ABB-ACS800变频器在电厂空冷岛中的应用

ABB-ACS800变频器在电厂空冷岛中的应用
ABB-ACS800变频器在电厂空冷岛中的应用

ABB变频器在电厂空冷岛中的应用方案

北京迪安帝科技有限公司

摘要:文章详细介绍了ABB变频器在电厂空冷岛中的应用方法。

关键词:空冷岛ABB变频器ACS800系列变频器

引言

发电厂的冷却系统是电力生产过程的一个重要环节,从技术上来看,冷却技术分水冷和空冷。水冷发电厂是把湿冷冷却塔(凉水塔)内的循环水以“淋雨”方式与空气直接接触进行热交换的,其整个过程处于“湿”的状态,其冷却过程又称为湿冷系统。空冷发电厂是用空冷岛轴流风机吹冷、或者利用分布换热系统来冷却汽轮机排汽,达到省水、回水再利用的目的。整个过程处于“干”的状态,所以空冷塔又成为干式冷却塔或干冷塔。

随着我国西部大开发、西电东送北通道的开通,我国北部地区的晋、陕、宁、蒙四省区的电力工业得到迅猛发展,而建设大型火力发电厂需要充足的冷却水源。这些地区的优势是煤炭资源丰富,而劣势是水资源匮乏,利用丰富的煤炭资源和有限的水资源发展火电工业,就需要采用新的冷却方式来排除废热,直接空冷系统因其技术逐渐成熟,节水效果显著,可调效果好,因此在我国山西、内蒙古等产煤区所新建单机容量为300MW以上机组的电厂均采用空冷技术。

直接空冷系统介绍

1.直接空冷系统的流程介绍[1]

直接空冷系统的流程图如图1所示。汽轮机排汽通过粗大的排汽管道送到室外的空冷凝汽器内,轴流冷却风机使空气流过散热器外表面,将排汽冷凝成水,凝结水再经泵送回汽轮机的回热系统。

图1 直接空冷系统的流程图

如图2所示,空冷系统建筑规模庞大,一般称为空冷岛。包括凝结水系统(凝结水箱)、真空疏水系统(包括疏水泵)、排气/抽气系统(水环泵单元)、空冷凝汽器(ACC)等四套系统。通过DCS 集散控制系统,实现对这四套系统的自动检测、自动调节、顺序控制、自动保护等自动控制功能。

2.直接空冷系统变频风机系统的组成

空冷凝汽器系统(简称ACC)是由若干台空冷凝汽器构成,每台空冷凝汽器配置一台轴流风机,建筑在高耸的空冷平台上,对空冷凝汽器进行直接冷却。例如1台300MW 国产空冷机组工程空冷系统需要配置30台空冷风机(其中6台为可逆转风机),功率为90KW 。轴流冷却风机在一个水平平面内布置,形成了庞大的轴流冷却风机群。

风机电机均采用变频控制,除节能原因外,变频调速控制还可以实现电动机“软启动”,即电动机在很低地频率下(3~5Hz)和电压下启动,逐渐提高电源的频率和电压,控制电动机在小于1.1倍额定电流下无冲击启动,以这种方式经常启动是风机所允许的。另外风机的转速可以在(30%~110%)额定转速运行,调节方便,满足在各种气象条件下机组运行工况的要求。风机经常在需要的低转速下运行,噪声和磨损都比额定转速低,有利于环境保护,降低维修费用并延长了空冷器的寿命。

变频控制柜通过硬接线和通讯与主DCS 或空冷系统DCS 相连接,DCS 能根据不同的蒸汽负荷和环境温度控制风机启停及转速,使汽轮机的排汽压力保持恒定。

一. ABB 变频器在空冷岛变频系统的应用:

下面以山西兆光发电有限责任公司二期(2X600MW )工程空冷岛变频调速器选型和应用为例,介绍ABB 变频器在空冷岛方面的应用:

每台机组由40台冷凝器风机和16台分凝器风机组成。所以总共需要56 x 2 = 112台变频器。

1. 空冷岛对变频器高可靠性的要求

空冷风机变频控制系统中变频器能否长期稳定运行关系到电厂能否正常发电,

ABB 公司ACS800系列变频器是ABB 公司原装进口的工业级产品,是目前流行的

正弦波脉频调解器的电压型变频器,控制方式采用当今最先进的直接转矩(DTC

)控制空冷岛外观图1

空冷岛外观图2

图2 空冷岛外观图

技术,能够精确控制任何标准鼠笼电机的速度和转矩,它还具有电机辨识运行功能,此功能在变频器初次驱动电机时,控制电机的运行,创建电机模型,从而达到辨识电机特性,优化控制的目的。因此ACS800变频器更适用于风机、水泵和恒转矩等各种变速驱动应用场合。完全满足空冷系统常年不间断运行的要求。

2.ACS800变频器操作简单:

ACS800变频器具有启动向导功能,使ACS800的调试变得非常简便。当用户第一次给传动上电时,启动向导会引导用户完成所有的调试步骤,用户不必再担心会忘记设置某组参数。ACS800控制盘有四种不同的键盘模式:实际信号和故障纪录显示模式、参数模式、功能模式和传动选择模式。在实际信号显示模式中可以同时监视三个实际信号,诸如频率、转速、电流、流量等信号。

3. ACS800的优越性能:

●电源断电时的运行—ACS800将利用正在旋转着的电机的动能继续运行,只要电机旋转

并产生能量,ACS800将继续运行。

●零速满转矩—由ACS800带动的电机能够获得在零速时电机的额定转矩,并且不需要光

码盘或测速电机的反馈。而矢量控制变频器只能在接近零速时实现满力矩输出。

●起动转矩—

DTC提供的精确的转矩控制使得ACS800能够提供可控且平稳的最大起动转矩。最大起动转矩能达到200%的电机额定转矩。

●自动起动—ACS800的自动起动特性超过一般变频器的飞升起动和积分起动的性能。因

为ACS800能在几毫秒内测出电机的状态,任何的条件下在0.48s内迅速起动。而矢量控制变频器则需大于是2.2s。

●磁通优化—

在优化模式下,电机磁通被自动地适应于负载以提高效率,同时降低电机的噪音。得益于磁通优化,基于不同的负载,变频器和电机的总效率可提高1%~10%。

●磁通制动—

ACS800能通过提高电机的磁场来提供足够快的减速。ACS800持续监视电机的状态,在磁通制动时也不停止监视。磁通制动也能用于停止电机和从一个转速变换到另一个转速。而其他品牌的变频器所使用的直流制动是不可能实现此功能的。

●精确速度控制—ACS800的动态转速误差在开环应用时为0.3%s,在闭环应用时为

0.1%s。而矢量控制变频器在开环时大于0.8%s,闭环时为0.3%s。ACS800变频器的静

态精度为0.01%。

●精确转矩控制—动态转矩阶跃响应时间,在开环应用时能达到1~5ms,而矢量控制变频

器在闭环时需10~20ms,开环时为100~200ms。

●危险速度段设置—可使电机避免在某一速度或某一速度范围上运行的功能,例如避开机

械共振点(带)。ACS800可以设置5个不同的速度点和速度范围,电机通过危险速度范围时按照加速或减速积分曲线加速或减速。

●ACS800变频器保护功能:

变频装置能提供电动机所需的过载、过流、接地、过压、欠压、过热、缺相等保护,保护应为微机型,且不与控制共用CPU及电源。保护动作能发出硬接线信号。

变频器自身配备完善的电气保护,当变频器装置发生故障时,发出信号。ACS800的标准软件提供了对传动,电机和过程的保护,包括预编程保护功能和可编程保护功能。

预编程保护功能:环境温度,DC过压,DC欠压,传动温度,输入缺相,过流,功率

限幅和输出短路。可编程保护功能:可调整功率限幅,控制信号监视,危险频率锁定,电流转矩限幅,接地故障保护,外部故障,电机缺项,电机堵转保护,电机过温保护,电机欠载保护,控制盘丢失等。

4.关于电机可逆运转:

每台空冷机组56台驱动装置中的16台(逆流管束)必须是双向旋转。

ACS800变频器不需要制动电阻。DTC的优越功能,从给定的工艺条件,完全可以靠内部磁通制动等功能在30秒内从30%反转状态下停下来,并正常投运。

5.变频器与DCS系统的接口:

下图所示是以ACS800为例,表示与DCS系统的接口。

控制可逆转风机的变频器必须接受反向指令,并送出方向状态信号,因此在控制此风机的变频器上加装扩展继电器输出模块OREL,以满足控制和指示功能。

6.变频系统抑制谐波的措施:

ACS800变频器内置交流电抗器有效地抑制高次谐波对电网的影响,交流电抗器用于衰减主供电回路中的谐波成分,改善进线电流波形。它将减小电容器的脉动电流,并提高电容器的寿命。电抗器位于整流桥的交流侧,保护整流桥的二极管免受进线电压的冲击。电抗器也可减少变频器的电磁辐射。变频装置内部通讯采用光纤连接,以提高通讯速率和抗干扰能力.变频器本体在输入侧内置RFI滤波器,使其电磁辐射符合EN61800-3 第二环境标准。

由于空冷岛使用变频器数量较多,需根据实际负荷及变压器容量和供电系统参数计算得出,常规推荐方式如下:采用变压器不同绕组方式形成系统12脉冲形式

可以满足下列标准:

7. 变频器电机的噪音 :

由变频器运行产生的额外噪音与电机直接操作方式相比少3 dB 。包括所有余量在内的电机最大噪音级为

84 dB(A)。在变频器出口到电机之间应该有一个专门的过滤器及相应技术使噪音限制在能容忍水平内。这应在整个操作频率范围(30 – 110 % 等于 5 – 55 Hz )上和满负荷条件下达到。

● ACS800变频器DTC 独特的开关控制技术与传统的PWM 控制技术完全不同,可大幅

减少谐波。

● 输出侧的输出电抗器减少电机噪音。

8.变频柜方案:

根据空冷系统低压变频器设备技术要求,将1台ACS800变频器安装于一个1000mm 宽的柜内,每台变频器分别独立供电;变频装置控制柜内包括控制装置连接的用户接线端子、空气断路器、变频器模块、原装进口的EMC 滤波器、输入电抗器、输出电抗器及所有提供必要功能的设备。

变频器柜采用GGD 式结构,柜架为高强度的九褶型材; 面板喷塑均匀平滑外观美,结构合理匀称,平直度高。柜体外壳防护等级:IP21。柜的外形尺寸为1000mm ×650mm ×2200mm (宽×深×高)。进、出线方式为柜底电缆进出线。

柜体内配置了熔断开关,选用公司生产的具有隔离和短路保护双重功能的熔断图4 12脉冲整流方案

开关OS400D03P,额定电流400A;同时还配置进出线电抗器,控制逻辑回路等所需的设备,以利于系统更安全、可靠的运行。

每台变频器柜内设有断路器、接触器等动力和控制设备,分别给以下两个回路供电:风机电机加热器、齿轮箱加热器;

控制方式采用程序控制和就地手动控制,变频器自身控制系统采用灵活的参数配置方式,具有就地操作及显示功能。安装于柜门上的操作控制盘提供交流电机调试的修改键。

9. 变频车间散热方案

电厂设有空冷器变频间,庞大的变频控制柜(以下称变频控制装置)矩阵布置在空冷器变频间中。

因为变频器主要为功率器件(IGBT ),散热良好将有利于系统安全长效运行,如图所示可采用如下散热方式:(1)采用风道系统,在保证进风量的同时将产生热量排除控制室。

(2)采用适配工业空调系统

二. 结束语

本文以ABB 公司ACS800变频器为例,介绍了变频器在空冷岛上的使用方案。在实际工程中有一定的借鉴价值。

[参考文献]

1. 变频器在大型电厂直接空冷系统中的应用. 中国电力

2. ABB 公司. ACS800变频器用户手册. ABB 公司

图5 空冷变频车间变频器散热方式示意图

变频器 个典型应用领域

变频器32个典型应用领域 变频器应用的一些场合 1、空调负载类 写字楼、商场和一些超市、厂房都有中央空调,在夏季的用电高峰,空调的用电量很大。在炎热天气,北京、上海、深圳空调的用电量均占峰电40%以上。因而用变频装置,拖动空调系统的冷冻泵、冷水泵、风机是一项非常好的节电技术。目前,全国出现不少专做空调节电的公司,其中主要技 术是变频调速节电。 2、破碎机类负载 冶金矿山、建材应用不少破碎机、球磨机,该类负载采用变频后效果显著。 3、大型窑炉煅烧炉类负载 冶金、建材、烧碱等大型工业转窑(转炉)以前大部分采用直流、整流子电机、滑差电机、串级调速或中频机组调速。由于这些调速方式或有滑环或 效率低,近年来,不少单位采用变频控制,效果极好。 4、压缩机类负载 压缩机也属于应用广泛类负载。低压的压缩机在各工业部门都普遍应用,高压大容量压缩机在钢铁(如制氧机)、矿山、化肥、乙烯都有较多应用。 采用变频调速,均带来启动电流小、节电、优化设备使用寿命等优点。 5、轧机类负载 在冶金行业,过去大型轧机多用交-交变频器,近年来采用交-直-交变频器,轧机交流化已是一种趋势,尤其在轻负载轧机,如宁夏民族铝制品厂的多机架铝轧机组采用通用变频器,满足低频带载启动,机架间同步运行,恒张力控制,操作简单可靠。 6、卷扬机类负载 卷扬机类负载采用变频调速,稳定、可靠。铁厂的高炉卷扬设备是主要的炼铁原料输送设备。它要求启、制动平稳,加减速均匀,可靠性高。原多采用串级、直流或转子串电阻调速方式,效率低、可靠性差。用交流变频器替代上述调速方式,可以取得理想的效果。 7、转炉类负载

转炉类负载,用交流变频替代直流机组简单可靠,运行稳定。 8、辊道类负载 辊道类负载,多在钢铁冶金行业,采用交流电机变频控制,可提高设备可靠性和稳定性。 9、泵类负载 泵类负载,量大面广,包括水泵、油泵、化工泵、泥浆泵、砂泵等,有低压中小容量泵,也有高压大容量泵。 许多自来水公司的水泵、化工和化肥行业的化工泵、往复泵、有色金属等行业的泥浆泵等采用变频调速,均产生非常好的效果。 10、吊车、翻斗车类负载 吊车、翻斗车等负载转矩大且要求平稳,正反频繁且要求可靠。变频装置控制吊车、翻斗车可满足这些要求。 11、拉丝机类负载 生产钢丝的拉丝机,要求高速、连续化生产。钢丝强度为200Kg/mm2,调速系统要求精度高、稳定度高且要求同步。 12、运送车类负载 煤矿的原煤装运车或钢厂的钢水运送车等采用变频技术效果很好。起停快速,过载能力强,正反转灵活,达到煤面平整、重量正确(不多装或少装), 基本上不需要人工操作,提高了原煤生产效率,节约了电能。 13、电梯高架游览车类负载 由于电梯是载人工具,要求拖动系统高度可靠,又要频繁的加减速和正反转,电梯动态特性和可靠性的提高,边增加了电梯乘坐的安全感、舒适感和效率。过去电梯调速直流居多,近几年逐渐转为交流电机变频调速,无论日本还是德国。我国不少电梯厂都争先恐后的用变频调速来装备电梯。如上海三菱、广州日立、青岛富士、天津奥的斯等均采用交流变频调速。不少原来生产的电梯也进行了变频改造。 14、给料机类负载 冶金、电力、煤炭、化工等行业,给料机众多,无论圆盘给料机还是振动给料机,采用变频调速效果均非常显著。吉化公司染料厂硫酸生产线的圆盘给料机,原为滑差调速,低频转矩小,故障多,经常卡转。采用变频调速后,由于是异步机,可靠性高、节电,更重要的是和温度变送器闭环保证了输送物料的准确,不至于使氧化剂输送过量超温而造成事故,保证了生产的有序性。

汽轮机直接空冷应用

汽轮机直接空冷应用 在我国火力发电厂一般采用湿冷系统对机组进行冷却,但随着经济的发展,水资源的紧缺,此种传统的方法受到了限制,近年来随着直接空冷技术的日趋成熟,以及直接空冷技术在大容量机组中运行的实践经验,有着广阔的发展前景,特别对于富煤缺水地区,它的应用更能显示出优越性,它的应用将是未来的发展趋势。 1.空冷技术简介 空冷技术是指采用空气来直接或间接地冷却汽轮机排气的一种技术。当今由于大容量火力发电厂的正常运行需要充足的冷却水源,同时由于湿冷机组耗水量巨大,产生的废热排到江河、湖泊里造成生态平衡的破坏,而在缺水地区兴建大容量火力发电厂,就需要采用新的冷却方式来排除废热。 火力发电厂的排汽冷却技术主要分为两大类:水冷却和空气冷却(简称空冷)。发电厂采用翅片管式的空冷散热器,直接或者间接用环境空气来冷凝汽轮机的排汽,称为发电厂空冷。采用空冷技术的冷却系统称为空冷系统。采用空冷系统的汽轮发电机组称为空冷机组。采用空冷系统的发电厂称为空冷电厂。 发电厂空冷系统也称为干冷系统。它相对于常规发电厂湿冷系统而言的。常规发电厂的湿式冷却塔是把塔内的循环水以“淋雨”方式与空气直接接触进行热交换的。其整个过程处于“湿”的状态,其冷却系统称为湿冷系统。空冷发电厂的空冷塔,其循环水与空气是通过散热器间接进行热交换的,整个冷却过程处于“干”的状态,所以空冷塔又称干式冷却塔。 根据汽轮机排汽凝结方式的不同,发电厂的空冷系统可以分为直接空冷系统和间接空冷系统两大类。 2.直接空冷系统设备结构组成 直接空冷系统,又称空气冷凝系统,汽轮机的排汽直接用空气来冷凝,冷却空气通常用机械通风或自然通风方式供应。空冷凝汽器是由两或三排外表面镀锌的椭圆形钢管外套矩形钢翅片,或由单排扁平形钢管,外焊硅铝合金蛇形翅片的若干个管束组成。这些管束亦称空冷散热器。直接空冷系统的流程汽轮机排汽通过排汽管道送到室外的空冷凝汽器内,机械通风鼓风式轴流冷却风机使空气横向吹向空冷散热器外表面,将排汽冷凝成水,凝结水再经泵送回汽轮机的回热系统。直接空冷系统自汽轮机低压缸排汽口至凝结水泵入口范围内的设备和管道,主要包括:(1)汽轮机低压缸排汽管道系统;(2)空冷凝汽器;(3)凝结水系统设备;(4)抽气系统设备;(5)疏水系统设备;(6)通风系统设备;(7)直接空冷支撑结构;(8)自控系统设备;(9)清洗装置设备;(10)空冷汽轮机;(11)空冷散热器;(12)空冷风机。

电厂空压机说明

空压机房主要设备操作说明 1、空压机 1.1空压机子菜单说明: 1.1.1 STATUS DATA :状态参数即调出空压机的状态参数及故障 停机复位。功能为给出空压机保护功能的的状态(故障停机、 故障停机报警、电机过载)并将故障停机和电机过载信号复 位。 1.1.2 MEASURED DATA:测量数据即调出测量数据。如:空压机 排气压力、空气过滤器压差DP、机头1排气温度、机头2 排气温度等数据。 1.1.3 HOURS:时间。功能为调出空压机运行时间和加载时间、控 制器工作时间和电机启动次数。 1.1.4 SERVICE:维护即查阅和复位维修信息。调出并重置下列部件 的维修信息:油、油过滤器、油气分离器、空气过滤器、主 电机轴承的润滑。 1.1.5 TEST:测试即显示测试。功能为进行显示测试,检查显示屏 和发光管是否完好。 1.1.6 MODIFY SETTINGS:修正设定值即修改控制、保护、维修 的设定值。修改的控制参数主要有卸载压力(目前基本为 7.2bar)、加载压力(目前基本为6.4bar)等。保护设置主要 有机头1排气温度、机头1排气温度(目前报警为105℃、 保护为110℃)。维护设置主要有油气分离器、油过滤器、 油、驱动电机的加润滑脂的时间。

1.1.7 TIMERS:计时器即编制空压机开机停机指令。 1.1.8 CONFIGURATION:配置即重新编制时间/日期/显示方式。可 重置下列参数:时间、日期、显示文本(两种语言)、压力 单位(bar、psi或kg/cm2)、温度单位、开机次数/小时或开 机次数/天、日期格式(日/月/年或月/日/年或年/月/日)等。 1.1.9 SA VED DATA:储存数据即控制器查阅存储的空压机参数。 主要有: A、最后5次的停机数据(《last1、2、3、4、5》),停机原因、时间、 日期和能反映当时状况的数据。 B、最后2次紧急停机数据(《last emergency stop1、2》),时间、日期 和能反映当时状况的数据。 C、最长的负载数据(时间、日期、持续时间和能反映当时状况的数 据) D、最长的卸载数据(时间、日期、持续时间和能反映当时状况的数 据) 1.1.10 SHOU MORE(F2):多页功能。空压机运行时主页面显示的 主要运行参数。 1.1.12 手动加载/卸载。空压机在自动加载、卸载方式下运行。必要 时可手动令空压机卸载,则空压机将保持卸载状态直到人工 加载。 A、手动卸载:调出主显示,按F3《UNLOAD》,指示灯熄灭,屏幕 显示《MANUALLY UNLOAD》 B、手动加载:调出主显示,按F3《LOAD》,指示灯亮,但《LOAD》

直接空冷系统介绍

直接空冷凝器器系统介绍 一、系统简介 直接空冷凝汽器系统(英文Air Cooled Condenser System,缩写为ACC)是指汽轮机的排汽直接用空气来冷凝,空气与蒸汽间进行热交换。所需冷却空气,通常由机械通风方式供应。直接空冷的凝汽设备称为空冷凝汽器,这种空冷系统的优点是设备少,系统简单,基建投资较少,占地少,空气量的调节灵活。该系统一般与高背压汽轮机配套。这种系统的缺点是运行时粗大的排汽管道密封困难,维持排汽管内的真空困难,启动时为造成真空需要的时间较长,机组效率低,一次能源消耗大。 二、系统构成概述 1、概述 通常ACCS一般主要由以下几部分构成: ?排汽管道和配汽管道 ?翅片管换热器 ?支撑结构和平台 ?风扇及其驱动装置 ?抽真空系统 ?排水和凝结水系统 ?控制和仪表系统 2、冷凝过程 空气冷却器一般采用屋顶结构(或称A型框架结构)。 来自汽轮机的尾汽通过排汽管道和配汽管道输送到翅片管换热器。配汽管道连接到汽轮机的排汽管道和位于上部的翅片管换热器。蒸汽被直接送入换热器的翅片管道内。蒸汽携带的热能由经过换热器翅片表面的冷却空气带走,冷却空气是由置于管束下面的轴流风机驱动的。 换热器一般采用KD布置方式,即顺流冷凝-反流冷凝的布置方式。

70%到80%的蒸汽在通过由上部的配汽管道到顺流冷凝的换热器中被冷凝成凝结水,凝结水流到底部的蒸汽/凝结水联箱中。顺流管束称为冷凝管束或称K 管束。 其余的蒸汽在成为D管束的反流管束中被冷凝,蒸汽是由蒸汽/凝结水联箱向上流动的,而凝结水由冷凝的位置向下流到蒸汽/凝结水联箱中并被排出。 这种KD形式的布置方式确保了在任何区域内蒸汽都与凝结水有直接接触,因此将保持凝结水的水温与蒸汽温度相同,从而避免了凝结水的过冷、溶氧和冻害。 从汽轮机到凝结水箱的整个系统都是在真空状态下。由于采用全焊接结构,从而保证整个系统的气密性。由于在与汽轮机连接的法兰处不可避免地会有空气漏进冷凝系统中,为了保持系统地真空,在反流管束的上端未冷凝的蒸汽和空气的混合物将被抽出。通过在上端部位的过冷冷却,使不可冷凝蒸汽的汽量被减小了。 反流(D)部分的设计应保证在任何运行条件下,不会在顺流(K)部分造成完全冷凝,以避免过冷和溶氧以及冻害的危险。 在不同热容量和环境温度下,通过调节空气流量的变化来控制汽轮机尾气的排汽压力。 3、换热器 热浸锌翅片管具有从管子到翅片良好的导热性能。这是由于在翅片根部和管子的间隙被充满锌而具有毛细总用。 由于钢制管子和钢制翅片是同种材质,从而避免热应力的产生,而热应力对热传导不利。 由于翅片管束必须承受极大的阻力,它们必须具有很高的强度。钢制翅片可以抵抗典型的机械冲击,比如冰雹、清洗设备的高压水(200bar),或维护工人的体重。在运输和安装过程中不易损坏。由于钢制翅片管束具有较短的深度,因此更能适宜清洗设备的高压水的冲击。 而且,热浸锌翅片管具有良好的防腐性能和长达超过25年的使用寿命。4、支撑结构和平台 根据实际经验,屋顶型结构的空气冷凝器具有可靠的凝结水排水功能并且减少了占地面积。

空冷系统简介

1 空冷系统简介 1.1 空冷技术方案介绍 在火力发电厂中采用的空冷系统形式有:直接空冷系统、混凝式间接空冷系统、表凝式间接空冷系统。直接空冷系统是将汽轮机排汽由管道送入称之为空冷凝汽器的钢制散热器中,直接由空气冷却。混凝式空冷系统由于有水轮机和喷射式凝汽器等系统设备,设备多系统复杂,使得整套系统实行自动控制较难;而表凝式间接空冷系统与常规的湿冷系统比较接近,也是通过两次换热,以循环冷却水作为中间冷却介质,循环冷却水由水泵加压后,进入凝汽器冷却汽轮机排汽,热水进入自然通风冷却塔由空气冷却。表凝式间接空冷系统与湿冷系统不同之处是在冷却塔内(外)布置着钢(铝)制散热器,热水与空气不接触,进行表面对流散热。 1.1.1 直接空冷系统 直接空冷系统主要由排汽装置、大排汽管道(包括大直径膨胀节、大口径蝶阀等)、钢制空冷凝汽器、风机组(包括轴流风机、电动机、减速机、变频器等)、凝结水系统、抽真空系统(包括水环式真空泵)、清洗系统等设备构成。空冷凝汽器布置在汽机房A列外的高架空冷平台上。 直接空冷系统是将汽轮机排出的乏汽,通过排汽管道引入钢制空冷凝汽器中,由环境空气直接将其冷却为凝结水,多采用机械通风方式。其特点是:设备较少,系统简单,调节灵活,占地少,防冻性能好,冷却效率高;直接空冷受环境风的影响较大,运行费用较高,煤耗较大,风机群产生一定噪声污染,厂用电较高。 1.1.2 表凝式间接空冷系统 表凝式间接空冷系统是指汽轮机排汽以水为中间介质,将排汽与空气之间的热交换分两次进行:一次为蒸汽与冷却水之间在表面式凝汽器中换热;一次为冷却水和空气在空冷塔里换热。该系统主要由表面式凝汽器与空冷塔构成,采用自然通风方式。 表凝式间接空冷与直接空冷相比,其特点是: 冬季运行背压较低,所以煤耗较低;由于采用了表面式凝汽器,循环冷却水和凝结水分成两个独立系统,其水质可按各自的水质标准和要求进行处理,使水处理系统简单、便于操作;表凝式间接空冷塔基本无噪声,满足环保要求;空冷塔占地大,冬季运行防冻性能较差。 1.1.3 混凝式间接空冷系统 典型的混凝式间接空冷系统组成:主要由混合式(喷射式)凝汽器、全铝制的福哥型冷却三角散热器(带百叶窗)、(预热/尖峰冷却器)、自然通风冷却塔、循环水泵组、循环水管路、回收水能的水轮发电机组、贮水箱、充水泵组、

变频器常用的几种控制方式

变频器常用的几种控制方 式 Prepared on 22 November 2020

变频器常用的几种控制方式 变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。 1、变频器简介 变频器的基本结构 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 2、变频器中常用的控制方式 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。 V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。 (3) 矢量控制 矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。 基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差

《变频器技术应用》试题库

《变频器技术应用》试题库 一、选择题 1、正弦波脉冲宽度调制英文缩写是()。 A:PWM B:PAM C:SPWM D:SPAM 2、对电动机从基本频率向上的变频调速属于()调速。 A:恒功率B:恒转矩 C:恒磁通D:恒转差率 3、下列哪种制动方式不适用于变频调速系统()。 A:直流制动B:回馈制动 C:反接制动D:能耗制动 4、对于风机类的负载宜采用()的转速上升方式。 A:直线型B:S型C:正半S型D:反半S型 5、N2系列台安变频器频率控制方式由功能码()设定。 A:F009 B:F010 C:F011 D:F012 6、型号为N2-201-M的台安变频器电源电压是()V。 A:200 B:220 C:400 D:440 7、三相异步电动机的转速除了与电源频率、转差率有关,还与()有关系。 A:磁极数B:磁极对数C:磁感应强度D:磁场强度 8、目前,在中小型变频器中普遍采用的电力电子器件是()。 A:SCR B:GTO C:MOSFET D:IGBT 9、IGBT属于()控制型元件。 A:电流B:电压C:电阻D:频率 10、变频器的调压调频过程是通过控制()进行的。 A:载波B:调制波C:输入电压D:输入电流 11、为了适应多台电动机的比例运行控制要求,变频器设置了()功能。 A:频率增益 B:转矩补偿 C:矢量控制 D:回避频率 12、为了提高电动机的转速控制精度,变频器具有()功能。 A:转矩补偿 B:转差补偿 C:频率增益 D:段速控制 13、变频器安装场所周围振动加速度应小于()g 。 A: 1 B:0.5 C:0.6 D:0.8 14、变频器种类很多,其中按滤波方式可分为电压型和()型。 A:电流B:电阻C:电感D:电容 15、N2系列台安变频器操作面板上的SEQ指示灯在()发光。 A:F10=0 B:F10=1 C:F11=0 D:F11=1

空冷技术的发展及应用

空冷技术的发展及应用 班级:动本0719 学号:0742021934 姓名:高晓刚

空冷技术的发展及应用 随着工农业生产的发展,许多城市及地区相继出现生产与生活用水日益紧张的局面,水已成为制约国民经济发展的主要因素之一。内蒙古、山西等北方地区是我国的能源基地,蕴藏着丰富的煤炭资源,可为大火力发电厂提供充足的燃料,同时又是水资源最为缺乏的地区。在这种状况下,直接空冷技术的应用在很大程度上解决了这些地区“富煤缺水”的难题。 1.1湿式冷却方式 湿式冷却方式分直流冷却和冷却塔2种。湿式直流冷却一般是从江、河、湖、海等天然水体中汲取一定量的水作为冷却水,冷却工艺设备吸取废热使水温升高,再排入江、河、湖、海。当不具备直流冷却条件时,则需要用冷却塔来冷却。冷却塔的作用是将挟带废热的冷却水在塔内与空气进行热交换,使废热传输给空气并散入大气。 1.2干式冷却方式 在缺水地区,补充因在冷却过程中损失的水非常困难,采用空气冷却的方式能很好地解决这一问题。空气冷却过程中,空气与水(或排汽)的热交换,是通过由金属管组成的散热器表面传热,将管内的水(或排汽)的热量传输给散热器外流动的空气。当前,用于发电厂的空冷系统主要有3种,即直接空冷系统、带表面式凝汽器的间接空冷系统(哈蒙式空冷系统)和带喷射式(混合式)凝汽器的间接空冷系统(海勒式空冷系统)。直接空冷就是利用空气直接冷凝从汽轮机的排气,空气与排气通过散热器进行热交换。海勒式间接空冷系统主要由喷射式凝汽器和装有福哥型散热器的空冷塔构成,系统中的高纯度中性水进入凝汽器直接与凝汽器排汽混合并将加热后的冷凝水绝大部分送至空冷散热器,经过换热后的冷却水再送至喷射式凝汽器进行下一个循环。极少一部分中性水经过精处理后送回锅炉与汽机的水循环系统。哈蒙式间接空冷系统又称带表面式凝汽器的间接空冷系统,在该系统中冷却水与锅炉给水是分开的,这样就保证了锅炉给水水质。哈蒙式空冷系统由表面式凝汽器与空冷塔组成,系统与常规的湿冷系统非常相似。据统计目前世界上空冷系统的装机容量中,直接空冷系统约占43%,表面式凝汽器间接空冷系统约占24%,混合式凝汽器间接空冷系统约占33%。 2直接空冷系统的工作原理 汽轮机排汽在空冷凝汽器中被空气冷却而凝结成水,排汽与空气之间的热交换是在表面式空冷凝汽器内完成。在直接空冷换热过程中,利用散热器翅片管外侧流过的冷空气,将凝汽器中从处于真空状态下的汽轮机排出的热介质饱和蒸汽冷凝,最后冷凝后的凝结水经处理后送回锅炉。 3直接空冷凝汽器的发展现状 直接空冷技术的发展主要是围绕直接空冷凝汽器管束进行的。空冷凝汽器是空冷机组冷端的主要部分,汽轮机排汽将几乎全部在凝汽器中冷凝成冷凝水。汽轮机排出的蒸汽在凝汽器翅片管束内流动,空气在凝汽器翅片管外流动对蒸汽直接冷却。从提高冷却效率角度出发,一般在管束下面装有风扇机组进行强制通风或将管束建在自然通风塔内,在现有运行的机组中,强制通风方式由于其可调控性能较好等优点而广泛应用。直接空冷凝汽器由于特点突出,已经逐渐在世界各国进行技术研究并逐步推广应用。由于间接空冷凝汽器系统相对于直接空冷凝汽器系统设备多、造价高、维修量大、运行难度大且可靠性较差,所以它将只是水冷凝汽器系统和直接空冷凝汽器系统之间的一个过渡,直接空冷凝汽器将是今后

离心式空压机在国华台山发电厂B厂的应用

46 1 概述 国华台山发电厂B厂工程6、7号机组共同设置5台离心式空气压缩机及其后处理系统设备,其中3台运行、1台热备用、1台检修备用。热备用空压机是要求当运行中的一台空压机出口压力降低,达到停机的标准时,热备用的空压机迅速投入。如果热备用的空压机无法投入,应立即启动检修备用的空压机。 离心压缩机是指气体在压缩机中的运动是沿垂直于压缩机轴的径向进行的。压缩机的工作轮在旋转的过程中,由于旋转离心力的作用及工作轮中的扩压流动,使气体的压力得到提高,速度也得到提高。随后在扩压器中进一步把速度能转化为压力能,通过它可以把气体的压力提高,从而来满足机组在运行时对压缩空气的需求。 2 离心式空气压缩机的结构 2.1 离心式压缩机的压缩流程 图1 流程图 离心式空压机为三级压缩、两级冷却的机器。空气先由进气口吸入经过第一级压缩后进入一级冷却器冷却,再经第二级压缩后进入二级冷却器冷却,然后又经第三级压缩达到所需压力,最后经过后冷却器提供给用户40℃以下完全无油的洁净高压空气。 2.2 离心式空压机的结构特点 一般离心式压缩机由以下几部分构成:吸入室、进气导流器、叶轮、扩压器、弯道和回流器、蜗壳、密封以及润滑油系统等。我厂使用的离心式空压机为三级压缩、两级冷却。空气先由进气口吸入经过第一级压缩后进入一级冷却器冷却,再经第二级压缩后进入二级冷却器冷却,然后又经第三级压缩达到所需压力,最后经过后冷却器提供给用户40℃以下完全无油的洁净高压空气,其流程如图1 所示。图2为离心式空压机系统框图: 图2 离心式空压机框图 离心式空压机在国华台山发电厂B 厂的应用 张吉良 牛振华 (广东国华粤电台山发电有限公司,广东 台山 529228) 摘要: 随着气动装置及其他用气设备在电厂的广泛应用,压缩空气系统的运行可靠性将直接影响机组运行的安全性和经济性,在机组各系统中占据了越来越重要的地位。文章从热工维护的角度阐释了离心式空压机的结构特点、控制方法及策略,同时也分析了在离心式空压机的运行中遇到的问题和解决方法。关键词: 离心式空压机;DCS ;PLC ;控制策略中图分类号: TH452 文献标识码:A 文章编号:1009-2374(2012)26-0046-032012年第26期(总第233期)NO.26.2012 (CumulativetyNO.233)

变频器在工业生产中的应用.docx

变频器在工业生产中的应用 电动机是工业生产中最主要的动力提供装置,而这些动力是从消耗电能所产生的。在提倡建立节约型社会的今天,降耗节能成为生产生活中必不可少的一部分。这就要求我们使用最少的电能让电机提供最可靠的动力。在这其中,变频器扮演了相当重要的角色。本论文介绍变频器在工业生产中的具体应用。 变频器 变频器,它产生于上世纪60年代,伴随着大功率晶体管的问世和集成电路的迅速发展,使得变频器的性能有了很大的提高。因为变频器拥有能够实现异步电动机的恒转矩和恒功率的无级调速,其调速范围广、平滑性好、机械特性较硬,而且节能效果明显,有利于实现自动控制等这些优点使得变频器的应用也越来越广,基本上涵盖了所有领域。 变频器在生产中的应用 总体来说,变频器在工业生产中主要来对电动机进行调速。那么变频调速和传统的调速相比有哪些优点呢?主要有两点:一是便于实现自动控制。变频器是电力技术与电子技术的结合,也是强弱电的有机整体,在实现自动控制方面有着先天的优势;二是能够节能降耗。下面以恒压循环水系统为例进行分析说明。 变频器在自动控制系统中的应用 在循环水系统中,由于各个车间和部门用水时间和用水量的不同,使得系统内的水压会经常变化,这就要求,根据不同的用水量,使得整个

系统中的水压保持恒定不变。解决这个问题一般有以下几种做法。 第一,采用水阀限制水流量,从而达到限制水压的目的。此方法有几个缺点。首先,水阀的调节精确度不够,水压的波动范围较大;其次,不易实现自动控制,也不便于实时监测。 第二,修建水塔,利用液体压强定律来保持水压的恒定。相对于前一种方法,该法的压力较恒定,但仍不便于实现自动控制和实时监测,且占地面积较大,通用性差。 我们在循环水系统的管路中装上压力传感器做为反馈信号的采样,然后将采样得来的水压与给定的水压相比较,根据比较所得到的误差来调节变频器的频率,从而达到控制电机的转速,最终控制整个循环水系统的压力保持恒定。 从以上分析来看,利用变频器的闭环控制系统,由于变频器的响应特性好,所以使得控制更加方便,精确,通用性好,操作界面也更加友好。 变频器在节能降耗中的作用 关于变频器在节能降耗中的作用,一直存在着争论。我认为,不能一概而论,要视具体的情况而定。 对于纺织加工、轧钢等,负载基本恒定的场合,电机一般工作在额定功率,主要是利用了变频器在平滑加减速、高精度力矩控制、运行可靠性好等方面表现出来的优异性能。在这些场合中,非但不节能,且因为变频器本身造价成本高,其自身也有能耗,从而使得整个系统更加昂贵和耗能。 但是,在风机、水泵等应用场合,节能降耗特性就显得十分明显。在

《变频器应用技术》课程标准

《变频器应用技术》课程标准 一、教学对象 适用于电气自动化技术专业学生。 二、建议学时及学分 建议学时:32 学分:2 三、先修和后续课程 先修课程:《电机与电气控制技术》《电力电子技术》《PLC应用技术》 后续课程:《过程控制技术》《生产实习》《顶岗实习》 四、课程性质 《变频器应用技术》是电气自动化技术专业的一门专业核心课程。本课程旨在培养学生变频器操作能力,变频器选用、安装、维护能力,运用PLC技术控制变频器运行能力,简单变频器控制系统设计能力、变频器技术资料阅读与利用能力。 五、教学目标 1、变频器操作能力 通过学习和动手操作,使学生具备正确操作变频器的能力。 2、变频器的选用、安装与维护能力 通过了解变频器控制方式的性能特点、变频器的防护等级、容量选择原则,使学生具备正确选择变频器的能力;通过训练以及故障分析与处理的学习,使学生具备安装、维护变频器的能力。 3、运用PLC技术控制变频器运行的能力 通过具体项目实践,使学生具备运用PLC技术控制变频器运行的能力。 4、简单变频器控制系统设计能力 通过学习变频器典型工程应用实例,使学生具备举一反三,能设计简单变频器控制系统的能力。 5、变频器技术资料阅读与利用能力 在项目/任务完成的过程中,逐步培养学生阅读变频器技术资料、从而利用技术资料的能力。 六、能力要求 1、变频器操作能力 具备熟练操作MM420变频器的能力。 (1)熟练MM420变频器键盘操作; (2)熟知MM420变频器控制功能,熟悉其参数代码,平均10秒设定一条参数; (3)熟悉变频器接线端子,能根据控制任务接线图快速完成接线。 2、变频器的选用、安装与维护能力 (1)能够根据负载特性、安装环境准确选用变频器; (2)能够正确布线,特别是屏蔽线和接地线; (3)能够根据干扰源及干扰信号的传播方式,实施适宜的抗干扰措施。 (4)能够根据变频器故障现象,分析出故障原因并实施维修。 3、运用PLC技术控制变频器运行能力

浅谈DCS和PLC在电厂的联合实际应用

-40- 引言对于电厂的控制系统,一般联合采用DCS 和PLC 这两种方式。DCS 作为一个多级计算机系统,综合了计算机、通讯、显示和控制技术,实现了分散控制、集中操作、分级管理、配置灵活、组态方便等特点,一般由过程级、操作级和管理级组成。PLC 是以可编辑逻辑控制器为基础的新一代工业自动化装置,采用可编程序存储器,是一种专为工业环境下的应用而设计产生的控制系统,一般即为一层网络结构。DCS 在我国发电企业普遍使用,控制范围逐渐扩大,已从早期功能单一的控制系统发展成为综合控制系统。虽然PLC 的功能也在向DCS 发展,但对于目前的发电企业,主机的控制系统基本上都是采用了DCS ,而目前的发展趋势更是辅助控制系统中原先由PLC 实现的功能也逐渐由DCS 取代完成。由于DCS 的系统功能会日益强大,价格日益便宜,这也预示了DCS 系统将逐渐取代PLC 完成小型系统的控制,实现“集中”控制。1 发展本质D C S 起始于传统的仪表盘监控系统,比较倾向于PID 的算法和数量。PLC 来源于传统的继电器,最原始的PLC 控制是不能处理模拟量的,这也决定了PLC 的控制重点是逻辑运算。2 应用对象传统大型机组采用的控制模式是,机组部分采用DCS 控制,辅助车间等公用部分则采用PLC 控制。而结合最近几年的发展趋势看,近年的电力体制改革,使发电企业竞争逐渐激烈,而提高企业效益的根本就是降低成本、提高效率。因此,实现全厂自动控制系统的集中监控,显得更为重要了。基于这种思路,现在很多电厂将原本属于辅网的一部分公用系统,也纳入了DCS 的集中控制范围,一方面实现了减员增效,另一方面提高了运行人员控制水平,集控室的统一监控解决了运行人员联系不及时、难于管理等缺点。3 现状分析 在大型机组的设计中,目前主要采用 的是“两机一控”控制方案,也就是两台 机组合用一个集中控制室,实现机电炉的 集中控制。每台机组设置一套DCS 作为单 元机组的主要控制系统,实现MCS 、SCS 、浅谈DCS 和PLC 在电厂的联合实际应用 付诗琴 广东省电力设计研究院,广东 广州 510663 DAS 、FSSS 。而两台机组的DCS 之间再设置一套公用网络,通过网桥分别和每台机组的DCS 联通。一般,空压机、循环水泵房、燃油泵房、公用厂用电源系统,都纳入了公用DCS 网络的设计范围内。而全厂辅助车间,则主要采用PLC 控制:传统做法是采用“水”(净水系统、废水系统、化水系统;凝结水精处理、化学取样和加药)、“灰”(除灰、除渣、电除尘)、“煤”(输煤系统)控制点组成辅网BOP ,在机组 集控室的辅助生产系统操作员站进行集中 监控。辅助系统的功能一般采用“PLC+上位机”实现,增强了独立系统运行的安全可靠性。上述主机采用DCS 控制、外围辅助系统采用PLC 的控制方案,是多年来的常规方案。这种思想的出发点是因为DCS 早前都是跟随主机从国外引进的,而进口设备的成本很高,国内DCS 技术也还不成熟;而PLC 的逻辑控制功能已较为成熟。然而,辅助系统的PLC 装置,一方面型号多样化,一方面由于工作环境相对恶 劣导致故障率高、维护量大、备品备件需求多,因此增加了电厂运行成本。辅助系统如采用集中控制或直接一体化控制,可以实现全厂控制一体化网络,方便了电厂运行人员和检修人员,减少了备品备件的种类和数量,减员增效、提高了效率。如今国产DC S 品牌也日益丰富,DCS 的造价也在逐渐降低,功能也更加强大。近些年的一些新建机组,主机和外围辅助系统都采用统一品牌DCS 系统,实现了全厂控制系统的硬件、软件、信息一体 化。虽然存在的形式多种多样,比如全厂 DCS 设备一致,比如将外围辅助系统引入 主控室。4 特点首先,对于大部分DCS 系统,虽然过程级的通讯协议不相同,但是操作级都选 择了以太网作为网络平台,采用T C P /I P 协议,方便扩展。在以太网中,控制器作 为节点,可以按需要增减数量或改变位置,只要在网络控制的范围内。而PLC 系统的扩展需求相对较少。一般PLC 是针对设备使用,所以兼容性的需求也相对很少。PLC 的控制任务相对简单,一般即为单层网络结构,基本不会涉及以太网。其次,DCS 系统一般都会提供一个统一的数据库。所谓“统一”,即对于数据库中的任何一个已存数据,可以被随时引用,无论是在组态软件、监控软件中,还是在趋势图、报表中。而PLC 系统的数据库一般是相对独立的,组态软件、监控软件、甚至归档软件,都有各自的数据库。 再次,DCS 的任务周期,是可以设定的,比如对于压力传感器,可以采用较短的采样周期;对于温度传感器,可以采用相对较长的采样周期。而PLC 程序是一次性执行完毕后再循环执行的。比较而言,D C S 更能合理地按需求协调控制器的资源。5 一体化趋势 不难看出,主辅一体化的经济效益明显。单元制的辅助系统可以归入相应的机组DCS 实现;全厂公用的辅助系统,则可以归入公用DCS 实现。各系统可以采用远程IO 站或远程IO 控制站实现控制功能。全厂一体化,可以提高全厂控制系统的维护效率,减少维护工作量,降低维护成本;可以统一采购设备和备品备件,优化资源配置;可以优化全厂数据共享。 但是,在看到一体化优势的同时,我们也需要考虑到DCS 的负荷能力和电厂运行的安全可靠度。全厂一体化,肯定增加了DCS 的信息负荷,这在一定程度上会影响DCS 系统的数据传输、数据运算和信号处理。此外,在全厂一体化设计中,一旦辅助系统的DCS 网络出现故障,则可能导致全厂的辅助系统故障,可能影响到整个机组的运行,这一点不及原先PLC 控制时相对独立的各个辅助系统。 另外,从DCS 和大型PLC 的发展趋势看,两者概念上的界限逐渐淡化,渐趋融合。另一方面,鉴于DCS 控制的系统接线工作繁重及其信号传输在可靠性和抗干扰性上的不足,DCS 将向FCS 方向发展,将模拟量的控制分散到现场仪表,仪表和控制系统之间不再需要电缆连接。PLC 也可以实现模拟量的处理功能,部分PLC 系统的模拟量处理能力还比较强大;而同时DCS 系统的逻辑处理能力也很强劲。这也就决定了DC S 和P LC 功能的融合发展趋势。目前,大型PLC 也和DCS 一样,控制器和I O 站采用现场总线,采用计算机系统,当存在多台计算机使用时,系统结构和DCS 类似,上位机也采用以太网作为网络平台。 6 结语 综上所述,DCS 和PLC 在实际应用是存在着一定的区别和联系的,不能把两者绝对独立,两者都是电厂的控制系统“成员”。作为设计人员,应该结合用户的实际需求,向用户提供最适合他们需求的控制系统,合理利用DCS 和PLC 的优势,优化资源配置,大力发展节能减排的绿色电厂。 参考文献 [1]王英,宋仁义.浅谈DCS与PLC在控制系统应用中的区别与联系.矿业工程,2010年8卷第3期 [2]王鹏,姜秀柱,王兴海.发电厂辅助系统的DCS改造.工业控制计算机,2006年19卷第8期 [3]王立地.火力发电厂DCS选型要点.广东电力,2008年8月21卷第8期. [4]钱培峻.超超临界机组主辅控一体化控制的设计研究.华东电力,2010年7月38卷第7期 [5]董建朋,崔猛,王宏伟等等.火力发电厂全厂DCS一体化实施方案的探讨.河南电力,2009年第3期 DOI:10.3969/j.issn.1001-8972.2011.23.006

变频器应用的场合

变频器应用的场合 变频器是工控系统的重要组成设备,安装在电机前端以实现调速和节能。随着社会需求的不断增长,变频器也逐渐走向多元化、通用型、专用型发展,目前它被应用在众多领域。 临沂星光工控技术有限公司是经营各品牌变频器、PLC及各种低压产品的企业,集销售、服务为一体。公司是贝士德变频器的山东区代理,变频器产品可满足各类高、中、低端市场。下面来了解一下变频器应用的场所: 1、空调负载类 写字楼、商场和一些超市、厂房都有中央空调,在夏季的用电高峰,空调的用电量很大。在炎热天气,北京、上海、深圳空调的用电量均占峰电40%以上。因而用变频装置,拖动空调系统的冷冻泵、冷水泵、风机是一项非常好的节电技术。目前,全国出现不少专做空调节电的公司,其中主要技术是变频调速节电。 2、破碎机类负载 冶金矿山、建材应用不少破碎机、球磨机等水泥机械,该类负载采用变频后效果显着。 3、大型窑炉煅烧炉类负载 冶金、建材、烧碱等大型工业转窑(转炉)以前大部分采用直流、整流子电机、滑差电机、串级调速或中频机组调速。由于这些调速方式或有滑环或效率低,近年来,不少单位采用变频控制,效果极好。 4、压缩机类负载 压缩机也属于应用广泛类负载。低压的压缩机在各工业部门都普遍应用,高压大容量压缩机在钢铁(如制氧机)、矿山、化肥、乙烯都有较多应用。采用变频调速,均带来启动电流小、节电、优化设备使用寿命等优点。 5、辊道类负载 辊道类负载,多在钢铁冶金行业,采用交流电机变频控制,可提高设备可靠性和稳定性。 6、泵类负载 泵类负载,量大面广,包括水泵、油泵、化工泵、泥浆泵、砂泵等,有低压中小容量泵,也有高压大容量泵。 许多自来水公司的水泵、化工和化肥行业的化工泵、往复泵、有色金属等行业的泥浆泵等采用变频调速,均产生非常好的效果。 7、堆取料机类负载 堆取料机是煤场、码头、矿山物料堆取的主要设备,主要功能是堆料和取料。实现自动

丹佛斯变频器的具体应用

变频器的具体应用 济南创恒科技发展有限公司满建江 2012-6-14

变频器如何选择 1变频器的负载类型 2 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 3 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。

变频器如何选择 4 对于一些特殊的应用场合,如高温,高海拔, 此时会引起变频器的降容,变频器容量要放大一挡。5满足控制要求,选择的变频器是否在控制方式、 控制模式、起动转矩、转矩控制精度、速度控制精度、控制信号设定输入、速度反馈控制、多段速度 设定、通信接口等满足要求。 6.满足现场环境的要求,是否能在现场工业环境中正常运行。温度,防水,防尘,防腐蚀气体等

1. 速度开环运行 VLT Motor 12,13 18 27 24V DC 启动/滑停命令 按预定轨迹停车命令 380V AC/50Hz 50 53 55运行速度给定信号 1kΩ/0.5W 基本参数设定: --出厂设定 变频器的几种运行方式

2.速度控制闭环运行 VLT Motor 12,13182724V DC 启动/滑停命令 按预定轨迹停车命令 380V AC/50Hz 50 5355运行速度给定信号 1kΩ/0.5W 测速光电编码器3233编码器B 相通道 编码器A 相通道 20 39 编码器技术参数:1.增量型24V 2.推挽输出,或PNP 开集输出

变频器应用技术课程教学大纲

《变频器应用技术》课程教学大纲 课程所属系部:电气工程系 专业层次:高职高专 适用专业:机电类专业 学制:三年制 理论学时: 30 学时 课内实践学时: 34 学时 起草人:谷俊婷、阚玉怀、门秀华 审核:年月日 批准:年月日 一、课程的性质与任务 本课程是高等职业院校机电类技术专业的一门应用性主干专业课程。课程的主要任务是:结合变频器行业的最新发展情况,通过理论教学、实验、实训,

使学生具备应用和维护维修各种变频器控制系统的基本能力;教会学生利用网络搜索技术资料的方法,使学生具备应用技术资料解决现场问题的能力;在授课过程中培养学生认真的工作作风和严谨的工作态度,树立学生的岗位责任意识;培养学生科学的思维方法和综合的职业能力,以适应职业教育发展的需要。 二、课程的基本要求 1.掌握变频器的内部结构理论和各类外端子的功能,为正确安装、设置变频器及故障分析打基础; 2.深刻理解通用变频器各类功能的含义和作用,为正确设置功能参数打基础; 3.掌握1个品牌变频器的基本操作方法,了解4至5种类型变频器的功能参数码特点和操作方法。 4.能够根据工程需要设计、安装、调试及改造教简单的变频器控制系统; 5.具有将相关课程(电气控制、PLC、单片机、触摸屏等)知识融合在一起,综合应用自动控制系统的能力。 6. 具有变频器控制系统日常维护及故障诊断的基本能力,能够诊断出故障类型(软件设置故障、主电路硬件故障、控制电路故障),能对软件类故障进行修复,能对主电路故障进行准确判断并分析故障原因,能对控制电路的故障范围进行诊断; 7. 具有根据实际设备搜索、查阅变频器相关技术资料,并利用技术资料学习相应变频器知识和操作、解决现场问题的能力。 8.具有根据设计资料、调试过程编写技术文件的能力。 9. 认真的工作作风和严谨的工作态度,具有明确的岗位责任意识;

电厂空冷技术论文

目录 摘要 第一章发电厂空冷系统的方式 1.1 海勒式间接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3 1.2 哈蒙式间接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4 1.3 直接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5 第二章空冷技术在发电厂的应用场合及技术经济特性 2.1 空冷技术的应用‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥6 2.2 空冷技术的经济特性‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥7 第三章发电厂空冷技术的应用概况及发展趋势 3.1 发电厂空冷与环境…‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥9 3.2 国内外空冷技术的发展概况‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥11 3.3 空冷技术的发展趋势‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12 参考文献

摘要 目前我国火力发电厂多采用水冷技术,面对越来越紧迫的水资源缺乏问题,火力发电行业的发展受到极大挑战,而空气冷却相比普通湿冷塔技术可以节水大约2/3。文章介绍目前在国外许多大型火电机组项目中采用的各种类型的空气冷却技术及我国火力发电行业采用空气冷却技术的历史和发展现状为了推广空冷技术在电厂的应用,特做此设计以供大家参考。

第一章发电厂空冷系统的方式 发电厂空冷技术从提出到现在约有50年的历史,并在国际上有了迅速发展,目前已出现单机容量686MW的空冷机组。在干旱地区,空冷技术发展尤为迅速,并出现了多种类型,如直接空冷、干湿联合冷却机组等。发电厂空冷技术已成为当前发电厂建设中的一个热门课题。 当前用于发电厂的空冷系统主要有三种,即直接空冷、表面式凝汽器间接空冷系统和混合式凝汽器间接空冷系统。直接空冷多采用机械通风方式,20世纪90年代以来,比利时哈蒙—鲁姆斯公司提出采用自然通风,两种间接空冷多采用自然通风。 第一节海勒式间接空冷系统 混合式凝汽器间接空冷系统又称海勒式间接空冷系统,其发电厂如图所示。 1—锅炉; 2—过热器; 3—汽轮机; 4—喷射式凝汽器; 5—凝结水泵;6—凝结水精处理装置; 7—凝结水升压泵; 8—低压加热器; 9—除氧器;10—给水泵; 11—高压加热器; 12—冷却水循环泵; 13—调压水轮机;14—全铝制散热器; 15—空冷塔; 16—旁路节流阀; 17—发电机 该系统由喷射式凝汽器和装有福哥型散热器的空冷塔构成。系统中的冷却水都是高纯度的中性水。中性冷却水进入凝汽器直接与汽轮机排汽混合并将其冷凝。受热后的冷却水绝大部分由冷却水循环泵送至空冷塔散热器,经与空气对流换热冷却后通过调压水轮机将冷却水再送至喷射式凝汽器进入下一个循环。 海勒式间接空冷系统的优点:①以微正压的低压水系统运行,较易掌握,可与中背压汽轮机配套;②冷却系统消耗动力低,厂用电耗少,占地面积中等。缺点是:①铝制空冷散热器耐冲洗,耐抗冻性能差;②空冷散热器在塔外布置易受大风影响其带负荷能力;③设备系统复杂。

相关文档
最新文档