预应力混凝土管桩抗拔承载力计算

预应力混凝土管桩抗拔承载力计算
预应力混凝土管桩抗拔承载力计算

预应力混凝土管桩抗拔承载力计算

摘要:介绍了预应力混凝土管桩抗拔承载力的计算过程和需要考虑的方面。

关键词:预应力混凝土管桩;抗浮;抗拔

Abstract: the article introduces the prestressed concrete pipe pile bearing capacity of the process and pull out of the need to consider.

Keywords: prestressed concrete pipe pile; Anti-uplift; Resistance to pull

1工程概况

预应力管桩由于单桩承载力高、施工便捷、造价较低、桩身质量稳定而广泛用于基础工程。将其用于抗拔桩使用时,在有效预压应力范围内桩身不会出现裂缝,抗裂性能好,从而提高了桩身的耐久性。

XX广场位于上海市浦东新区,川沙路东侧,庙港绿地南侧,浦东运河西侧。总建筑面积52575.6平方米,地上建筑面积24407.7平方米,地下建筑面积28167.9平方米。地下两层,地上3~5层。基础采用桩基础。根据岩土工程勘探报告,预制桩的设计参数如表1所示。

单桩承载力设计参数表1

根据本工程的特点,通过对比后,最终确定抗拔桩采用PHC500AB100-27,参考图集为《预应力混凝土管桩》(图集号10G409)。

2PHC管桩抗拔设计

2.1土体提供的竖向抗拔承载力计算

根据表1,桩端持力层为⑦1层砂质粉土,可得出PHCAB500管桩单桩抗拔承载力设计值Rtd=680kN。

单桩竖向极限承载力和抗拔承载力计算书

塔吊基础计算书 一、计算参数如下: 非工作状态工作状态 基础所受的水平力H:66.2KN 22.5KN 基础所受的竖向力P:434KN 513KN 基础所受的倾覆力矩M:1683KN.m 1211KN.m 基础所受的扭矩Mk:0 67KN.m 取塔吊基础的最大荷载进行计算,即 F =513KN M =1683KN.m 二、钻孔灌注桩单桩承受荷载: 根据公式: (注:n为桩根数,a为塔身宽) 带入数据得 单桩最大压力: Qik压=872.04KN 单桩最大拔力:Qik拔=-615.54KN 三、钻孔灌注桩承载力计算 1、土层分布情况: 层号 土层名称 土层厚度(m) 侧阻qsia(Kpa) 端阻qpa(Kpa) 抗拔系数λi 4 粉质粘土 0.95 22 / 0.75 5 粉质粘土 4.6 13 / 0.75 7 粉质粘土 5.6 16 /

0.75 8-1 砾砂 7.3 38 1000 0.6 8-2 粉质粘土 8.9 25 500 0.75 8-3 粗砂 4.68 30 600 0.6 8-4a 粉质粘土 4.05 32 750 0.75 桩顶标高取至基坑底标高,取至场地下10m处,从4号土层开始。 2、单桩极限承载力标准值计算: 钻孔灌注桩直径取Ф800,试取桩长为30.0 米,进入8-3层 根据《建筑地基基础设计规范》(GB50007-2002)8.5.5条: 单桩竖向承载力特征值计算公式: 式中:Ra---单桩竖向承载力特征值; qpa,qsia---桩端端阻力,桩侧阻力特征值; Ap---桩底端横截面面积; up---桩身周边长度; li---第i层岩土层的厚度。 经计算:Ra=0.5024×600+2.512×(22×0.95+13×4.6+16×5.6+38×7.3+25×8.9+30×2.65)=2184.69KN>872.04KN满足要求。 单桩竖向抗拔承载力特征值计算公式: 式中:Ra,---单桩竖向承载力特征值; λi---桩周i层土抗拔承载力系数; Gpk ---单桩自重标准值(扣除地下水浮力) 经计算:Ra,=2.512×(22×0.95×0.75+13×4.6×0.75+16×5.6×0.75+38×7.3×0.6+25

管桩桩身的竖向极限承载力标准值设计值与特征值的关系

管桩桩身的竖向极限承载力标准值设计值与特 征值的关系 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

管桩桩身的竖向极限承载力标准值、设计值 与特征值的关系 (一)、计算公式: 管桩桩身的竖向极限承载力标准值Qpk、桩身竖向承载力设计值Rp与单桩竖向承载力最大特征值Ra的计算: 1、管桩桩身竖向承载力设计值Rp的确定: 根据03SG409《预应力混凝土管桩》国家标准图集中的说明第6.2.5条的计算式可以计算出桩身竖向承载力设计值Rp:Rp=AfcΨc。式中Rp—管桩桩身竖向承载力设计值KN;A—管桩桩身横截面积mm2; fc—混凝土轴心抗压强度设计值MPa; Ψc—工作条件系数,取Ψc=0.70 。 2、单桩竖向承载力最大特征值Ra的确定: 根据03SG409《预应力混凝土管桩》国家标准图集中的说明第6.2.6条的计算式可以计算出单桩竖向承载力最大特征值Ra:Ra= Rp/1.35。 3、管桩桩身的竖向极限承载力标准值Qpk的确定: 第一种确定方法:根据GB50007—2002《建筑地基基础设计规范》附录中单桩竖向桩身极限承载力标准值Qpk=2 Ra。

第二种确定方法:根据以下公式计算Qpk=(0.8fck-0.6σpc)A。式中Qpk—管桩桩身的竖向极限承载力标准值KN; A—管桩桩身横截面积mm2; fck—混凝土轴心抗压强度标准值MPa;σpc—桩身截面混凝土有效预加应力。 管桩桩身的竖向极限承载力标准值Qpk相当于工程施工过程中的压桩控制力。 4、综合以上计算公式,管桩桩身的竖向极限承载力标准值Qpk、桩身竖向承载力设计值Rp与单桩竖向承载力最大特征值Ra的关系如下: Ra= Rp/1.35; Qpk=2 Ra=2 Rp/1.35约等于1.48 Rp。 (二)、举例说明: 一、例如,根据03SG409《预应力混凝土管桩》国家标准图集标准,现对PC —A500(100)的管桩分别计算管桩桩身的单桩竖向极限承载力标准值、设计值与特征值如下,以验证以上公式的正确性: 1、管桩桩身竖向承载力设计值Rp的计算: Rp=AfcΨc=125660 mm2×27.5 MPa×0.7=2419KN;03SG409《预应力混凝土管桩》中为2400 KN,基本相符。 2、单桩竖向承载力最大特征值Ra的计算: Ra= Rp/1.35=2419 KN/1.35=1792 KN。 3、管桩桩身的竖向极限承载力标准值Qpk的计算:

管桩检测及承载力计算

管桩检测及承载力计算 管桩检测 1、管桩检测规范应严格按照《基桩高应变动力检测规程》(JGJ 106-97)中相关规定执行。 2、检测仪器管桩高应变动力检测仪器目前国内市场种类较多,所选进口或国产仪器均应满足规程中相关规定。目前国外引进的仪器有瑞典PID打桩分析仪、荷兰TNO基桩诊断系统、美国桩基动力学公司PDA打桩分析仪,国内的有中国建筑科学研究院FEI-C型桩基动测分析系统、中交三航局SDF-1型打桩分析仪、中科院武汉岩土所RSM系列动测仪、武汉岩海工程技术有限公司RS系列桩基动测仪等型号。武汉岩海公司 RS-1616K(PLUS)/1616K动测仪高应变系统主要用途: ?高应变测桩主要特点: ?电性能指标高,机械故障率低?即现速度、力曲线和承载力与打击力?高应变实时监控大于130锤/分钟存取信号?任选RS模式和PDA模式从事高应变检测?自动实现连续采集、叠加、平衡调节功能?兼容速度计和国产或进口内装式加速度计中科院武汉岩土所RSM—24FD浮点工程动测仪是针对目前市政工程、铁路交通、地质勘察等检测工作研制开发的产品,应用多项最新技术,能有效完成基桩高低应变法检测;单孔波速、振动、瑞雷波测试;其它工程动态信号检测;…。是目前我国工程界广泛采用的主流机型,深得广大用户的喜爱。美国桩基动力学公司PAK型PDA高应变桩基动测专用仪器 Case法承载力。侧摩阻力和端阻力。最大压应力、加速度和位置。桩身最大拉应力。计算的桩端应力。桩身结构完整性,缺损程度及位置。传递给桩的最大能量。锤垫层刚度(蒸汽锤/钢桩)每分钟锤击数,检验打桩系统。可显示力、速度、动能、位移、阻力、上下行波的时标曲线,可以用

单桩竖向极限承载力和抗拔承载力计算书

塔吊基础计算书 一、计算参数如下: 非工作状态 工作状态 基础所受的水平力H : 66.2KN 22.5KN 基础所受的竖向力P : 434KN 513KN 基础所受的倾覆力矩M : 1683KN.m 1211KN.m 基础所受的扭矩Mk : 0 67KN.m 取塔吊基础的最大荷载进行计算,即 F =513KN M =1683KN.m 二、钻孔灌注桩单桩承受荷载: 根据公式: 2 a M n P F Qik i ± += (注:n 为桩根数,a 为塔身宽) 带入数据得 单桩最大压力: Q ik 压=872.04KN 单桩最大拔力:Q ik 拔=-615.54KN 三、 钻孔灌注桩承载力计算 1、土层分布情况:

2、单桩极限承载力标准值计算: 钻孔灌注桩直径取Ф800,试取桩长为30.0 米,进入8-3层 根据《建筑地基基础设计规范》(GB50007-2002)8.5.5条: 单桩竖向承载力特征值计算公式: ∑+=i sia i p p pa a l q u A q R λ 式中:R a ---单桩竖向承载力特征值; q pa ,q sia ---桩端端阻力,桩侧阻力特征值; A p ---桩底端横截面面积; u p ---桩身周边长度; l i ---第i 层岩土层的厚度。 经计算:R a =0.5024×600+2.512×(22×0.95+13×4.6+16×5.6+38×7.3+25 ×8.9+30×2.65)=2184.69KN>872.04KN 满足要求。 单桩竖向抗拔承载力特征值计算公式: ∑+=pk i sia i p a G l q u R λ' 式中: R a , ---单桩竖向承载力特征值; λi ---桩周i 层土抗拔承载力系数; G pk ---单桩自重标准值(扣除地下水浮力) 经计算:R a , =2.512×(22×0.95×0.75+13×4.6×0.75+16×5.6×0.75+38×7.3×0.6+25×8.9×0.75+30×2.65×0.6)+0.5024×30×15=1504.03KN>615.54KN 满足要求。

管桩基础搅拌站各基础承载力和配筋等演算

搅拌站基础设计及验算 **项目部拟采用HZS100和HZS75搅拌站各一台,现在根据厂家图纸和现场地基条件设计和验算搅拌站基础。 搅拌站基础主要分五大基础:筒仓基础、主机架基础、送料系统基础、操作室基础和配料系统基础。计算中,筒仓考虑风荷载并根据地质条件使用钢管桩增强抗拔。其他基础均根据图纸采用混凝土扩大基础,其中土质承载力根据《工程地质勘察报告》,地基承载力取90kPa。 1.筒仓基础设计及验算 根据肇花项目东岸搅拌站选址地质情况,筒仓基础拟采用钢管桩配上混凝土承台作为承载基础。 图1.1 筒仓基础结构 混凝土扩大基础拟采用□3.5m×3.5m×0.5m的混凝土结构。钢管桩拟采用直径Ф630mm,壁厚为6mm。 将混凝土如图均分4份,根据北江特大桥勘探资料,表面土层为素填土,允许承载力为90kPa。 1.1抗拔及承压工况计算 根据实际工作分析,抗拔最大工况为风荷载最大且筒仓空载:

如图所示,风荷载作用位置H=15m ,风级按12级风,风压p 取1.3kPa : kN kPa F 21.54)]8.03(35.0123[3.1=+??+??=; 风荷载产生弯矩:m kN FH M ?=?==15.8131521.54; 另外,考虑m e 1.0=偏心,其中筒仓空载载荷载取kN g m k 200=,kN g m m 1400=,则:m kN kN m M ek ?=?=202001.0,m kN kN m M em ?=?=14014001.0 对钢管桩产生附加荷载F ?的计算: 0='++=∑M M M M e ,Fd M ?='; 风向平行钢管所在正方形的边长和对角线时,力偶臂分别为:m d 95.11=和 m d 76.22=。 故,kN m m kN d M M d M F e 6.21395.1215.83322111=??=+='= ?; kN m m kN d M M d M F e 9.30176.215.833222=?=+='= ?; 所以,钢管桩承载力: 每份混凝土质量:kN vg g m t 8.39105.075.175.16.2=????==ρ kN g m R m 7.6919.3018.394max =++= ,kN g m R k 1.2128.394 9.301min =--=(方向向上)。 图1.2 筒仓风荷载 每份混凝土承压:kN A R h 6.2759075.175.1=??==σ

抗拔桩承载力计算书

单桩承载力计算书 、设计资料 1. 单桩设计参数 桩类型编号1 桩型及成桩工艺:泥浆护壁灌注桩 桩身直径d = 0.500m 桩身长度I = 13.00m 桩顶标高81.00m 2?土层性能 3.勘探孔 天然地面标高96.00m 地下水位标高92.00m 注:标高均指绝对标高。 4.设计依据 《建筑桩基技术规范》JGJ 94-2008 二、竖向抗压承载力 单桩极限承载力标准值: Q uk = u」q sik|i + q pk A p =1.57 x(60 X2.50 + 38 X4.00 + 65 X6.50) + 0 X0.20

=1138kN 三、竖向抗拔承载力 基桩抗拔极限承载力标准值: T uk = :Fq sik U i l i =0.75 X60 X1.57 X2.50 + 0.72 X38 X1.57 X4.00 + 0.55 X65 X1.57 X6.50 =714kN 四、基桩抗拔力特征值 R tu=T uk/2+G p=714/2+0.5x0.5x3.14x13x25x1.35=612Kn

桩身强度计算书 、设计资料 1. 基本设计参数 桩身受力形式:轴心抗拔桩 轴向拉力设计值:N' = 750.00 KN 轴向力准永久值:N q = 560.00 KN 不考虑地震作用效应 主筋:HRB400 f y = 360 N/mm 2E s = 2.0 X105 N/mm 2 箍筋:HRB400 钢筋类别:带肋钢筋 桩身截面直径:D = 500.00 mm 纵筋合力点至近边距离:a s = 35.00 mm 混凝土: C30 f tk = 2.01 N/mm 2 最大裂缝宽度限值:-iim = 0.3000 mm 2. 设计依据 《建筑桩基技术规范》JGJ 94-2008 《混凝土结构设计规范》GB 50010--2010 、计算结果 1. 计算主筋截面面积 根据《混凝土结构设计规范》式( 6.2.22 ) N' W f y A s + f py A py 因为不考虑预应力,所以式中f py及A py均为0 N' 750.000 X103 A s = ' = = 2083.33 mm 2 f y 360 2. 主筋配置 根据《建筑桩基技术规范》第 4.1.1条第1款 取最小配筋率-min = 0.597%

桩计算

一.单桩承载力计算(DZCZ-1) 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑抗震设计规范》(GB 50011-2010), 本文简称《抗震规范》 《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》 ----------------------------------------------------------------------- 《湿陷性黄土地区建筑规范》2004版第5.7.5条;本文简称《黄土规范》 《铁路桥涵地基及基础设计规范》2005版第6.2.2条中有关摩檫桩计算部分;本文简称《铁基规范》 ----------------------------------------------------------------------- 1. 设计资料 1.1 桩土关系简图

1.2 已知条件 (1) 桩参数 承载力性状摩擦端承桩 桩身材料与施工工艺混凝土预制桩 截面形状圆形 砼强度等级 C30 桩身纵筋级别 HRB335

直径(mm) 600 桩长(m) 12.000 (2) 计算内容参数 竖向承载力√ 计算方法经验参数法 考虑负摩阻ㄨ 水平承载力√ 桩顶约束情况固接 允许水平位移(mm) 10.0 纵筋保护层厚(mm) 60 抗拔承载力√ 软弱下卧层ㄨ 考虑地基液化不考虑 (3) 土层参数 (m)高(m)(kN/m3)(kN/m3)(kPa)(kPa)(MN/m4) 1.3 计算内容 (1) 单桩竖向承载力 (2) 单桩水平承载力 (3) 单桩抗拔承载力 2 计算过程及计算结果

抗拔桩检测方案范本

抗拔桩检测方案

文档仅供参考 南京至高淳城际轨道禄口机场至溧水段试验段土建工程(DS7-TA05标) 桩基检测方案 编制: 审核: 审批: 中铁十四局集团有限公司 二○一四年十月二十日

桩基检测方案 1工程概况 1.1工程名称:南京至高淳城际轨道禄口机场至溧水段试验段土建工程(DS7-TA05标) 1.2建设单位:南京地铁建设有限责任公司 1.3建设地点:金龙路站~无想山站 1.4工程概况:本标段二站一区间,金龙路站、无想山站和金龙路站~无想山站区间。 金龙路站采用Φ1000钻孔灌注桩,混凝土等级为C35P8水下,有效桩长5m。设计抗拔承载力特征值为:1000KN(KBZ1~9a、15~22a)、2400KN(KBZ10~14)。金龙路站桩数总计127根。 无想山站采用Φ1000钻孔灌注桩,混凝土等级为C35P8水下,有效桩长5m。设计抗拔承载力特征值为:1000KN(KBZ1~KBZ5)、2400KN (KBZ6~KBZ25)。无想山站桩数总计90根。无想山站抗拔桩平面布置见图2-2。 1.5检测项目及数量: 《建筑基桩检测技术规范》JGJ106- 《建筑地基基础处理技术规范》JGJ79-

《建筑基桩技术规范》JGJ94- 《建筑地基基础检测规程》DGJ32/TJ 142- 《建筑地基基础设计规范》GB50007- 《钻孔灌注桩成孔、地下连续墙成槽质量检测技术规程》DGJ32/TJ117- 《南京轨道交通工程建设质量检测项目和频率规定》 本工程设计图纸 1.7检测任务: 低应变检测:经过低应变动测对试桩完整性进行检测,以确定试桩的完整性和可靠性。 抗拔检测:测试试验桩单桩竖向抗拔最大值,提供单桩竖向抗拔承载力极限值和特征值; 测定单桩竖向荷载作用下的荷载和变形;判定单桩竖向抗拔承载力是否满足设计要求。 2检测方法 2.1静载抗拔检测 2.1.1检测装置及安装示意图 试验装置主要包括千斤顶加载部分和桩顶位移观测两部分。 在抗拔桩的顶部架设一根钢梁,将抗拔桩钢筋锚固于钢梁之上。在抗拔桩两侧的地面上对称放置两块荷载板,荷载板上方分别安装千斤顶进行并联同步加载。千斤顶加载产生的抬升力由钢梁传递给抗拔桩的钢筋笼。桩顶位移用百分表位移传感器测量。

预应力混凝土管桩的计算

预应力混凝土管桩的计算 C.1预应力混凝土管桩的预应力损失及桩身混凝土有效预压应力值的计算方法,按照现行《混凝土结构设计规范》GB50010的规定计算。根据管桩的生产工艺特点,预应力损失一般考虑管桩中直线预应力钢棒由于锚夹具变形和钢棒内缩引起的预应力损失值ii;预应力钢棒 的应力松驰引起的预应力损失14;管桩混凝土收缩、徐变引起预应 力损失|5。 1、预应力钢筋由于锚夹具变形和钢筋内缩引起的预应力损失值 按下列公式计算: |1= 式中a—张拉端锚具变形和钢筋内缩值(伽); L—单节管桩长度或单根和模长度(mm); Es—预应力钢筋的强性模量(2.0 X 105N/m 2)。 2、预应力钢筋的应力松驰引起的预应力损失值14按下列公式计算: 11=0.025 con 式中con —预应力钢筋张拉控制应力(N/m 2); 0.025 —松驰系数,按低松驰螺旋槽钢棒确定。 3、混凝土收缩、徐变引起的预应力损失值15按下列公式计算: 60+340 opc i f 'u l 5= 1 + 15 式中pc i —管桩横截面上预应力钢棒合力点处的混凝土法向应力 ( pc i = ( con- 11- |4) A P/ A o)

f施加预应力时的混凝土立方体抗压强度; —管桩横截面上预应力钢筋的配筋率。 4、管桩横截面上混凝土有效预压力值应按下式计算: pc= ( con- J A p/A o 式中:con—预应力钢筋张拉控制应力(一般取con =0.70f ptk) 1—钢筋的总预应力损失值(1=(11+ 14+ 15) A p—管桩横截面上预应力钢筋总截面积; A o—管桩换算横截面面积。 C.2管桩在纯弯状态下的抗弯承载力设计值和抗弯承载力极限值分别 按下规定计算: 1、管桩的抗弯承载力设计值按下式计算 Sn兀a Sn n a Sn兀 a M = a i f c A(r i+r2)—+ f Py A p r p (f '- po)A p「p 2 n n n 式中:f py A p a= a f c A+f py A p+1.5(f py- po)A p a t =1-1.5 a A—管桩有效横截面面积(m^); A—预应力钢棒的总横截面面积(mm ; 「1、「2—管桩截面的内、外半径(mr); 九一纵向预应力钢筋重心所在圆周的半径(mr); a—受压区混凝土截面面积与全截面面积的比值; a t—纵向受拉钢筋截面面积与全部纵向钢筋截面面积的比值, 当a> 2/3 时,取a t =0 a 1—受压力混凝土矩形应力图的应力值与混凝土轴心抗压强

单桩承载力计算

单桩承载力计算(DZCZ-1) 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑抗震设计规范》(GB 50011-2010), 本文简称《抗震规范》 《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》 ----------------------------------------------------------------------- 《湿陷性黄土地区建筑规范》2004版第5.7.5条;本文简称《黄土规范》 《铁路桥涵地基及基础设计规范》2005版第6.2.2条中有关摩檫桩计算部分;本文简称《铁基规范》 ----------------------------------------------------------------------- 1. 设计资料 1.1 桩土关系简图

1.2 已知条件 (1) 桩参数 承载力性状端承摩擦桩

桩身材料与施工工艺混凝土预制桩 截面形状圆形 砼强度等级 C30 桩身纵筋级别 HRB335 直径(mm) 600 桩长(m) 10.000 (2) 计算内容参数 竖向承载力√ 计算方法经验参数法 考虑负摩阻ㄨ 水平承载力√ 桩顶约束情况固接 允许水平位移(mm) 10.0 纵筋保护层厚(mm) 60 抗拔承载力√ 软弱下卧层√ 承载力比 0.33 均匀分布侧阻比 0.50 考虑地基液化不考虑 (m)高(m)(kN/m3 )(kN/m3)(kPa)(kPa)(MN/m4 )

A3锚杆抗拔承载力计算

腾冲古茶墅假日风景庄园项目人工挖孔桩计算书 工程编号:2011038 云南博超建筑设计有限公司 设计人:张寅 校对人:张毅 二〇一二年十月

抗浮锚杆竖向抗拔承载力特征值Rt 的取值计算 一、基本概况 锚杆类型: 全长粘结型抗浮锚杆 承载力设计参数取值: 桩端持力层为④粘土层(硬塑) 锚杆锚固段侧阻力标准值按桩基规范表5.3.5-1取90kPa 。 桩身设计直径: d = 0.25 m 锚杆长度: l = 10.00 m. 二、计算依据 《建筑桩基技术规范》(JGJ 94-2008) 以下简称 桩基规范 《全国民用建筑工程设计技术措施》结构(地基与基础 2009年版) 以下简称 民用技术措施 《建筑边坡工程技术规范》(GB 50330-2002) 以下简称 边坡规范 《岩土锚杆(索)技术规范》(CECS 22-2005) 以下简称 锚杆规范 三、竖向抗拔承载力特征值Rt 的取值计算 1. 计算参数表 f rb ——注浆体与土层间的粘结强度特征值,按民用技术措施表7.3.2-2确定; q sik ——极限侧阻力,按桩基规范表5.3.5-1取值。 2. 锚杆竖向抗拔承载力特征值估算 按式(1)或(1-1)和式(2)估算,两者宜取较小值。 10.8 3.140.251032201t a rb R Dl f kN ξπ==????= (1) 11900.8 3.140.250.7810220.42n t i sia i i R D q l kN ξπλ===????? =∑ (2) (1-1)

3. 抗拔锚杆杆体的横截面积A 的估算 3 2 2201108090.69360td y N A mm f ξ?≥==? (3) 式中,ξ2 ——锚筋抗拉工作条件系数,永久锚杆取0.69 ; N td ——荷载效应基本组合下的锚杆轴向拉力设计值; f y ——钢筋或预应力钢绞线的抗拉强度设计值。 4. 锚杆钢筋与砂浆之间的锚固长度应满足下式验算要求 3 320110 1.10.63 3.1422 2.40.7td a s b N t m n Df ξπ?≥==????? 式中,n s ——钢筋或钢绞线根数,取3 ; D ——单根钢筋或钢绞线直径,根据上式(3)的计算取20mm ; f b ——钢筋或钢绞线与锚固注浆体间的粘结强度设计值,按民用技术措 施表7.3.2-3取2.4MPa (砂浆强度等级为M30),当采用三根钢筋点焊成束时,应乘0.7的折减系数。

抗拔桩单桩基桩拔力计算

抗拔桩单桩基桩拔力计算 经在桩周高压旋喷咬合注浆后,仅考虑消除“泥皮”,填充空洞和涌包不考虑改良桩周土体,提高摩擦系数的情况下,按《建筑桩基技术规范》JGJ94-2008第46页5.4.5可知,抗拔桩非群桩设计,抗拔力可仅按单桩或(群桩非整体破 坏)考虑的情况下,桩基的基桩拔力N k ≤T uk /2+G p 式中N k —按合在效应标准组合计算的基桩拔力; T uk —群桩呈非整体破坏时基桩的抗拔极限承载力标准值,按该规范第5.4.6条确定; G p —桩体自重,地下水位以下取浮重度; 此外,T uk =∑λ i q sik u i l i 式中T uk —基桩抗拔极限承载力标准值; u i —桩身周长,对于等直径桩取u=πd; q sik —桩侧表面第i层土的抗压极限侧阻力标准值,可按该规范表 5.3.5-1取值;λ i —抗拔系数,可按该规范表5.4.6-2取值; l i —自桩底起算的长度 因此,按最不利状态下,梧桐山南站7#抗拔桩的基桩拔力T uk /2=(∑λ i q sik u i l i ) /2=(0.7×160×3.142×1.4×5.42+0.7×160×3.142×1.4×2.58) /2=1970.66KN 注:其中取值均按最不利值考虑:λ i 按黏性土、粉土考虑,取值范围为0.7~ 0.8;q sik 按砂土状强风化硬岩考虑,取值范围为160~240. 即便在不考虑结构自重、荷载、桩体自重的情况下,N k ≤1970.66KN , 取值仍 大于设计值1850KN。 四、后注浆灌注桩竖向增强段的总极限侧阻力标准值计算 7#抗变为后注浆灌注桩,故可按《建筑桩基技术规范》JGJ94-2008第40页Ⅶ后注浆灌注桩计算该桩的单桩极限承载力。 按最不利状态考虑,不考虑桩体自重、结构荷载等,仅考虑桩身与土体之间 的竖向负摩擦力,其计算公式为:Q gsk =u∑β si q sik l gi 式中:Q gsk —为后注浆竖向增强段的总极限侧压力标准值; u—桩身周长;

管桩竖向承载力计算书及符合地基计算

63#楼桩承载力计算书 本工程±0.000定位为黄海高程9.450m,桩顶标高为-1.50m,根据地勘报告桩端持力层为○5层粉质粘土层,桩基选用预应力砼管桩。 根据地勘报告选KK11号孔验算: 桩径=0.4m 周长=1.256m 桩端面积Aj=0.0876㎡ 桩端敞口面积Apl =0.038㎡桩长L=18m λp=0.8 桩端极限端阻力标准值=3300x(0.0876+0.8*0.038)=389.4KN 桩极限侧阻力标准值: (3.55*40+1.57*45+5.4*27+5.55*58)*1.256=850.5632KN 单桩竖向承载力特征值为Ra=(850.5632+389.4)/2=620KN 73#楼桩承载力计算书 本工程±0.000定位为黄海高程9.450m,桩顶标高为-1.50m,根据地勘报告桩端持力层为○5层粉质粘土层,桩基选用预应力砼管桩。 根据地勘报告选K212号孔验算: 桩径=0.4m 周长=1.256m 桩端面积Aj=0.0876㎡ 桩端敞口面积Apl=0.038㎡桩长L=15m λp=0.8 桩端极限端阻力标准值=2500x(0.0876+0.8*0.038)=295KN 桩极限侧阻力标准值: (2.2*55+7.1*28+1.7*60+2.8*80)*1.256=811KN 单桩竖向承载力特征值为Ra=(811+295)/2=553KN 根据地勘报告选K209号孔验算: 桩径=0.4m 周长=1.256m 桩端面积Aj=0.0876㎡ 桩端敞口面积Apl=0.038㎡桩长L=11m λp=0.8 桩端极限端阻力标准值=2500x(0.0876+0.8*0.038)=295KN 桩极限侧阻力标准值: (2*55+3.1*60+4.6*80)*1.256=834KN 单桩竖向承载力特征值为Ra=(834+295)/2=565KN

抗拔承载力计算2011

抗拔桩计算 条件1:面积:A=8.0X9.3=74.4mm2 设防水位标高为相对标高-1.640m,地下室底板的底标高为相对标高-5.100m 抗浮水位:H=5.100-1.640=3.460m 抗浮自重:底板=25X0.5A=12.5A KN 首层板=25X0.25XA=6.25A KN 覆土=16X0.6A=9.6A KN 柱=25X0.5X0.5X3.7=23.1KN 桩台=25X2X2X1.1=110KN 故F自重=(12.5A+6.25A+9.6A+133.1)X0.9=25.51A+119.79KN 水浮力:F浮设=3.46X10A=34.6A KN 现取用φ400的管桩为抗拔桩,抗拉特征值为F抗拔=150KN 因为(F浮设-F自重)X1.2=F抗拔,即(34.6A -25.51A-119.79)X1.2=150n,10.908A-143.7=150n,n=(811.1-143.7)/150=5 所以5根抗拔桩能满足抗拔要求。条件2:面积:A=8.0X9.3X0.5=37.2mm2 设防水位标高为相对标高-1.640m,地下室底板的底标高为相对标高-5.100m 抗浮水位:H=5.100-1.640=3.460m 抗浮自重:底板=25X0.5A=12.5A KN 首层板=25X0.25XA=6.25A KN 覆土=16X0.6A=9.6A KN 柱=25X0.5X0.5X3.7=23.1KN 桩台=25X0.8X2X1.1=44KN 侧壁=25X0.4X8X3.55=284KN 故F自重=(12.5A+6.25A+9.6A+351.1)X0.9=25.51A+316KN 水浮力:F浮设=3.46X10A=34.6A KN 现取用φ400的管桩为抗拔桩,抗拉特征值为F抗拔=150KN 因为(F浮设-F自重)X1.2=F抗拔,即(34.6A -25.51A-316)X1.2=150n,10.908A-379=150n,n=(405.77-379)/150=1 所以2根抗拔桩能满足抗拔要求。

单桩承载力计算

单桩承载力计算(13号楼单桩承载力计算) 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑抗震设计规范》(GB 50011-2010), 本文简称《抗震规范》 《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》 ----------------------------------------------------------------------- 《湿陷性黄土地区建筑规范》2004版第5.7.5条;本文简称《黄土规范》 《铁路桥涵地基及基础设计规范》2005版第6.2.2条中有关摩檫桩计算部分;本文简称《铁基规范》 ----------------------------------------------------------------------- 1. 设计资料 1.1 桩土关系简图

1.2 已知条件 (1) 桩参数 承载力性状端承摩擦桩 桩身材料与施工工艺干作业挖孔桩 截面形状圆形 砼强度等级 C30 桩身纵筋级别 HRB400

直径(mm) 600 桩长(m) 28.000 是否清底干净√ 端头形状不扩底 (2) 计算内容参数 竖向承载力√ 考虑负摩阻ㄨ 水平承载力ㄨ 抗拔承载力ㄨ 软弱下卧层ㄨ 考虑地基液化不考虑 (3) 土层参数 (m)高(m)(kN/m3)(kN/m3)(kPa)(kPa) 1.3 计算内容 (1) 单桩竖向承载力

2 计算过程及计算结果 2.1 单桩竖向承载力 (1) 竖向极限承载力 侧阻计算 序号地层名称地层厚度极限侧阻力本层侧阻 (m) qsik(kPa) (kN) ============================================== 1 湿陷性黄土 4.93 30.00 278.78 2 粘性土 3.90 52.00 382.27 3 粘性土 4.00 36.00 271.43 4 粘性土 3.20 60.00 361.91 5 粘性土 3.40 44.00 281.99 6 粘性土 8.5 7 68.00 1098.48 ============================================== Σ 2674.865 侧阻: Qsk=2674.87 (kN) 端阻计算 q pk×A p=800.0000×0.2827=226.19 (kN) 最后端阻Qpk=226.19(kN) (2) 竖向承载力特征值 根据《桩基规范》5.2.2及5.2.3 式中: R a——单桩竖向承载力特征值; Q uk——单桩竖向极限承载力标准值; K ——安全系数,取K=2。 单桩竖向极限承载力标准值 Q uk = 2901.060(kN) 单桩竖向承载力特征值 R a = 1450.530(kN) 实际承载力应扣除湿陷性黄土层侧阻力部分: 单桩竖向极限承载力标准值 Q uk = 2901.060-278.78=2622.28(kN) 单桩竖向承载力特征值 R a = 1311.14(kN) 考虑旋挖成孔,承载力特征值可达1311.14x1.3=1704.5(kN) 实际布桩采用1600kN 则试桩荷载应为:2x(1600+1.884x5x15x2)==3765.2kN 取3780 kN ----------------------------------------------------------------------- 【理正结构设计工具箱软件6.5PB3】计算日期: 2016-08-22 19:44:06 -----------------------------------------------------------------------

500管桩单桩水平承载力特征值计算书

管桩单桩水平承载力(地震)特征值计算书 一.基本资料 桩类型:125A -PHC500 桩顶约束情况:铰接,半固接 混凝土强度等级: C80 二.系数取值 1.桩入土深度 h = 15.000~25.000m 2 桩侧土水平抗力系数的比例系数 44/5000/5m KN m MN m ==(松散或稍密填土)44/2500/5.2m KN m MN m ==(淤泥或淤泥质土) 3.桩顶容许水平位移a X 0= 10mm 4.砼弹性模量C E = 38000N/mm 2=7108.3?KN/m 2 三.执行规范 《建筑桩基技术规范》(JGJ 94-2008) 《先张法预应力混凝土管桩基础技术规程》(DBJ13-86-2007) 四.计算内容 1.管桩截面惯性矩: 64)1(44απ-=D I =64 ) 50.01(5.014.344-?=31087.2-?m 4 其中,α= =D d 500.0500250= D ——管桩外径,d ——管桩内径 2.管桩截面抗弯刚度: EI =237927011087.2108.385.085.0m KN I E C ?=????=- 3.管桩桩身计算宽度:

m 125.10.5)0.9(1.5D b0=+= 4.管桩水平变形系数: 5 0I E mb c =α=5 92701125.15000?=)/1(571.0m 5.管桩桩顶水平位移系数: 桩的换算深度al >4.0 查表得:441.2=x V 6.单桩水平承载力设计值: a x C H X V I E R 03α==KN 701.7001.0441 .292701571.03=?? 7.单桩水平承载力特征值: KN R R H H a 5337.5235.1/701.70/≈===γ 五.结论: 根据《福建省结构设计暂行规定》第4条规定: (1) 单桩和两桩承台基础中的单桩水平承载力特征值取值为: KN R Ha 53= (2) 三桩及三桩以上承台基础(非单排布置)中的单桩水平承载力 特征值取值为:KN KN R H a 4.775346.1'=?= 注:桩顶约束为固接时,940.0=x V ,故,桩顶约束介于铰接与固接之间 假定桩顶水平位移系数为线性变化(供参考): 675.12940.0441.2'=+=x V ,KN R V V R Ha x x Ha 24.7753675 .1441.2''=?=?= (3) 当地基土为淤泥或淤泥质土(44/2500/5.2m KN m MN m ==)时, KN R H a 5.34=,KN R H a 3.50'=

抗拔桩承载力计算书

单桩承载力计算书 一、设计资料 1.单桩设计参数 桩类型编号1 桩型及成桩工艺:泥浆护壁灌注桩 桩身直径d = 0.500m 桩身长度l = 13.00m 桩顶标高81.00m 2.土层性能 天然地面标高96.00m 地下水位标高92.00m 4.设计依据 《建筑桩基技术规范》JGJ 94-2008 二、竖向抗压承载力 单桩极限承载力标准值: Q uk = u∑q sik l i + q pk A p = 1.57 × (60 × 2.50 + 38 × 4.00 + 65 × 6.50) + 0 × 0.20 = 1138kN 单桩竖向承载力特征值R a = Q uk / 2 = 569kN 三、竖向抗拔承载力 基桩抗拔极限承载力标准值: T uk = ∑λi q sik u i l i = 0.75 × 60 × 1.57 × 2.50 + 0.72 × 38 × 1.57 × 4.00 + 0.55 × 65 × 1.57 ×6.50 = 714kN 四、基桩抗拔力特征值

R tu=T uk/2+G p=714/2+0.5x0.5x3.14x13x25x1.35=612Kn

桩身强度计算书 一、设计资料 1.基本设计参数 桩身受力形式:轴心抗拔桩 轴向拉力设计值:N' = 750.00 KN 轴向力准永久值:N q = 560.00 KN 不考虑地震作用效应 主筋:HRB400 f y = 360 N/mm 2 E s = 2.0×105 N/mm 2 箍筋:HRB400 钢筋类别:带肋钢筋 桩身截面直径:D = 500.00 mm 纵筋合力点至近边距离:a s = 35.00 mm 混凝土:C30 f tk = 2.01 N/mm 2 最大裂缝宽度限值:ωlim = 0.3000 mm 2.设计依据 《建筑桩基技术规范》JGJ 94-2008 《混凝土结构设计规范》GB 50010--2010 二、计算结果 1.计算主筋截面面积 根据《混凝土结构设计规范》式(6.2.22) N' ≤ f y A s + f py A py 因为不考虑预应力,所以式中f py 及A py 均为0 A s = N'f y = 750.000×103 360 = 2083.33 mm 2 2.主筋配置 根据《建筑桩基技术规范》第4.1.1条第1款 取最小配筋率 ρmin = 0.597% 验算配筋率时,取 ρ = A s A = 2083.33 196349.54 = 1.061% 根据《混凝土结构设计规范》第9.3.1条第1款 取最大配筋率 ρmax = 5.000% 因为 ρmin ≤ ρ ≤ ρmax 所以,主筋配筋率满足要求 实配主筋:1220,A s = 3769.91 mm 2 3.箍筋配置 按构造配置箍筋 实配箍筋:8@300, A sv s = 0.1676 mm 2 /mm 4.计算ρte A ts = A s = 3769.91 mm 2

桩承载力抗拔计算书

桩承载力计算书 持力土层6层 边长400 抗拔(工程桩) 22m(-5.70) C9 Rtk=4x0.4x(25x12.72x0.7+45x4.2x0.7+80x1.7x0.75+70x3.38x0.7) =4x0.4x622.5=996 G=0.4x0.4x(22-0.05)x(25-10)=52.7 Rtd=(996+52.7)/2=524kN 取Nk=520kN 桩接头焊缝长度连接B Q=520x2/1.6=650kN Q=Lw’*he*fwt/1.2 fwt=170MPa he=0.75s=0.75x6=4.5mm Lw’=16Lw/2=8Lw Lw=650x1000x1.2/4.5/170/8=127mm 图集Lw=160mm 桩顶锚固筋 As=Q/fy=520x2/1.6x1000/360=1805mm2 取8d20 As=2513mm2 《建筑桩基技术规范》3.5.3条工程桩裂缝控制值为0.3mm 《建筑桩基技术规范》4.1.5条混凝土保护层厚度30mm 地下室抗浮(水位标高室外地坪下0.5m): 一般部位柱网尺寸8.1x8.1 水位高度 6.0+0.1+0.6-0.5=6.2m 板自重25x0.6+20x0.1+20x0.02+25x0.25+16x1.0=39.6kN/m2 柱、梁自重25x0.5x0.5x3.3+25x0.35x(0.8-0.25)x(8.1+8.1) =98.5kN G=39.6x8.1x8.1+98.5+520x4=4776kN F=6.2x10x8.1x8.1=4067kN G/F=1.17>1.05 安全 抗拔(试桩) 26m(-1.900) C9 Rtk=4x0.4x(32x0.5x0.7+25x15.1x0.7+45x4.2x0.7+80x1.7x0.75+70x3.58x0.7) =4x0.4x685.1=1096 G=0.4x0.4x26x(25-10)=62.4 Rtd=(1096+62.4)/2=579kN 试桩加荷值为1200 裂缝控制验算计算书(工程桩) 1.1 基本资料 1.1.1 工程名称:工程一 1.1.2 矩形截面轴心受拉构件,构件受力特征系数αcr = 2.7,截面尺寸 b×h = 400×400mm 1.1.3 纵筋根数、直径:第 1 种:8Φ20, 受拉区纵向钢筋的等效直径 deq =∑(ni·di2) / ∑(ni·υ·di) = 20mm, 带肋钢筋的相对粘结特性系数υ= 1 1.1.4 受拉纵筋面积 As = 2513mm2,钢筋弹性模量 Es = 200000N/mm2 1.1.5 最外层纵向受拉钢筋外边缘至受拉区底边的距离 cs = 30mm, 纵向受拉钢筋合力点至截面近边的距离 as = 40mm,h0 = 360mm 1.1.6 混凝土轴心抗拉强度标准值 ftk = 2.01N/mm2 C30 1.1.7 按荷载准永久组合计算的轴向力值 Nq = 550kN 1.1.8 设计时执行的规范:《混凝土结构设计规范》(GB 50010-2010),以下简称混凝土规范 1.2 最大裂缝宽度验算 1.2.1 按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte,按下式计算: ρte = As / Ate (混凝土规范式 7.1.2-4) 对矩形截面的轴心受拉构件:Ate = b·h = 400*400 = 160000mm2 ρte = As / Ate = 2513/160000 = 0.01571 1.2.2 在荷载准永久组合下受拉区纵向钢筋的应力σsq,按下列公式计算: 轴心受拉:σsq = Nq / As (混凝土规范式 7.1.4-1) σsq =550000/2513 = 219N/mm2 1.2.3 裂缝间纵向受拉钢筋应变不均匀系数ψ,按混凝土规范式 7.1.2-2 计算: ψ= 1.1 - 0.65ftk / (ρte·σsq) =1.1-0.65*2.01/(0.01571*219) = 0.721 1.2.4 最大裂缝宽度ωmax,按混凝土规范式 7.1.2-1 计算: ωmax =αcr·ψ·σsq·(1.9cs + 0.08deq / ρte ) / 1.5Es = 2.7*0.721*219*(1.9*30+0.08*20/0.0157)/ 1.5 *200000 = 0.225mm ≤ωlim = 0.3mm,满足要求。

相关文档
最新文档