40 Calibration Password40 Initialization41 ROM Upgrade41 Identifying the Firmware41 Upgrade Procedure41 Disassembly Procedures42 List of Required Tools42 Cover, Removal and Replacement43 A2 Interface Board, Removal and Replacement43 Front Panel Assembly, Removal and Replacement43 A3 Front Panel Board, Removal and Replacement44 A1 Main Control Board44 T1 Power Transformer, Removal and Replacement44 Line Voltage Wiring44 PRINCIPLES OF OPERATION47 Introduction47 I/O Interface Signals47 A3 Front Panel Circuits48 A2 Interface Circuits48 Primary Interface48 Secondary Interface48 A1 Main Board Circuits50 Power Circuits50 Control Circuits52 REPLACEABLE PARTS LIST55 Introduction55 DIAGRAMS65 Introduction65 General Schematic Notes65 Backdating65 INDEX73

7

1 Introduction

Organization

This manual contains information for troubleshooting and repairing to the component level the Agilent Model 66312A Dynamic Measurement DC Source and the Agilent Model 6612B System DC Power Supply. Hereafter both models will be referred to as the dc power supply.

This manual is organized as follows:

Chapter 1Organization

Chapter 2Performance tests

Chapter 3Troubleshooting procedures

Chapter 4Principles of operation on a block-diagram level

Chapter 5Replaceable parts

Chapter 6Diagrams

Safety Considerations

WARNING:Hazardous voltages exist within the dc power supply chassis.

This dc power supply; is a Safety Class I instrument, which means it has a protective earth terminal. This terminal must be connected to earth ground through a power source equipped with a 3-wire, ground receptacle. Refer to the "Safety Summary" page at the beginning of this manual for general safety information. Before operation or repair, check the dc power supply and review this manual for safety warnings and instructions. Safety warnings for specific procedures are located at appropriate places in the manual.

Related Documents

The following documents are shipped with your dc power supply:

a a User’s Guide, containing installation, operating, and calibration information.

a a Programming Guide, containing detailed GPIB programming information.

9

1 - Introduction

10Revisions

Manual Revisions

This manual was written for dc power supplies that have the same manufacturing dates (the first four digits) as those listed on the title page and whose unique identification number (the last four digits) are equal to or higher than those listed in the title page.

NOTE:1) If the first four digits of the serial number of your unit are higher than those shown in the title

page, your unit was made after the publication of this manual and may have hardware or firmware

differences not covered in this manual. If they are significant to the operation and/or servicing of

the dc power supply, those differences are documented in one or more Manual Change sheets

included with this manual.

2) If the first four digits of the serial number of your unit are lower than those shown on the title

page, your unit was made before the publication of this manual and can be different from that described here. Such differences are covered in the backdating section in Chapter 6.

Firmware Revisions

You can obtain the firmware revision number by either reading the integrated circuit label, or query the dc power supply using the GPIB *IDN?' query command (see Chapter 3, ROM Upgrade).Electrostatic Discharge

CAUTION:The dc power supply has components that can be damaged by ESD (electrostatic discharge).

Failure to observe standard antistatic practices can result in serious degradation of performance,even when an actual failure does not occur.

When working on the dc power supply, observe all standard, antistatic work practices. These include, but are not limited to:

a

Working at a static-free station such as a table covered with static-dissipative laminate or with a conductive table mat (Agilent P/N 9300-0797, or equivalent).a

Using a conductive wrist strap, such as Agilent P/N 9300-0969 or 9300-0970.a

Grounding all metal equipment at the station to a single common ground.a

Connecting low-impedance test equipment to static-sensitive components only when those components have power applied to them.a Removing power from the dc power supply before removing or installing printed circuit boards.

2 Verification and Performance Tests

Introduction

This document contains test procedures to verify that the dc power supply is operating normally and is within published specifications. There are three types of tests as follows:

Built-in Self Tests These tests, run automatically when the power supply is turned on, check most

of the digital circuits and the programming and readback DACs.

Operation Verification These tests verify that the power supply is probably operating normally but do

not check all of the specified operating parameters.

Performance Tests These tests check that the supply meets all of the operating specifications as

listed in the Operating Manual.

NOTE:T he dc power supply must pass the built-in self-tests before calibration or any of the verification or performance tests can be performed. If the supply fails any of the tests or if abnormal test

results are obtained, refer to the troubleshooting procedures in Chapter 3. The troubleshooting

procedures will determine if repair and/or calibration is required.

Test Equipment Required

Table 2-1 lists the equipment required to perform the verification and performance tests. A test record sheet with specification limits and measurement uncertainties (when test using the recommended test equipment) may be found at the back of this section.

WARNING:SHOCK HAZARD. These tests should only be performed by qualified personnel. During the performance of these tests, hazardous voltages may be present at the output of the supply.

Table 2-1. Test Equipment Required for Verification and Performance Tests

Type Specifications Recommended Model

Current Monitor Resistor 15 A (0.1 ohm) 0.04%,

for power supplies up to 15 A output

Guildline 9230/15

DC Power Supply Minimum 2.5 A output current rating Agilent 6632B

Digital Voltmeter Resolution: 10 nV @ 1V

Readout: 8 1/2 digits

Accuracy: 20 ppm

Agilent 3458A or equivalent

Electronic Load20 V, 5 A minimum, with transient capability Agilent 6060B or equivalent GPIB Controller HP Series 300 or other controller with full

GPIB capabilities

2 - Verification and Performance Tests

Resistor

(substitute for electronic load if load is too noisy for CC PARD test)1 ohm, 12 W (or 2 ohm adjustable)

1 k ohm, 5%, 3 W

9 ohm, 100 W or

Rheostat, 10 ohm, 150 W

Ohmite D12K2R0 (2 ohm adjustable)

Agilent p/n 0813-0001

Ohmite RLS10R (10 ohm adjustable)

Ohmite 11F103

Oscilloscope Sensitivity: 1 mV

Bandwidth Limit: 20 MHz

Probe: 1:1 with RF tip

Agilent 54504A or equivalent

RMS Voltmeter True RMS

Bandwidth: 20 MHz

Sensitivity: 100 μV

Agilent 3400B or equivalent

Variable-Voltage Transformer Adjustable to highest rated input voltage range. Power: 500 VA

Measurement Techniques Test Setup

Verification and Performance Tests - 2 Electronic Load

Many of the test procedures require the use of a variable load capable of dissipating the required power. If a variable resistor is used, switches should be used to either; connect, disconnect, or short the load resistor. For most tests, an electronic load can be used. The electronic load is considerably easier to use than load resistors, but it may not be fast enough to test transient recovery time and may be too noisy for the noise (PARD) tests.

Fixed load resistors may be used in place of a variable load, with minor changes to the test procedures. Also, if computer controlled test setups are used, the relatively slow (compared to computers and system voltmeters) settling times and slew rates of the power supply may have to be taken into account. "Wait" statements can be used in the test program if the test system is faster than the supply.

Current-Monitoring Resistor

To eliminate output-current measurement error caused by voltage drops in the leads and connections, connect the current monitoring resistor between the -OUT and the load as a four-terminal device. Connect the current-monitoring leads inside the load-lead connections directly at the monitoring points on the resistor element. Operation Verification Tests

To assure that the supply is operating properly, without testing all specified parameters, perform the following test procedures:

a.Perform the turn-on and checkout procedures given in the Operating Manual.

b.Perform the Voltage Programming and Readback Accuracy test, and the Current Programming and Readback

Accuracy tests from this procedure.

Performance Tests

NOTE: A full Performance Test consists of only those items listed as “Specifications” in Table A-1 of the Operating Manual, and that have a procedure in this document.

The following paragraphs provide test procedures for verifying the supply's compliance with the specifications listed in Table A-1 of the Operating Manual. All of the performance test specifications and calculated measurement uncertainties are entered in the appropriate Performance Test Record Card for your specific model. You can record the actual measured values in the column provided in this card.

If you use equipment other than that recommended in Table 2-1, you must recalculate the measurement uncertainties for the actual equipment used.

Programming

You can program the supply from the front panel keyboard or from a GPIB controller when performing the tests. The test procedures are written assuming that you know how to program the supply either; remotely from a GPIB controller or locally using the control keys and indicators on the supply's front panel. Complete instructions on remote and local programming are given in the User’s Guide and in the Programming Guide.

2 - Verification and Performance Tests

Constant Voltage (CV) Tests

CV Setup

If more than one meter or if a meter and an oscilloscope are used, connect each to the terminals by a separate pair of leads to avoid mutual coupling effects. For constant voltage dc tests, connect only to +S and -S, since the unit regulates the output voltage that appears between +S and -S, and not between the (+) and (-) output terminals. Use coaxial cable or shielded two-wire cable to avoid noise pickup on the test leads.

Voltage Programming and Readback Accuracy

This test verifies that the voltage programming, GPIB readback and front panel display functions are within specifications. Note that the values read back over the GPIB should be identical to those displayed on the front panel.

a.Turn off the supply and connect a digital voltmeter between the +S and the -S terminals as shown in Figure 2-

1a.

b.Turn on the supply and program the supply to zero volts and the maximum programmable current with the load

off.

c.Record the output voltage readings on the digital voltmeter (DVM) and the front panel display. The readings

should be within the limits specified in the performance test record chart for the appropriate model under CV PROGRAMMING @ 0 VOLTS. Also, note that the CV annunciator is on. The output current reading should be approximately zero.

d.Program the output voltage to full-scal

e.

e.Record the output voltage readings on the DVM and the front panel display. The readings should be within the

limits specified in the performance test record chart for the appropriate model under CV PROGRAMMING @ FULL SCALE.

CV Load Effect

This test measures the change in output voltage resulting from a change in output current from full load to no load.

a.Turn off the supply and connect the output as shown in Figure 2-1a with the DVM connected between the +S

and -S terminals.

b.Turn on the supply and program the current to the maximum programmable value and the voltage to the full-

scale value.

c.Adjust the load for the full-scale current as indicated on the front panel display. The CV annunciator on the

front panel must be on. If it is not, adjust the load so that the output current drops slightly.

d.Record the output voltage reading on the DVM connected to +S and -S.

e.Open the load and again record the DVM voltage reading. The difference between the DVM readings in steps

(d) and (e) is the load effect voltage, and should not exceed the value listed in the performance test record chart

for the appropriate model under CV LOAD EFFECT.

Verification and Performance Tests - 2 CV Source Effect

This test measures the change in output voltage that results from a change in ac line voltage from the minimum to maximum value within the line voltage specifications.

a.Turn off the supply and connect the ac power line through a variable voltage transformer.

b.Connect the output as shown in Figure 2-1a with the DVM connected between the +S and the -S terminals. Set

the transformer to nominal line voltage.

c.Turn on the supply and program the current to the maximum programmable value and the output voltage to the

full-scale value .

d.Adjust the load for the full-scale current value as indicated on the front panel display. The CV annunciator on

the front panel must be on. If it is not, adjust the load so that the output current drops slightly.

e.Adjust the transformer to the lowest rated line voltage (e.g., 104 Vac for a 115 Vac nominal line voltage input).

f.Record the output voltage reading on the DVM.

g.Adjust the transformer to the highest rated line voltage (e.g., 127 Vac for 115 Vac nominal line voltage input).

h.Record the output voltage reading on the DVM. The difference between the DVM reading is steps (f) and (h) is

the source effect voltage and should not exceed the value listed in the performance test record chart for the appropriate model under CV SOURCE EFFECT.

CV Noise (PARD)

Periodic and random deviations (PARD) in the output (ripple and noise) combine to produce a residual ac voltage superimposed on the dc output voltage. CV PARD is specified as the rms or peak-to-peak output voltage in the frequency range specified in the User’s Guide.

a.Turn off the supply and connect the output as shown in Figure 2-1a to an oscilloscope (ac coupled) between the

(+) and the (-) terminals. Set the oscilloscope's bandwidth limit to 20 MHz and use an RF tip on the oscilloscope probe.

b.Turn on the supply and program the current to the maximum programmable value and the output voltage to the

full-scale value.

c.Adjust the load for the full-scale current value as indicated on the front panel display.

d.Note that the waveform on the oscilloscope should not exceed the peak-to-peak limits in the performance test

record chart for the appropriate model under CV NOISE (PARD).

e.Disconnect the oscilloscope and connect an ac rms voltmeter in its place. The rms voltage reading should not

exceed the RMS limits in the performance test record chart for the appropriate model under CV NOISE

(PARD).

Transient Recovery Time

This test measures the time for the output voltage to recover to within the specified value following a 50% change in the load current.

tttt

t

v

Loading Transient

Unloading

Transient

v

t

Figure 2-2. Transient Waveform

a.Turn off the supply and connect the output as in Figure 2-1a with the oscilloscope across the +S and the -S terminals.

b.Turn on the supply and program the output voltage to the full-scale value and the current to the maximum programmable value.

c.Set the load to the Constant Current mode and program the load current to 1/2 the power supply full-scale rated current.

d.Set the electronic load's transient generator frequency to 100 Hz and its duty cycle to 50%.

e.Program the load's transient current level to the supply's full-scale current value and turn the transient generator on.

f.Adjust the oscilloscope for a waveform similar to that in Figure 2-2.

g.

The output voltage should return to within the specified voltage (v) in less than the specified time (t). Check both loading and unloading transients by triggering on the positive and negative slope.

Constant Current (CC) Tests

CC Setup

Follow the general setup instructions in the Measurement Techniques paragraph and the specific instructions given in the following paragraphs.

Current Programming and Readback Accuracy

This test verifies that the current programming and readback are within specification.a.Turn off the supply and connect the current monitoring resistor across the power supply output and the DVM across the resistor. See "Current Monitoring Resistor" for connection information.b.Turn on the supply and program the output voltage to 5 V and the current to 20mA (±1mA).

c.

Divide the voltage drop (DVM reading) across the current monitoring resistor by its resistance to convert to amps and record this value (Iout). Also, record the current reading on the front panel display. The readings should be within the limits specified in the performance test record card for the appropriate model under CC PROGRAMMING @ 0 AMPS.d.

Program the output current to full-scale .

e.Divide the voltage drop (DVM reading) across the current monitoring resistor by its resistance to convert to

amps and record this value (Iout). Also, record the current reading that appears on the front panel display. The readings should be within the limits specified in the performance test record card for the appropriate model under CC PROGRAMMING @ FULL-SCALE.

Current Sink (-CC) Operation

This test verifies current sink operation and readback.

a.Turn off the supply and connect the output as shown in Figure 2-1a, except connect a dc power supply in place

of the electronic load as indicated. Connect the DMM across the current shunt.

b.Set the external power supply to 5 V and a current value approximately 20% above the full scale current rating

of the supply under test.

c.Turn on the supply under test and program the output voltage to zero and full scale output current. The current

on the UUT display should be approximately ?1.4 A.

d.Divide the voltage drop across the current monitoring resistor by its resistance to obtain the current sink value in

amps and subtract this from the current reading on the display. The difference between the readings should be within the limits specified in the performance test record chart under CURRENT SINK READBACK.

Low Range Current Readback Accuracy

This test verifies the readback accuracy of the 20 milliampere current range.

a.Turn off the supply and connect the output as shown in Figure 2-1

b. Set the DMM to operate in current mode.

b.Turn on the supply under test, set the current range to LOW, and program the output voltage to zero and full

scale output current. The current on the UUT display should be approximately 0 mA.

c. Record the current reading on the DMM and the reading on the front panel display. The difference between the

two readings should be within the limits specified in the performance test record chart under 20mA RANGE CURRENT READBACK ACCURACY @ 0A.

d.Program the output voltage to 20V and record the current reading on the DMM and the reading on the front

panel display. The difference between the readings should be within the limits specified in the performance test record chart for the appropriate model under 20mA RANGE CURRENT READBACK ACCURACY @ 20mA e.Turn off the supply and connect the output and an external supply as shown in Figure 2-1c. Set the DMM to

operate in current mode.

f.Turn on the external supply and program it to 20 V and 1 amp. Then program the supply under test to zero

volts and 1 amp. The UUT display should read approximately ?20 mA.

c. Record the current reading on the DMM and the reading on the front panel display. The difference between the

two readings should be within the limits specified in the performance test record chart under 20mA RANGE CURRENT READBACK ACCURACY @ ?20 mA.

CC Load and Line Regulation

These tests (CC Load Effect and CC Source Effect given below) are tests of the dc regulation of the power supply's output current. To insure that the values read are not the instantaneous measurement of the ac peaks of the output current ripple, several dc measurements should be made and the average of these readings calculated. An example of how to do this is given below using an Agilent 3458A System Voltmeter programmed from the front panel. Set up the voltmeter and execute the "Average Reading" program follows:

a.Program 10 power line cycles per sample by pressing NPLC 1 0 ENTER .

b.Program 100 samples per trigger by pressing (N Rdgs/Trig) 1 0 0 ENTER .

c.Set up voltmeter to take measurements in the statistical mode as follows:

Press Shift key, f0, Shift key, N.

Press ^ (up arrow) until MATH function is selected, then press >.

Press ^ (up arrow until STAT function is selected then press (ENTER).

d.Set up voltmeter to read the average of the measurements as follows:

Press Shift key, f1, Shift key, N.

Press down arrow until RMATH function is selected, then press >.

Press ^ (up arrow) until MEAN function is selected, then press ENTER.

e.Execute the program by pressing f0, ENTER, TRIG, ENTER.

f.Wait for 100 readings and then read the average measurement by pressing f1, ENTER.

To repeat the measurement, perform steps (e) and (f).

CC Load Effect

This test measures the change in output current for a change in load from full scale output voltage to short circuit.

a.Turn off the supply and connect the output as shown in Figure 2-1a with the DVM connected across the current

monitoring resistor.

b.Turn on the supply and program the current to the full scale current value and the output voltage to the

maximum programmable voltage value.

c.Adjust the load in the CV mode for full scale voltage as indicated on the front panel display. Check that the CC

annunciator of the UUT is on. If it is not, adjust the load so that the output voltage drops slightly.

d.Record the output current reading (DVM reading/current monitor resistance value in ohms). You may want to

use the average reading program described under “CC Load and Line Regulation”.

e.Short the load switch and record the output current reading. The difference in the current readings in steps (d)

and (e) is the load effect and should not exceed the limit specified in the performance test record chart for the appropriate model under CC LOAD EFFECT.

CC Source Effect

This test measures the change in output current that results when the AC line voltage changes from the minimum to the maximum value within the specifications.

a.Turn off the supply and connect the ac power line through a variable voltage transformer.

b.Connect the output terminals as shown in Figure 2-1a with the DVM connected across the current monitoring

resistor. Set the transformer to the nominal line voltage.

c.Turn on the supply and program the current to the full scale value and the output voltage to the maximum

programmable value.

d.Adjust the load in the CV mode for full scale voltage as indicated on the front panel display. Check that the CC

annunciator of the UUT is on. If it is not, adjust the load so that the output voltage drops slightly.

e.Adjust the transformer to the lowest rated line voltage.

f.Record the output current reading (DVM reading/current monitoring resistor in ohms). You may want to use

the average reading program described under “CC Load and Line Regulation”.

g.Adjust the transformer to the highest rated line voltage.

h.Record the output current reading again. The difference in the current readings in steps (f) and (h) is the CC

source effect and should not exceed the values listed in the performance test record card under CC SOURCE EFFECT.

CC Noise (PARD)

Periodic and random deviations (PARD) in the output combine to produce a residual ac current, as well, as an ac voltage superimposed on the dc output. Constant current (CC) PARD is specified as the rms output current in a frequency range 20 Hz to 20 Mhz with the supply in CC operation.

a.Turn off the supply and connect the load, monitoring resistor, and rms voltmeter as shown in Figure 2-1a. The

Current Monitoring resistor may have to be substituted by one with a higher resistance and power rating, such as a 1 ohm 5 W current shunt in series with a 9 ohm resistor, to get the RMS voltage drop high enough to measure with the RMS voltmeter. Leads should be as short as possible to reduce noise pick-up. An electronic load may contribute ripple to the measurement so if the RMS noise is above the specification a resistive load may have to be substituted for this test.

b.Check the test setup for noise with the supply turned off. Other equipment (e.g. computers, DVMs, et

c.) may

affect the reading.

c.Turn on the supply and program the current to full scale and the output voltage to the maximum programmable

value.

d.The output current should be at the full scale rating with the CC annunciator on.

e.Divide the reading on the rms voltmeter by the monitor resistance to obtain rms current. It should not exceed the

values listed in the performance test record card under CC NOISE (RMS).

Performance Test Equipment Form

Test Facility:_________________________Report Number ________________________

____________________________________Date _________________________________

____________________________________Customer _____________________________

____________________________________Tested By ____________________________

Model ______________________________Ambient Temperature (C) ________________

Serial No. ____________________________Relative Humidity (%) ___________________

Options _____________________________Nominal Line Frequency __________________ Firmware Revision ____________________

Special Notes:

Test Equipment Used:

Description Model No.Trace No.Cal. Due Date

AC Source___________________________________________________

DC Voltmeter___________________________________________________

RMS Voltmeter___________________________________________________ Oscilloscope___________________________________________________ Electronic Load___________________________________________________

Current Shunt___________________________________________________

___________________________________________________

Performance Test Record Form

Model _________________Report No _______________Date __________________

Test Description Minimum Specs. Results*Maximum

Specs.Measurement Uncertainty

Constant Voltage Tests

Voltage Programming and Readback

Low Voltage (0V) Programming

Front Panel Display Readback

High Voltage (Full Scale) Programming Front Panel Display Readback

? 10 mV

Vout ? 3 mV

19.980 V

Vout ? 9 mV

_________

_________

_________

_________

+ 10 mV

Vout + 3 mV

20.020 V

Vout + 9 mV

1.6 μV

1.6 μV

335 μV

335 μV

Load Effect? 2.0 mV_________+ 2.0mV20 μV Source Effect? 0.5 mV_________+ 0.5 mV20 μV PARD (Ripple and Noise)

Peak-to-Peak RMS 0 mV

0 mV

_________

_________

+ 3 mV

+ 0.5 mV

872 μV

50 μV

Transient Response

Voltage in 100 μs0 mV_________+ 20 mV 3 mV Constant Current Tests

Current Programming and Readback

Low current (0A) Programming

Readback Accuracy @ Iout = 20 mA High Current (Full Scale) Programming Readback Accuracy @ Iout

? 1.0 mA

Iout ? 0.25 mA

1.998 A

Iout ? 4.3 mA

_________

_________

_________

_________

+ 1.0 mA

Iout + 0.25 mA

2.002 A

Iout + 4.3 mA

15.2 μA

15.2 μA

252 μA

252 μA

Current Sink (@ -1.4A) Readback Isink? 3.65 mA_________Isink + 3.65 mA200 μA 20 mA Range Current Readback

Readback Accuracy @ 0 A

Readback Accuracy @ + 20 mA Readback Accuracy @ ? 20 mA

? 2.5 μA

Iout ? 22.5 μA

Iout ? 22.5 μA

_________

_________

_________

+ 2.5 μA

Iout + 22.5 μA

Iout + 22.5 μA

0.1 μA

1.7 μA

1.7 μA

PARD (Current Ripple and Noise)

RMS0 mA_________+ 1.0 mA200 μA Load Effect? 0.5 mA_________+ 0.5 mA 1.6 μA Source Effect? 0.5 mA_________+ 0.5 mA 1.6 μA * Enter your test results in this column

3 Troubleshooting

Introduction

WARNING:SHOCK HAZARD. Most of the troubleshooting procedures given in this chapter are performed with power applied and protective covers removed. Such maintenance should

be performed only by service trained personnel who are aware of the hazards (for

example, fire and electrical shock).

CAUTION:This instrument uses components which can either be damaged or suffer serious

performance degradation as a result of ESD (electrostatic discharge). Observe the

standard antistatic precautions to avoid damage to the components. An ESD summary is

given in Chapter 1.

This chapter provides troubleshooting and repair information for the dc power supply. Before attempting to troubleshoot the dc power supply, first check that the problem is with the supply itself and not with an associated circuit. The verification tests in Chapter 2 enable you to isolate a problem to the dc power supply. Troubleshooting procedures are provided to isolate a problem to one of the circuit boards or a particular circuit. Figure 3-2 shows the location of the circuit boards and other major components of the unit. If a problem has been isolated to the A1 Control circuit board, additional troubleshooting procedures are available to isolate the problem to the defective component(s). Disassembly procedures are provided at the end of this chapter and should be referred to, as required, in order to gain access to and/or replace defective components.

If a component is defective, replace it and then conduct the verification test given in Chapter 2.

NOTE:Note that when certain components are replaced, the supply must be calibrated (see "Post Repair Calibration" later in this chapter). If the A2 Interface Board is replaced, the supply

must be initialized before it is calibrated. See "Initialization" later in this chapter. Chapter 5 lists all of the replaceable parts for the power supplies. Chapter 6 contains schematics, test point measurements, and component location diagrams to aid you in troubleshooting the supply.

详细电脑开关电源维修图解及原理图解大字版

电脑开关电源维修图解 一颗强劲的CPU可以带着我们在复杂的数码世界里飞速狂奔,一块最酷的显示卡会带着我们在绚丽的3D世界里领略那五光十色的震撼,一块最棒的声卡更能带领我们进入那美妙的音乐殿堂。相对于CPU,显示卡、声卡而言,电源可能是微不足道的,我们对它的了解也不是很多,可是我们必须知道,一个稳定工作的电源,是使我们计算机能够更好工作的前提。 计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电 路知识,就可以轻松的维修电源。 首先,我们要知道计算机开关电源的工作原理。电源先将高电压交流电(220V)通过全桥二极管(图1、2)整流以后成为高电压的脉冲直流电,再经过电容滤波(图3)以后成为高压直流电。

此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级(图4)。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。通过对多台电源的维修,总结出了对付电源常见故障的方法。

一、在断电情况下,“望、闻、问、切” 由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB 板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。

惠普打印机维修手册

惠普打印机维修手册/激光打印机维修手册来源:郑州乐泰科技作者:周东营【大中小】浏览:232次评论:0条 HP 激光打印机 1 。HP 4000/4050/4100/5000 (1) 按" 项目" 键左端加" 数值" 键左端开机。(2) 当液晶屏上出现"RESET MAINTENANCE COUNT"( 重设计数器) 时,松开各键。 2 。HP 4500/4550 (1) 按住" 取消" 键和" 选择" 键开机,当液晶亮起来时,松开二键。(2) 按住" 数值" 键的右端,然后按" 选择" 键。(3) 你将在完成正常自检后进入"SERVICE MODE"( 服务模式) 。(4) 按" 项目" 键找到"FUSER MAINTENANCE COUNT"( 这句我翻译成加热组件保养计数器不知当否?) (5) 按" 数值" 键找到"0" (6) 按" 选择" 键保存。(7) 按" 执行" 键机器返回ready 状态。 3 。HP COLOR LASERJET 4500/4550 (TRANSFER KIT RESET) 传送单元重置(1) 按" 菜单" 找到"RESET MENU" (2) 按" 项目" 键找到"TRANSFER KIT SELECT IF DONE"( 传送单元已好) (3) 按" 选择" 键。(4) 按" 执行键" 机器返回ready 状态。 4 。HP COLOR LASERJET 4500/4550 (FUSER KIT RESET) 加热组件重置(1) 按" 菜单" 找到"RESET MENU" (2) 按" 项目" 键找到"FUSER KIT SELECT IF DONE"( 加热组件已好) (3) 按" 选择" 键。(4) 按" 执行" 键机器返回ready 状态。 5 。HP COLOR LASERJET 4600 (IMAGE TRANSFER KIT(ETB) RESET) (1) 在实施维护之前,液晶应显示"new transfer kit= ( 新传送单元) (2) 按向下箭头高亮显示"YES", 按" 检查" 键来重设或进入"CONFIGURE DEVICE"( 配置设备) ,选中"RESETS" 中的"RESET SUPPLIES"( 恢复厂商设定) ,选择"NEW TRANSFER KIT"( 新传送单元) ,然后选择。 6 。HP COLOR LASERJET 4600 (FUSER KIT RESET) 加热

液晶电视电源板常见的故障判断和检修方法

液晶电视电源板常见的故障判断和检修方法 液晶电视的电源板在整机上故障率是相当高的,也是我们修理液晶电视的重点和难点之一,容易给人以迷惑。他的相当一部分能量供给灯板驱动电路(根据发光源不同分为高压板和LED灯板两类)和主板上,一旦电视出现不开机、黑屏、纹波干扰、不定时关机等现象时,我们往往搞不清楚故障是出在电源板、主板、灯管(条)还是灯驱动板上,给维修造成很多弯路。借此根据本人多年来维修经验,结合众多网友维修过程中遇到的典型的事例,抛砖引玉,用简单易解的方法,来分析一下电源板的故障原因和排除技巧,解开液晶电源并不“神秘” 的面纱。 下面以TCL-PWL37C电源电路图纸为例,简单介绍一下液晶电视电源的工作原理(修过CRT彩电电源的师傅应该都知道,液晶电视的电源跟CRT大部分地方都是差不多的,仅仅多了个PFC电路而已)。 1:待机电路。 接通电源后,电源输出插座P3的③、④脚就应有+ 5V电压输出,给主板CPU 电路供电。另外,在热地一侧,副开关电源变压器T2的④-⑤绕组还会输出一组电压,整流滤波后输出+ 20V,供给主电源的PFC振荡电路和PWM S荡电路。(见图2)如果输出电压不稳定,则检查以IC9 (TL431)为中心组成的稳压控制电路。正常工作时,TL431的①脚电压为2.5V,如果该脚电压异常,则说明TL431 损坏或其外围元件有问题。 故障现象1:无+ 5V电压输出。 分析检修:检查待机电源电路,发现IC1的⑤-⑧脚电压为0V,经查限流电阻RB 13端头焊接部分已脱焊。建议将RB1 RB2 RB13这3只限流电阻换成功率为1W或 2W勺同阻值电阻,以免再次损坏。 故障现象2: + 5V电压在3V左右波动。 分析检修:空载试机,+ 5V电压仍较低,这说明故障在待机电源部分。检测输出电压电路中的稳压二极管DB4(6.8V)和DB5(20V ),发现DB5击穿,换新后故

电脑ATX开关电源维修手册附电子图

一、概述 ATX开关电源的主要功能是向计算机系统提供所需的直流电源。一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。它将市电整 流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。其外观图和内部结构实物图见图1和图 2所示。 ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V(0.5A)、+12V(10A)、—12V(1A)、+3.3V(14A)、 +5VSB(0.8A)。为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。

二、工作原理 ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及 多路直流稳压输出电路、自动稳压稳流与保护控制电路。参照实物绘出整机电路图,如图3所示。 1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接 为开关电源控制电路提供工作电压。如图4所示,交流电AC220V经过保

险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。 TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电 窜入后级直流电路造成高频辐射干扰。R2和R3为隔离平衡电阻,在电路中对C5和C6起平均分配电压作用,且在关机后,与地形成回路,快速泄放C5、C6上储存 的电荷,从而避免电击。 2、高压尖峰吸收电路 如图5所示,D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖 峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 3、辅助电源电路 如图6所示,整流器输出的+300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极 提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往 Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时 D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚 ,同时T3次级绕组产生的感应电动势经D50、C04整流滤波后,一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导 通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极 管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈 绕组上的感应电动势开始下降,最终使T3③~④反馈绕组感应电动势反相(上负下正),并与C02电压叠加后送往Q03的b极,使b极电位变负,此时开关管Q03因 b极无启动电流而迅速截止。

HP M1005维修资料

HP M1005 机器常见问题及问题维修排除方法HP 1005MFP一体机恢复出厂设置进行清零操作: 操作步骤: 1 在打印机就绪的状态下(液晶屏幕显示 Ready )按下“菜单 / 进入”键; 2 找到“ Main menu Service ” 按下“菜单 / 进入”键; 3 找到“ Service Restore Default ” 按下“菜单 / 进入”键两次然后开始恢复出厂设置; 4 等到一体机恢复到就绪状态(液晶屏幕显示 Ready )则恢复完成。 操作方法: 1. 按“菜单” 键 2. 按“ > ”找到“reports” 3. 按“菜单”键确认进入 4. 按“ > ”找到“config report” ( 配置页 ) 5. 按“菜单” 键确认打印 如果要打印演示页,请在“reports”中选择“demo page” 如果要打印菜单图,请选“ reports ”中择“menu structure” 清洗纸道 此打印机拥有特殊清洗模式,用以清洗纸道。 在设备控制面板中,按“Menu/Enter” 。 使用 < 或 > 按钮选择“Service” ,然后按“Menu/Enter” 。 使用 < 或 > 按钮选择“Cleaning Mode” ,然后按“Menu/Enter” 。 将一页纸缓缓输送通过本设备。清洗过程结束之后可扔掉此页。 根据提示加载普通信纸或 A4 打印纸。 再次按下“Menu/Enter” 进行确认,并开始清洗过程。 将一页纸缓缓输送通过本设备。清洗过程结束之后可扔掉此页 HP LaserJet M1005 MFP 菜单无法显示为中文,只可以显示为英文等西文,以下则为HP LaserJet M1005 MFP 英文菜单的中文详解。 Main menu( 主菜单 ) Copy setup( 复印设置 ) Default Quality( 默认质量 ) Text( 文本 ) Draft( 草稿 ) Mixed( 混合 ) Film photo( 胶片 ) Picture( 图片 ) Def. light/dark ( 默认调淡 / 加深设置 ) Def. # of/copies ( 默认份数 ) Def. Reduce/Enlrg ( 默认缩小 / 放大比率 ) Original( 原件 =100%) A4 > Ltr=94% Ltr > A4=97% Full pages=91% ( 全页 =91%)

110V电源主板220V烧保险维修手册

二手复印机,100v电压,经常遇到因插错电源而烧坏电源板的,修多了,也就变得很简单了,现举一例: 现象:sharp Ar 281-----507系列电源板无电压输出 说明:因该开关电源无过压保护装置(压敏电阻),所以很容易烧坏一连串元器件.所以在维修过程中一定要仔细测量,以免造成不必要的损失. 维修:常见损坏元器件如下: 1,水泥电阻r701,r702(相当于保险丝作用),两电阻阻值相同,为3.3欧姆相串连,如不能购相同品,可同时焊下这两电阻,用一只6.8欧姆水泥电阻替代(注意:功率要够,否则会烧断) 2,电解电容c709,c710,此为开关电源整流后的滤波电容,损坏原因为耐压不够.一般能从外表看出.一般坏其中一只. 3,电源调整集成电路ic1:m51995ap, 4,开关管(场效应管)q701,q702,型号为k1168,可找替代品更换(如用替代品更换,一定要两个同时换,否则因参数有差异导致工作电压不正常) 5,整流桥d701,如短路,则一般会跳电. 一般情况很少全部损坏,多为水泥电阻,电容损坏较多 6,你说的专业人士指哪方面的??这个问题涉及到电路部分。要是找专业修复印机的人员,一般是搞不定的。。要找修电路板的。 你拿万用表,把机器通上电。。用交流档测以下地方:电源线插头,(220v),变压器输出(110v)机器电源板输入插头(110v) 用直流档测:大电容两端(157v)电源输出端(5-24v) 以上各部分,哪里电压不对,就是哪个部分出问题了 7,110v的插220v上一般只烧毁最大那个电容大概110v/22u 的那个,你换一个试试应该没问题了,大概5元。如题,我的夏普t10cl因为误插220V电源,导致电源电路烧毁,急求电路图或者替代的解决方案,请各位高手大虾给与帮助,先谢谢啦回复:依次检查保险,压敏电阻二极管桥大电容启动电阻场效应管等 回复:将烧了的元件换了。 回复:一般110V直插220V只烧坏了保险管和压敏电阻,换上保险管,把压敏电阻焊掉就可以了。 回复:买个330的压敏电阻换下烧坏的,在换保险,可以在保险上连两个铜丝,连在以前保险的地方,就OK了 回复:电路很简单

惠普hp打印机各机型维修方法

OfficeJet 725冷复位方法: 组合键:2+3开机,5选中国,1确认 1) 先将一体机电源关闭。 2)等待10秒钟左右,同时按住面板上的拨号键的数字"2"和"3"再开机器电源。注意:此时候"2" "3"按键不要松手,直到当面板的液晶屏提示"reformatting" 字样后,并且有一个"!"感叹号从右往左移动的时候再将手松开。如果没有出现reformtting字样,表示没有成功,需要重新再来。 3) 松开手以后面扳提示" Enter X for XXX " 选择国家,这时候我们按一下拨号键的" 5 " 面板提示变成"China 1=Y es 2=No " 选择" 1 ",目的是选成中国的电信标准,然后面板会提示输入时间,这时候可以按面板上的"停止"按键3次来跳过时间的设置,使得液晶屏显示Jan 00 00 00:00字样。 4)之后将725的电源关闭再重新开机,完成这一步可以解决冷复位后按键不灵的问题,重新开机后,冷复位完成。 OfficeJet V40/5110冷复位方法: 组合键:#+6插线;11选英语,1确认;16选中国电信标准,1确认 1)首先通过面板上的开关按键来关掉机器的电源,然后拔掉机器背后的电源插头; 2)等待10秒钟以后,同时按住一体机按钮面板上" # "和数字键"6"的同时插上机器背后的电源插头,这时机器液晶面板上的提示应为Initializing S-FULL Reset,按住5秒种左右后松开2个按键,机器可能会自动关机,再打开即可; 3)这时候面板上出现一些跳动的字符,如press 11 for English等,目的是让您选择液晶显示屏上的语言,但没有简体中文,选择英语,即请直接在面板上按两下1,液晶屏上提示"English 1=yes 2=no",按数字键1确认; 4)语言选择完毕后是您所在国家的选择,如Press 16 for China等,为保证正常收发传真,我们需要选择"中国",请直接在面板上依次输入1和6,液晶屏上提示"China 1=yes 2=no",按数字键1确认。我们的冷复位成功。 PSC 750冷复位方法: 组合键:取消+左箭头(注意按两下黑白键确认语言国家选择) 1)在开机的情况下直接拔断一体机背后的电源插头 2)等待10秒钟后,按住一体机按钮面板上的“取消”键和左箭头键的同时插上机器背后的电源插头,这时机器液晶面板上的提示应为Initializing Partial Reset,然后即可松开2个按键; 3)这时候面板上出现一些滚动的字符,请用左右箭头键移动到如下显示字样“Press Start for English”,然后按2下<黑白>键确认; 4)液晶屏会再次提示“Press start for USA”,再按2下<黑白>键确认。冷复位完成。(此机型传真功能,不用加载中国电信标准,选择美国即可) OfficeJet 6110冷复位方法: 组合键:#+5插线;11选英语,1确认;19选中国电信标准,1确认 1)首先通过面板上的开关按键来关掉机器的电源,然后拔掉机器背后的电源插头; 2)等待10秒钟以后,按住一体机按钮面板上" # "和数字键"5"的同时插上机器背后的电源插头,液晶面板上提示Button is Stuck.Release Button,这时松开手稍等片刻会出现Initializing S-FULL Reset字样,机器可能会自动关机,再打开即可(如果Realease Button字样一直显示不停,请重试); 3)这时候面板上出现一些跳动的字符,如press 11 for English等,目的是让您选择液晶显示屏上的语言,但没有简体中文,选择英语。请直接在面板上按两下1,液晶屏上提示"English 1=yes 2=no",按数字键1

创维 P TTK 电源板维修手册

警告 本手册仅供有经验的维修人员使用,不适用于一般消费者,手册中没有对非技术人员企图维修本产品而存在的潜在危害提出警告或提醒。电器产品应由有经验的专业技术人员进行维护和修理,任何其它人企图对本手册涉及的产品进行维护和修理将有可能受到严重伤害甚至有生命危险。 1 产品综述 1.1 机芯概述 此液晶电源输入电压范围为AC110~240,输出电压情况为5V/1A、24V/7A(背光)、24V/1.5A(功放)、12V/3A三组直流电源.具体的电源规格描述如附件一。 此电源采用Sanken公司的待机芯片STR-A6059M、PFC控制芯片SSC2001S与主芯片SSC9512S,主芯片为半桥谐振控制芯片, 1.2 主要技术规格 5V/1A、24V/7A(背光)、24V/1.5A(功放)、12V/5A 2 电路介绍 机芯电路介绍 本电源板电路大致由四大部分组成. 1.市电输入电路与整流滤波电路。由电感、电容组成的低通滤波器组成。 2.PFC(功率因数校正)校正电路,由Sanken控制芯片SSC2001S组成。 3.控制电路。这部份电路由两部份组成。 A:副电源(+5待机开关稳压电路);由Sanken公司的STR-A6059M组成。 此电路为反激式电路,STR-A6159M 集成了开关管MOSFET管,为集成块。 B: +24V、12V主开关稳压电路。由Sanken芯片SSC9512S控制两个开关管,与 它控制的开关管组成了半桥谐振式电路。 4.各控制电路输出侧整流稳压电路。 输出整流电路由二极管组成的半波整流电路。 3 主要信号流程介绍 3.1 信号流程图

机芯维修手册 3.2基本工作过程介绍 EMI 防护与滤波电路 交流输入与EMI 滤波电路。基本工作过程为,市电经由C4、L1、C3、C2、C5、C6 、L2、BD1等组成的整流滤波电路后转变成脉动直流. C4、L1、C3、C2、C5、C6、L2等组成的整流滤波电路主要是防止外界的杂讯信号对电源的干扰以及电源的开关杂讯对电网产生的干扰。此部份电路的作用就是我们熟称为的EMI 抑制电路。 经整流后的脉动电压分别送入后面两路独立的开关稳压电源 一路给待机控制电路. 一路给主电路,其中主电路需经PFC 电路.PFC 电路是将整流后的脉动电压转换380-400V 的直流电压。主电路将380V-400V的直流电压变换成主板各种需求的电压. 只要我们接上电源插座,待机电路将开始工作。待机电路工作的目的是给主板中的待机芯片供电,以及遥控接受器供电。同时还给电源本身的变换器的控制芯片供电。 其主电路受控于待机控制信号,由主板中的待机控制芯片发出控制信号,来控制主电源控制芯片的Vcc,即芯片的工作电压,用以达到控制主电压的有无。 当遥控接受到开机信号后,由主板待机CPU 给输出一个开机的高电平,此高电平将使Q13导通,经光耦U7A,使Q7导通.从而为U1,U5提供工作电压,使它们开始工作。U1工作,将经过升压二极管D4输出一 英华家电维修资料软件专用 购买QQ:505966338

开关电源维修手册

开关电源维修手册 目录引言 一、二、三、 LLC谐振变换器原理 2 LLC 谐振腔之元件设计3 L6598\L6599 芯片资 料 .................................................................. ....错误!未定义书签。 1、L6599 芯片介绍................................................................... ............................ 错误!未定义书签。 2、芯片与典型方框 图 .................................................................. ........................................................... 5 3、PIN 脚功能................................................................... ..................................................................... ... 5 4、典型电源系统 图 .................................................................. ............................................................... 6 5、振荡器...............................................................................................................7 6、工作在轻载或无载时 (8) 四、 L6599 的工作流程 1、 L6599 供电回路………………………………………………………………………………………. 8 2、 L6599 的启动.......................................................................................................9 3、 L6599 稳压原理 (1) 0 4、L6599 的 SCP 保护及次级 OCP 保护 (11) 附: 过流延时保护电路 (12) 2007-12-20 1 DQA 内部专用资料

一体机维修手册

炫智机型维修手册 1、问题:屏幕不开机,指示灯不亮。 提示: (1)机器所用AC110/220V插座是否有电。 (2)电源线是否连接到位,IO开关是否打开。 (3)机器内部电源连接线是否连接牢固。 (4)机器内部电源转接板保险管是否烧坏。 (5)机器内部电源板直流电压是否输出正常。 2、问题:屏幕不亮,指示灯亮红灯,但无法转为绿灯。 提示: (1)机器内部按键板、遥控板到TV驱动板之间的连接线是否连接正常。 (2)TV驱动板直流电压接口的12V、5V电压是否正常. 3、问题:屏幕不亮,背光不亮,指示灯亮绿灯。 提示: (1)机器背光控制线是否连接正常。 (2)机器液晶屏背光供电线连接是否正常。 (3)检查机器液晶屏背光供电线24V电压是否正常 (4)检查机器液晶屏背光控制线电压是否正常 4、问题:屏幕不显示,背光亮,指示灯亮绿灯。 提示: (1)机器屏线连接是否正常。

(2)机器120HZ转接板供电是否正常。 5、问题:机器屏幕花屏。 提示: (1)机器屏线连接是否正常。 (2)机器TCON板到液晶屏之间的排线连接是否正常。 6、问题:机器开机有显示,但背光只亮一半。 提示: (1)机器恒流源板到屏背光模组连线是否正常。 7、问题:机器开机有显示,但图像有水印、字体不正常。 提示: (1)屏参是否设置正确。 安卓818主板: 1、按遥控MENU键,然后按数字键6-1-5-1进入工厂菜单。 2、按MENU键进入二级工厂菜单。按上下键选择Otheroption。

3、分别设置“Panel BitMode”、“Panel TiMode”、“Panel AB Swap”、“Panel Mirro”选项,直到屏幕显示正常。 182主板: (1)遥控“信号源(Input)”键,然后按数字键2-5-8-0进入工厂菜单。

ATX电脑电源常见故障及维修方法

ATX电脑电源常见故障及维修方法 电源是计算机的重要组成部件,它是计算机正常工作的基础。当今微机绝大多数配置ATX 电源,它是AT电源发展而来,主变换电路和AT电源相似,并增加了一些辅助电路,除给主机提供稳定可靠的工作电源外,还可配合A TX主板实现软件开关主机的功能。A TX电源除经常发生和AT电源共有的故障外,还有一些特有的故障。下面简要介绍ATX电源的常见故障,仅供参考。 1.A TX电源的工作原理方框图 ATX电源方框图如图1所示。 从图1可以看出,A TX电源的主变换电路和AT电源相似,采用双管半桥它激式电路。整个电路的核心是脉宽调制(PWM)控制芯片,多数A TX电源都采用TL494(或其替代芯片),利用TL494的④脚“死区控制”功能来实现主变换电路的开启和关闭。 2.如何判定故障范围 由于微机电源都设置了过压、过流保护电路,电源发生故障时,大多表现为主机加电无任何指示,主机不启动,显示器无任何显示,电源风扇不转。由于A TX主板上有一部分电路称为“电源检测模块”,它可以控制电源的开启和关闭,这部分电路出现了故障,也表现为上述故障现象。那么,怎样判定是A TX电源故障还是主板故障呢? ATX电源和主板之间是通过一个20脚长方形双排综合插件连接的,如图2所示,其中14脚(绿色线)为PS-ON信号,主板就是通过这个信号来控制电源的开启和关闭的。当主板电源的“电源检测部件”使PS-ON信号为高电平时,电源关闭;当主板使PS-ON信号为低电平时,电源工作,向主板供电。当A TX电源不和主板相连时,电源内部提供PS-ON信号高电平,ATX电源不工作,处于待机状态。当计算机通电后无法开启时,可将所有供电插头拔下,将14脚和地线(黑色线)用导线短接,若电源风扇转动,各路输出正确,即可判定电源是正常的,否则是电源故障。 3.ATX电源常见故障维修(l)无300V直流电压。这种故障,首先从交流输入插座查起,保险管、整流二极管(桥)、滤波电容是常坏的元件。找到损坏元件后,还要检查主变换电路大功率开关管及其附属电路,在保证其正常时,才可以加电,因为这种故障通常是山大功率元件损坏后引起的。大功率管多采用MJE13007(400V/8A/75W),是故障率最高的元件,更换时要选用性能参数等于或高于原参数的管子,最好选用原型号的管子,还要注意两个管子的参数应一致。 (2)通电后辅助电源正常,启动电源各路主电压无输出。 这种故障有两种可能,一是主变换电路有故障,二是控制部分损坏。首先静态检查半桥功率管及其附属电路和驱动电路,若无故障,检查TL494④脚在PS-ON信号为低电平时是否变为低电平,若无变化,是PS-ON处理电路故障,有变化,再检查8 、11脚有无脉冲输出,若无则TL494损坏。 (3)有300v直流电压,辅助电源不工作。 这是最常见的故障.表现为+300V正常,无+5VSB电压,Tl494的12脚无电压,可以判定辅助电源有故障,辅助电源常见电路简图如图3所示。 这是典型的单管自激式开关电源电路,变压器T3次级有两路输出,一路经整流滤波再由7805稳压,输出5VSB电压;另一路整流滤波后,直接加在TL494的12脚,作为TL494的工作电源,由于TL494的可工作电压范围较宽(7~40V),这一路没有稳压措施。TL494的14脚输出基准+5V(VREF),提供给保护电路、P.G产生电路和PS-ON处理电路,作为这些电路的工作电压。由于电路简单,没有完善的稳压调控及保护电路,使辅助电源电路成为ATX 电源中故障率较高的部分,常损坏的元件是功率管和功率电阻(4.7?),特别是功率管的启

维修手册

剑神FT-R5055激光照排机报错对应表 杭州怡天科技有限公司高级工程师刘海华编译 1 SET FILM MAG 供片盒没装,装供片盒 2 SET COLLECT BOX 收片盒没装,装收片盒 3 CHANGE COL BOX 收片盒胶片没取完,将胶片取出 4 MATERIAL EXIST 胶片位置错误,调整胶片位置 5 PLEASE CUT FILM 被排出的胶片留在机器内,执行CUT命令 6 PLEASE SET FILM 没装胶片,执行SET命令 7 PLEASE LOAD FILM 没装胶片,执行LOAD命令 8 FILM EMPTY1 胶片用完,取出剩余胶片,装入新的胶片 9 FILM EMPTY2 胶片用完,取出剩余胶片,装入新的胶片 10 SHUT THE DOOR 胶片用完,取出剩余胶片,装入新的胶片 11 RESTART DL-MIDE 重新启动DOWNLOAD模式 12 FILM EMPTY3 胶片用完,取出剩余胶片,装入新的胶片 13 WIDTH NOT ENORGH 计算机设定的曝光宽度大于胶片宽度大于胶片宽度,请输入正确的数值 14 FAN1 TROUBLE 进风扇1坏 15 FAN2 TROUBLE 进风扇2坏 16 FAN3 TROUBLE 进风扇3坏 17 FAN4 TROUBLE 进风扇4坏 18 AFP POWER OFF1 AFP 电源关上,请打开 19 AFP NOT READY AFP 正在启动,请稍等 20 AFP POWER OFF2 AFP 停止,打开电源(备用) 21 AFP BUSY AFP正忙,请稍等 22 DOWNLOAD ERROR 下载任务失败 23 MODE MIXMATCH 启动模式错误,检查MCON板上的DIP开关 24 CHANGE FILM MAG 更换胶片盒 25 PUNCH DUST FULL 打孔碎片满了,清理掉 26 IMPUT DATA ERROR 输入数据不符合曝光条件,检查输入数据 27 LOADING ERROR 胶片在起始感应器位置错误,调整其位置 28 FILM FAM1 胶片在中间感应器位置错误,调整其位置 29 FILM FAM2 胶片在组合感应器位置错误,调整其位置 30 FILM FAM3 胶片在排放感应器位置错误,调整其位置 31 FILM FAM4 胶片停在排放感应器位置错误,调整其位置 32 FILM FAM5 胶片在末端感应器位置错误,调整其位置 33 FILM FAM6 胶片停在末端感应器位置错误,调整其位置

液晶显示器电源二合一板维修经验总结(文章)

电源维修:也就是当电源出现故障以后我们进行维修。 最常见的故障:就是不通电。电源坏了液晶显示器肯定会出现不通电的现象,也就是插上电源没有任何反应,电源灯也不亮,就与没插电一样。* s7 g- t( G( I$ G6 K3 y 不通电——但是并不是说不通电一定就是电源的问题,这个不一定的。0 v% M1 Y/ I2 _+ _2 `. M (比如:驱动板上的CPU坏了当插上电整机也是没有反应的,但是这个时候电源可能是好的)。) R* D: V6 [' c1 ?% q2 {& _1 z 遇到不通电的机器的时候,要想判断是不是电源的问题,这时可能把电源通上电,然后测量一下后级有没有12V电压的输出,有没有5V输出。这时如果测量没有输出12V与5V更加说明是电源的问题,如果机器不开机但测量有12V与5V的输出证明不是电源的问题了。有可能是驱动板主板的问题了。 如果没有输出12V或是5V,这时需要如何维修这个电源? 维修电源需要注意的事项以及如何维修电源: 首先需要区分“热地”与“冷地”的问题,“热地”就是带电的地,“冷地”就是不带电的地。在图1与图3中的变压器,它是一个磁心,是一个回形的磁心,在磁心的两端绕有线圈,这磁心本身是不导电的只是导磁的,在图1中变压器(磁心两端象一道河),把初级与次级通过当中的磁是隔开的。; `& H& z8 } p $ ?% c9 H' M/ O1 `3 J$ r 我们知道在图1中的地线同时在左半部分的地线符号多两横,而右半部分的地线符号只有一横的,因为左边的地线与右边的地线是不通的,也就是图2中的电源板,它的电源部分是一个地,在后面输出端是另外一个地。那么电源部分那个地称为“热地”,除了电源以外后面的那个地称为“冷地”。“热地”是带电的地,“冷地”是不带电的地,“热地”不要去摸它,如果摸它会被触电的。 如何区分“热地”与“冷地”呢?在图2中的电源高压二合一板虽然说是在一块板上,但是它相对来说还是独立的,左边是高压部分是点亮液晶显示器的灯管,它的右边是电源部分。在电源部分又分为“热地”与“冷地”。 在图1中只有开关变压器的初级是“热地”,怎么知道它是“热地”呢,在图3电源的反面很明显有的一条分界线或者有一些白色圈起来,图3的红线部分就是电源的初级部分,这部分在通电之后手是不能摸的。那么这部分用手摸为什么会触电呢,我们重新回到图1原理图上去,因为在初级这部分的地都是与整流桥的地相连的,因为整流桥这个地是与220V交流电串流的,220V 的电是要通过整流桥这个地的,因些用手摸的时候就变向的通过这个二极管就摸到了地,因为二极管降压也降不了多少。7 Y) Y, w$ r( S" O+ D- c 而后级的地就没事了,因为后级电压的形成是由于前级的磁所释放过来的电,初级接收电然后释放电,中间是隔离的,所以到后级就不带电了,但是如果有两只手同时摸后级的两个地,也是有带电的。后面电感线圈上的电压是经过前级感应过来的,后级只有同时摸两个地才会有感应,摸一个是不触电的。, P& H* K$ n& Z 而初级只要摸一个地线就被触电,因为它有220V交流电经过它的。而后级220V交流电是不没有经过它的,初级与后级是隔离的,这是在维修电源的所要注意的第个安全问题。 B# \7 X4 X) ]1 ^ 那么在图1中的芯片UC3842第2脚的电压反馈它是采用了在开关变压器的同一侧进行反馈的,也有通过后级进行反馈的。比如从后级进行反馈,从后级输出端的12V直接拉一根线过来到初级热地部分的地,但由于后级这条线上是冷地,而在初级这边是热地,它两之间又不能接触,一接触就会打火。因些在图2这当中就用了一个稳压的元器件“光耦”(四只脚的),它是“光电耦合器”的简称。这光耦当中有一条沟道,两只脚在沟道的这边,两只脚在沟道的另一边,它一方面是热地的电压,另一方面是冷地的电压。% ^) K w. X" S8 T& [* a) ?- ^ 分析一下光耦的工作原理: 光耦的一面是冷地,另一面是接热地,它是通过冷的这边的电压的变化,然后让热地那边知道,但是它不能两边直接接触,所以用了这个光耦。(图A)光耦里面是一个封闭漆黑的东西,相当于一个漆黑的房间,在漆黑的房间里面装了一个发光的二极管,另一头装了一个光敏的接收器,跟三极管差不多的。光耦的右边下端是接冷地,上端是接要检测的电压,中间可能接有电阻,它的特性是:在1点没有电压的时候,光耦A、B它两之间是电阻是无穷大”1“的,在光耦里边的光敏二极管进行发光去照射它的时候A、B之间的电阻就要变小,发光二极管的发光程度越强,A、B之间的电阻就越小,它中间是隔绝的。也就是说:当后级的电压变高的时候,光耦里面的发光二极管发光的强度就变强,这发光二极管的发光强度变强去照射光敏接收器,在A、B之间的阻值就会变小,当它的阻值一变小就可以将信号送到3842芯片当中去,芯片就会根据它两之间的阻值大小来判断你电压是低了还是高了。如果它俩的阻值大了说明它照的弱了,电压低了。它的阻值小了,是照射强了,后面的电压可能变高了。1 H* e% i7 N7 S" S

一体机维修手册.

炫智机型维修手册 1问题:屏幕不开机,指示灯不亮。 提示: (1)机器所用AC110/220V插座是否有电。 (2)电源线是否连接到位,10开关是否打开。 (3)机器内部电源连接线是否连接牢固。 (4)机器内部电源转接板保险管是否烧坏。 (5)机器内部电源板直流电压是否输出正常。 2、问题:屏幕不亮,指示灯亮红灯,但无法转为绿灯。 提示: (1)机器内部按键板、遥控板到TV驱动板之间的连接线是否连接正常。 (2)TV驱动板直流电压接口的12V、5V电压是否正常. 3、问题:屏幕不亮,背光不亮,指示灯亮绿灯。 提示: (1)机器背光控制线是否连接正常。 (2)机器液晶屏背光供电线连接是否正常。 (3)检查机器液晶屏背光供电线24V电压是否正常 (4)检查机器液晶屏背光控制线电压是否正常 4、问题:屏幕不显示,背光亮,指示灯亮绿灯。 提示: (1)机器屏线连接是否正常。

(2)机器120HZ转接板供电是否正常。 5、问题:机器屏幕花屏。提示: (1)机器屏线连接是否正常。 (2)机器TCON板到液晶屏之间的排线连接是否正常 6、问题:机器开机有显示,但背光只亮一半。提示: (1)机器恒流源板到屏背光模组连线是否正常。 7、问题:机器开机有显示,但图像有水印、字体不正常。提示: (1)屏参是否设置正确。 安卓818主板: 1、按遥控MENU键,然后按数字键6-1-5-1进入工厂菜单 2、按MENU键进入二级工厂菜单。按上下键选择Otheroption

Swap ” “Panel Mirro ”选项,直到屏幕显示正常 182主板: (1)遥控“信号源(In put )”键,然后按数字键2-5-8-0进入工厂 菜单 ADC Adjust White Balance ^cture Mode Non*stand3ld options SSC Adjust PEQ MoUfW Config RO PQ TaWe Update Panel TiMode Pa nel AB 3、分别设置“ Panel BitMode Panel BitMode ; 8BIT Panel TiMode - Off Panel AB Swap 一 Off ..…v .................... -------- ------ - - Panel Mirro On

航嘉pc电源维修手册

目录 第一部分基础知识了解-------------------------------------------------------------------------6 第一章电子元器件-------------------------------------------------------------------------6 第一节保险丝(管)-------------------------------------------------------------------6 第二节电阻器----------------------------------------------------------------------------7 第三节电容器---------------------------------------------------------------------------13 第四节磁性元件------------------------------------------------------------------------15 1:电感-------------------------------------------------------------------------------15 2:变压器----------------------------------------------------------------------------17 第五节二极管-----------------------------------------------------------------------------19 1: 二极管------------------------------------------------------------------------------19 2: 二极管的分类---------------------------------------------------------------------20 第六节开关管----------------------------------------------------------------------------24 1: 三极管------------------------------------------------------------------------------24 2: 三极管做开关管------------------------------------------------------------------26 3: MOS管做开关管-----------------------------------------------------------------27 第七节集成电路------------------------------------------------------------------------29 1: 集成电路-----------------------------------------------------------------------------29 2: PC电源常用集成电路功能简述------------------------------------------------29 第二章有关直流稳压电源知识了解---------------------------------------------------43 第一节: 相关基础电路了解------------------------------------------------------------43 1 交流电与直流电-------------------------------------------------------------------43 2 整流电路----------------------------------------------------------------------------44 3 滤波电路----------------------------------------------------------------------------45 4 电阻分压电路----------------------------------------------------------------------47 第二节稳压电源发展过程------------------------------------------------------------49 1 简单的交流变直流电源------------------------------------------------------------49 2 稳压管稳压电路---------------------------------------------------------------------49 3 串联式稳压电路---------------------------------------------------------------------50 4 三端稳压块式稳压电路------------------------------------------------------------51 第三章有关开关稳压电源知识了解----------------------------------------------------53 第一节电压转换类型-------------------------------------------------------------------53 1: AC---AC转换器-------------------------------------------------------------------53 2: AC---DC转换器-------------------------------------------------------------------54 3: DC---DC转换器-------------------------------------------------------------------54 4: DC---AC转换器-------------------------------------------------------------------55 第二节开关电源的拓扑方式-----------------------------------------------------------56 1: 单端反激式-------------------------------------------------------------------------56 2: 单端正激式-------------------------------------------------------------------------56 3: 推挽式-------------------------------------------------------------------------------57 4: 半桥式-------------------------------------------------------------------------------58 5: 全桥式-------------------------------------------------------------------------------58 第三节开关电源的调制方式-----------------------------------------------------------59

相关文档
最新文档