Forced convection heat transfer in tube banks in cross flow

Forced convection heat transfer in tube banks in cross flow
Forced convection heat transfer in tube banks in cross flow

Chemical Engineering Science57(2002)379–

391

https://www.360docs.net/doc/fb15511101.html,/locate/ces

Forcedconvection heat transfer in tube banks in cross ow

V.K.Mandhani a,R.P.Chhabra a;?,V.Eswaran b

a Department of Chemical Engineering,Indian Institute of Technology,Kanpur208016,India

b Department of Mechanical Engineering,Indian Institute of Technology,Kanpur208016,India

Received11April2001;receivedin revisedform27August2001;accepted18September2001

Abstract

The forcedconvection heat transfer characteristics for an incompressible,stead y andNewtonian uid ow over a bund le of circular cylinders has been investigated numerically.The inter-cylinder hydrodynamic interactions have been approximated by employing a simple cell mod el.The momentum andenergy equations have been solvedby using a?nite d i erence basednumerical solution proced ure for a range of physical and kinematic conditions.Furthermore,the role of the type of thermal boundary condition,namely,a constant temperature or a constant heat ux,imposed on the surface of the cylinder has also been elucidated.Extensive results on the temperature?elds,and on the variation of the Nusselt number on the surface of a typical cylinder in the assemblage have been obtained for two values of the Prandtl number(correspond ing to air andwater).The Reynold s number of ow was variedin the range1–500andthe void age of the assemblage rangedfrom0.4to0.99thereby covering the entire range of interest as encounteredin tubular heat exchangers andin?brous bed s.The paper is conclud edby presenting extensive comparisons with the limitedanalytical=numerical and=or experimental results available in the literature for the case of a single cylinder as well as that for tube bundles.?2002Elsevier Science Ltd.All rights reserved.

Keywords:Nusselt number;Tube bundles;Heat transfer;Cell model

1.Introduction

The ow of uids and heat transfer in tube banks represents an idealization of many industrially important processes.Typical examples include?ltration, ow in bi-ological systems,tubular heat exchangers, ow andheat transfer in?brous media as encountered in polymer process-ing and in insulation materials,etc.Additional examples where this ow con?guration is of relevance include ow in the uid izedbedd rying of?brous materials(such as coconut shell,rice husk)andpaper pulp suspensions andin foodprocessing applications(Kiljanski&Dziubinski,1996; Mauret&Renaud,1997).Notwithstanding the importance of the d etailedkinematics of the ow andtemperature?eld s, it is readily agreed that the variables of central interest in all these applications are the frictional pressure gradient and the convective heat transfer coe cient(or the rate of heat transfer)as functions of the pertinent system variables.Con-sequently,over the years,considerable research e ort has

?Corresponding author.Department of Engineering,Indian Insti-tute of Technology,Kanpur208016,India.Tel.:+91-512-597393;fax: +91-512-590007.

E-mail address:rpc@iitk.ernet.in(R.P.Chhabra).been expended in developing satisfactory methods for the prediction of pressure drop for the ow of incompressible Newtonian uids in cross- ow con?guration over a collec-tion of circular cylinders,as can be gauged from the number of books andsurvey articles in this?eld(e.g.,Zukauskas, 1987a,b,C hap.6;Drummond&Tahir,1984;Nishimura, 1986;Satheesh,Chhabra,&Eswaran,1999;Shibu,Chhabra, &Eswaran,2001).Perhaps it is fair to point out here that a bulk of the literature relates to momentum transfer or the es-timation of frictional pressure drop incurred during the cross ow of uids over tube banks in the low Reynolds number region.This work addresses the question of the prediction of the Nusselt number as a function of the Reynolds and Prandtl numbers for a range of voidages of tube banks.It is,however,instructive anduseful to brie y summarize the pertinent studies available in the literature.

2.Previous work

Over the years,considerable research e ort has been expend edin investigating the forcedconvection even from a single long cylinder,and an exhaustive compilation of such studies has been given by Ahmad(1996),though it

0009-2509/02/$-see front matter?2002Elsevier Science Ltd.All rights reserved. PII:S0009-2509(01)00390-6

380V.K.Mandhani et al./Chemical Engineering Science57(2002)379–391

only relates to the ow of air,i.e.,the Prandtl number of about0.7;subsequently,more accurate results for this ow con?guration have been reportedby Lange,Durst,and Breuer(1998)for the ow of air over a heatedcylind er. In contrast,the analogous problem of forcedconvection from tube bundles in cross- ow con?guration has been studied much less extensively,both experimentally as well as analytically=numerically.From a theoretical standpoint, a mathematical description of the cylinder–cylinder interac-tions is needed in addition to the governing equations of con-tinuity,momentum andenergy.C urrently,there are two d is-tinct approaches available to incorporate this feature into an analysis.In the?rst scheme,the momentum andenergy equations are solvedanalytically and=or numerically for periodic arrays with di erent geometrical arrangements. For instance,Laund er andMassey(1978)reportedlim-itedresults on pressure d rop andheat transfer in ow over a staggeredarrangement of circular cylind ers with equal transverse andlongitud inal pitch andreportedsatisfactory agreement with the experimental results of Bergelin,Brown, andDoberstein(1952).However,the main thrust of their study was on the numerical aspects of the solution proce-dure for a Prandtl number of20and the Reynolds number in the range of50–75.In a two-part paper,Wung andC hen (1989)andC hen andWung(1989)have re-investigated this problem by considering the steady and incompressible ow over staggeredandin-line arrays of circular cylind ers for the ratio of the longitudinal to transverse pitches of two. They solvedthe Navier–Stokes andthe energy equations for the Reynold s numbers of40,120,400and800andfor the Prandtl number values of0.1,1and10.The motivation of including the rather small value of Prandtl number of0.1 is not immediately obvious.While the major thrust of their study was on the elucidation of the evolution of the ow ?eld(stream lines,second ary ow,etc.)with the increasing Reynolds number of ow,they(Chen&Wung,1989)did present limitedresults on the mean Nusselt number as a function of the Reynolds number and Prandtl number.The average Nusselt number was shown to scale as Re Pr?where rangedfrom0.40to0.45and?varieda little in the range 0.37–0.38for the in-line andstaggeredarrays,respectively. Conversely,while the actual geometrical arrangement of an array might exert a strong in uence on the detailed kinemat-ics of ow,the gross heat transfer characteristics seemed to be little e ectedby such d etails of an array.More re-cently,Martin,Saltiel,andShyy(1998)have numerically stud iedthe frictional losses andconvective heat transfer in sparse periodic(square and triangular)arrays of cylinders in cross- ow(voidage?0:8).They have also reportedthe surface averagedvalues of Nusselt number for the ow of air andfor the values of Reynold s number ranging from3 to160.Furthermore,they also examinedthe e ect of the type of the thermal boundary condition,i.e.,a constant tem-perature or constant heat ux imposedon the surface of the cylinder.As expected,the Nusselt number for the constant heat ux condition tends to be somewhat higher than that under the constant temperature boundary condition,though the di erence between the two values is strongly dependent on the porosity of the array andthe Reynold s number.Fur-thermore,this study also shows that the dependence of the Nusselt number on the Reynolds number progressively be-comes weaker with increasing porosity,i.e.,as the distance between the cylinders increases.Likewise,Wilson and Bassiouny(2000)have numerically studied heat transfer between air andin-line as well as staggeredarrays com-prising two rows of cylinders in fully turbulent regime (Reynolds number upto50,000).They employed the con-stant temperature condition on the surface of the cylinders. In addition to these numerical studies,Sangani and Acrivos (1982)presentedan analytical=numerical solution for Nus-selt number which is applicable in the low Reynolds number and Prandtl number region.Such studies tend to be not only highly computational intensive andmust be repeatedfor a range of values of the geometrical details(pitch and type of arrangement)of the arrays to embrace the wide range of porosities encounteredin process applications but are also of little practical utility owing to the limitation of the low Reynolds number.

The second approach to the modeling of the cylinder–cylinder interactions relies on the use of the so-called cell models.In this approach,the viscous interactions between the uidandthe tube bank are mimickedby enclosing each cylinder into a hypothetical concentric cylindrical enve-lope of the uidof the size such that the void age of each cell is equal to the overall mean voidage of the assem-blage.Amongst such models,two cell models,namely,the free surface andthe zero vorticity cell mod els(Happel& Brenner,1965)seem to have gainedwid e acceptance in predicting macroscopic transport phenomena in concen-tratedsystems.Thus,for instance,both the sphere-in-sphere and the concentric cylinders versions of such cell models have been shown to yieldsatisfactory pred ictions of fric-tional losses for the ow of Newtonian andnon-Newtonian uids in beds of spherical and?brous beds as well as in a collection of circular cylinders up to moderate values of the Reynolds number(Kawase&Ulbrecht,1981a,b;Tri-pathi&Chhabra,1992,1996;Chhabra,1993a;Satheesh et al.,1999;Vijaysri,Chhabra,&Eswaran,1999;Dhotkar, Chhabra,&Eswaran,2000;Chhabra,Dhotkar,Eswaran, Satheesh,&Vijaysri,2000;Chhabra,Comiti,&Machac, 2001;Shibu et al.,2001).Similarly,this approach has also been shown to yieldreasonable estimates of the free rise velocity of bubble swarms in Newtonian andpower-law type non-Newtonian uids in the creeping and the high Reynolds number ow regimes(Gummalam&Chhabra, 1987;Chhabra,1998;Zhu,2001).The range of applica-tions shows the extremely versatile nature of this simple approach.The two cell models are exactly identical to each other except for one boundary condition at the surface of the hypothetical outer cylinder.While the condition of the zero shear stress(frictionless)is prescribedin the free surface cell model(Happel,1959),Kuwabara(1959)suggested

V.K.Mandhani et al./Chemical Engineering Science57(2002)379–391381

the vorticity to vanish at the hypothetical uidcylind er in the zero vorticity cell model.Though extensive discussions on the relative merits and demerits of both these models are available in the literature(Happel&Brenner,1965; Chhabra,1993a),detailed comparisons between theoretical predictions and experimental results reveal the experiments to lie somewhere in between the predictions of these two models(Chhabra,1993b).In contrast to the?rst approach of periodic arrays,the cell approach,though perhaps less rigorous,allows reasonable predictions of macroscopic transport parameters not only with much less computational requirements but also over the entire range of porosity,from the case of sparse to highly dense arrays.The concentric sphere-in-sphere free surface cell model has been shown to give acceptable predictions of mass transfer in the region of low Reynolds and high Peclet numbers(Pfe er,1964;Pf-e er&Happel,1964).As far as known to us,only Le Clair andHamielec(1968)have employedthe zero vorticity cell model to study forced convection mass transfer between air andan assemblage of cylind ers.They invokedthe thin concentration boundary layer approximation togetherwith some other simpli?cations(such as neglecting the angular di usion term,and assuming(@2T=@r2) (1=r)(@T=@r), etc.)andobtainedapproximate numerical results basedon a linear velocity pro?le.They reportednumerical values of the point andmean values of the Nusselt number for mass transfer andcorrelatedtheir results in the form of a j-factor for mass=heat transfer.They suggestedthese results to be applicable for heat transfer by noting the equivalence of the Prandtl and Schmidt numbers.While there is no justi?cation for this analogy to apply over wide ranges of conditions,these appear to work satisfactorily at low rates of heat andmass transfer when the change in surface area due to mass transfer is negligible.As far as known to us, there has been no other study on heat transfer using the cell model approach.In contrast to the aforementioned limited analytical=numerical studies,the literature is inundated with experimental results andempirical expressions covering a wide variety of tube con?gurations and ow conditions (Reynolds and Prandtl numbers).Most of these have been summarizedby Ad ams andBell(1968),Nishimura(1986), Zukauskas(1987a,b,Chap.6),Nishimura,Itoh,Ohya, &Mirashita(1991)andNishimura,Itoh,&Miyashita (1993).

From the foregoing description,it is thus abundantly clear that virtually no theoretical=numerical predictions are available of forcedconvection heat transfer between a uid andan assemblage of heatedcircular cylind ers within the framework of the cell models.In this paper,new extensive results basedon the free surface cell mod el are presentedfor the Nusselt number as a function of the Reynolds number of ow(1–500),Prandtl number(0.71and7.7,correspond-ing to air andwater,respectively)andover wid e ranges of voidage(0.4–0.999).Furthermore,in some cases the e ect of the type of the thermal boundary condition(constant temperature or constant heat ux)imposedon the surface of the cylinder is also elucidated.The paper is concluded by presenting detailed comparisons with the previous the-oretical andsuitable experimental results available in the literature.

3.Problem statement,idealisation and governing equations

Consider the steady incompressible ow of a Newtonian uidwith constant thermo-physical properties(d ensity , viscosity ,thermal conductivity k,heat capacity C p)over a collection of circular cylinders which are oriented normal to the direction of ow(Fig.1a).The free surface cell model envisions each cylinder of radius(r o)to be surrounded by a hypothetical concentric cylindrical envelope of radius r∞, as shown schematically in Fig.1(b).A cylindrical coordi-nate system?xedat the center of the cylind er is convenient, and?is measuredfrom the front stagnation point as shown in Fig.1(b).The uidis approaching the tube bund le with a constant anduniform velocity U andat a uniform temper-ature T o.Owing to the two-dimensional nature of the ow, the ow variables are functions of r and?only.

The governing equations thus comprise the continuity equation,r-and?-components of the Navier–Stokes equa-tions andthe energy equation(in the absence of viscous dissipation)which in their dimensionless forms are written as follows:

Continuity equation

1

r

@

@r

(rV r)+

1

r

@V?

@?

=0;(1) r-Component

@V r

@t

+

1

r

@

@r

(rV2r)+

1

r

@

@?

(V r V?)?

V2?

r

=?

1

2

@p

@r

+

2

Re

@

@r

1

r

@

@r

(rV r)

+

1

r2

@2V r

@?2

?

2

r2

@V?

@?

;(2a)?-Component

@V?

@t

+

1

r

@

@?

(V2?)+

1

r

@

@?

(V r V?)+

V r V?

r

=

1

2r

@p

@?

+

2

Re

@

@r

1

r

@

@r

(rV?)

+

1

r2

@2V?

@?2

+

2

r2

@V r

@?

;(2b)

382V.K.Mandhani et al./Chemical Engineering Science57(2002)

379–391

Fig.1.Schematics andmod el representation of ow. Energy Equation

@T @t +

1

r

@

@r

(rV r T)+

1

r

@

@?

(TV?)

=

2

RePr

1

r

@

@r

r

@T

@r

+

1

r2

@2T

@?2

:(3)

In Eqs.(1)–(3),the velocity components have been scaled using the free stream velocity U,the radial distance using r o andthe pressure term as(p?p )=( U2=2).The temperature T has been scaledeither as{(T?T o)=(T s?T o)}when the surface of the solidcylind er(r=1)is maintainedat a uni-form temperature of T s(referredto hereafter as C ase I)or as (T?T o)=(q w r o=k)when a constant heat ux,q w,is imposed at r=1(referredto hereafter as C ase II).The two d imen-sionless multipliers,namely,the Reynolds number and the Prandtl number are de?ned as follows:

Re= Ud

(4)

and

Pr=C p

k

;(5)

where d=2r o is the diameter of the solid cylinder.

The physically realistic boundary conditions in the frame-work of the free surface cell model are those of no-slip at r=1andthe frictionless surface at r=r∞,i.e.,

At r=1

V r=0;V?=0(6a) T=1(Case I)(6b)

or @T

@r

=?1(Case II)(6c)

At r=r∞

V r=?cos?; r?=0(6d)

T=0for C ase I andC ase II(6e) In addition,the conditions of symmetry of ow and temper-ature were also imposedat?=0and?= planes.

As mentioned previously,the radius of the outer cylindri-cal cell boundary is related to the size of the cylinder(r o) andthe porosity(e)of the assemblage through the simple relation as

r∞=(1?e)?1=2:(7) Thus,by simply varying the value of r∞,assemblages of

di erent porosities can be simulated.The two limiting cases of e=1and e=0,respectively,correspondto the ow over a single cylinder and no ow situation(zero ow area). Thus,Eqs.(1)–(3)together with the boundary conditions outlinedin Eq.(6)provid e the theoretical framework for mapping the entire ow domain(16r6r∞;06?6 ) in terms of the velocity andtemperature?eld s as V r(r;?);V?(r;?)and T(r;?).These in turn can be processed further to deduce the values of global quantities such as pressure andfrictional components of the uidd ynamic drag on the tube bundle and the Nusselt number as functions of the Reynolds and Prandtl numbers,the voidage and the type of the thermal boundary condition used,i.e.,Case I and Case II.From a knowledge of the temperature?eld,it can readily be shown that the local value of the Nusselt number at r=1for the two cases is simply obtainedas follows: Case I:Nu?=

hd

k

=?2

@T

@r

r=1

;(8) Case II:Nu?=

2

T

r=1

(9)

andthe surface averagedvalue of the Nusselt number is obtainedsimply as

Nu=

1

Nu?d?:(10) While extensive results on the velocity andpressure?eld s, and drag coe cient for wide ranges of the Reynolds number (16Re6500)andvoid age(0:46e60:99)have been reportedelsewhere(Satheesh et al.,1999;C hhabra et al., 2000;Shibu et al.,2001),the results for the temperature?eld as well as of the local andmean Nusselt numbers are reported in this paper.In essence,the velocity?eldobtainedby Shibu et al.(2001)was usedas the input,except for a few test cases to cross check the accuracy of the solution procedure employedby Shibu et al.(2001).The salient features of the numerical solution proced ure andthe choice of gridsize, etc.for the energy equation are described brie y in the next section.

4.Numerical solution procedure

The governing equations solvedin this work includ e the equations of continuity,momentum andenergy,i.e., Eqs.(1)–(3)subject to the boundary conditions outlined in Eq.(6).The uid ow equations,Eqs.(1)and(2)have been solvedusing a SMAC-type?nite d i erence algorithm that was made implicit for the viscous terms.This leads to improvednumerical stability at low Reynold s numbers, as detailed elsewhere(Shibu et al.,2001).The velocity ?eld s are obtainedon a staggeredgridusing a two-step

V.K.Mandhani et al./Chemical Engineering Science57(2002)379–391383

predictor=corrector methodthat(a)uses a“guessed”pres-sure?eld to obtain“predicted”values of the velocity?eld from the Navier–Stokes equations,andthen(b)corrects the velocity andpressure?eld s to ensure their compliance with the continuity equation.The viscous terms are approximated by using the center di erence scheme while the convec-tive terms are d iscretisedby the upwindscheme.The“pres-sure”usedis actually a pseud o-pressure which just enforces the continuity.The use of the pseudo-pressure with simple boundary conditions(i.e.,homogeneous Neumann boundary condition at solid boundaries)is easier than that of the true pressure with its complicated boundary conditions.How-ever,once the fully converged steady-state velocity?elds are obtained,the true pressure?eldcan be computedby solv-ing a Poisson equation with the correct boundary conditions consistent with the Navier–Stokes equations.

Once the steady-state velocity and pressure?elds are available,the energy equation is solvedon a staggeredgrid to obtain the temperature?eldby employing a false-transient time stepping algorithm with a fully implicit center di er-ence scheme for both convective andd i usion terms.The system of equations is solvedusing a Gauss–Sied el method with successive over-relaxation.The boundary conditions in all cases are implementedusing?ctitious cells at the bound-aries.

5.Results and discussion

In this study,the thermal energy equation has been solved numerically in the range of conditions as:16Re6500; 0:46e60:99andfor two values of the Prand tl number (Pr=0:71and7.7)correspond ing to the ow of air andof water,respectively,for the two types of thermal boundary conditions.In particular,results are obtained to elucidate the role of porosity,Reynolds and Prandtl numbers on the local andsurface averagedvalues of the Nusselt number andon the temperature?eld.It is,however,desirable?rst to estab-lish the accuracy andreliability of the numerical solution procedure used here which in turn facilitates the delineation of the accuracy of the new results presentedherein.

5.1.Validation of results

The numerical solution procedure employed herein has been validated by comparing the present predictions with the previous analytical and=or numerical results available in the literature.While detailed discussions on the accuracy of the solution proced ure employedfor the momentum andcon-tinuity equations are available elsewhere(Satheesh et al., 1999;Chhabra et al.,2000;Shibu et al.,2001),the relia-bility andaccuracy for the solution of the energy equation is establishedhere by comparing the present values with the literature values for a single cylinder and for a collec-tion of cylinders within the framework of the zero vortic-ity cell model.In this work,the case of the ow over a single cylinder was simulated by setting e=0:999which makes the radius of the outer hypothetical uid envelope30 cylinder radii.In a recent paper,Lange et al.(1998)have studied the convective heat transfer to air(Pr=0:715)from a heatedcylind er maintainedat a constant temperature.In the range Re6200,they correlatedtheir numerical results as follows.

Nu=0:082Re0:5+0:734Re x;(11a) where

x=0:05+0:226Re0:085:(11b) The present values of the average Nusselt number of1.86 and4.96for Re=10and Re=100for e=0:999compare very well with the corresponding values of1.82and5.1, respectively,predicted using Eq.(11).The discrepancies of this order between various predictions are indeed not un-common in the literature.Thus,for instance,Ahmad(1996) cites the values of the mean Nusselt number in the range 4.816–5.166for Re=100for the ow of air over a heated cylinder whose surface is maintained at a constant temper-ature.Thus,the present value of Nu=4:96lies well within this range.Furthermore,small di erences can also be as-cribed to the slightly di erent values of Prandtl number used by di erent investigators.

Similarly,Le C lair andHamielec(1968)have stud ied convective mass transfer between a tube bundle and air (Pr=0:74)using the zero vorticity cell model and these were assumedto be applicable for heat transfer also.With this proviso andbearing in mindthe approximations and simpli?cations inherent in their analysis(as described pre-viously),they correlatedtheir results in the form of the j factor as

j H e0:833=1:05Re?0:582(12) where

j H=

Nu

RePr1=3

(13)

A few results have been obtainedhere with the zero vor-ticity boundary condition for Pr=0:74anda comparison between the present andtheir values(Le C lair andHami-elec,1968)is shown in Table1for type I thermal boundary condition at r=1.An examination of these results reveals qualitative agreement between the present values andthose of Le C lair andHamielec(1968).The d iscrepancy between the two values is seen to somewhat vary with the voidage andthe Reynold s number,albeit the two values are gen-erally within20–25%of each other.The correspondence between the two improves somewhat with the increasing val-ues of e andRe.In assessing the comparison shown in Table 1,it must be borne in mindthat the results of Le C lair and Hamielec(1968)are basedon the approximate andsimpli-?edform of the energy(continuity)equation andsecond ly, the errors associatedwith Eq.(12)are also not known.On the other hand,the present results have been checked for

384V.K.Mandhani et al./Chemical Engineering Science57(2002)379–391

Table1

C omparison between present results andthose of Le C lair andHamielec (1968)for Pr=0:74for zero vorticity cell model

e Re Nu

Present Eq.(12) 0.9950 4.69 4.91 0.40107.99 5.33

509.3310.45

10011.7813.97

0.5010 5.94 4.42

507.648.68

10010.0511.50

0.6010 4.56 3.81

50 6.517.46

1008.639.96

gridind epend ence andalso are basedon the solution of the complete energy equation.In view of the above-noted factors,the present results are believedto be more accurate than those of Le C lair andHamielec(1968).

Basedon the aforementionedcomparisons andon previ-ous experience(Satheesh et al.,1999;Chhabra et al.,2000; Shibu et al.,2001),the new results reportedherein are believedto entail an uncertainty of not more than1%or so.

5.2.Variation of Nusselt number

Figs.2and3show representative results on the e ect of porosity,Reynolds number and the type of thermal boundary condition on the variation of the local Nusselt number over the surface of the solidcylind er.From an examination of these?gures,the following overall trends can be observed.

(a)The extent of variation of the Nusselt number on the

surface of the cylinder r=1is determined by a com-plex interplay between the kinematic(Re;Pr;Pe)and the physical characteristics(e)of the system.At small values of Peclet number,one wouldintuitively expect the value of Nu?to show virtually no or small varia-tion as the surface of the cylinder is traversed from the front(?=0)to the rear(?= )stagnation points.This is so due to the fact that at low values of Re and=or Pe, heat transfer occurs primarily by conduction with a very small contribution from convection.Irrespective of the type of thermal boundary condition satis?ed at r=1, this behavior was observedup to about Pe~1.For in-stance,while for Pe=0:7,the value of Nu?at r=1varied by less than2–3%in the interval0:406e60:99,the corresponding variation for Pe=7was seen to range from~15%at e=0:4to~50%at e=0:99for the isothermal cylinder case.Qualitatively,similar trends are present for the case of the constant heat ux thermal boundary condition at r=1.(b)As the value of Peclet number is progressively

increasedby increasing either the value of the Reynold s number or the Prandtl number or both,the contribution of convection gradually rises.Under these conditions, the Nusselt number is seen to be maximum at the front stagnation point andit progressively d ecreases with displaying a distinct minimum in concentrated systems (small values of e,e.g.,see Figs.2a and3a)whereas the Nusselt number is seen to decrease monotonically in sparse systems(high values of e).In dense sys-tems(e~0:4–0.5),the minimum value of the Nusselt number is seen to occur in the rear of the cylinder,?~140–150?.At very high values of Peclet num-ber,the local Nusselt number exhibits another local peak(as seen clearly in Figs.2b,c and3b,c)in the rear region of the cylinder,following which its value again decreases.Qualitatively similar trends are seen to be present when the constant heat ux condition is appliedon the cylind er surface insteadof the constant temperature condition.Undoubtedly,the range of pos-sibilities seen here re ect a complex interplay between the pertinent variables.

(c)The value of the local Nusselt number is seen to de-

crease with increasing porosity andwith d ecreasing value of the Prandtl number.(see Figs.2a–c and3a–c) This is understandable since the prevailing velocity andtemperature grad ients are strongly in uencedby porosity,being smaller in sparse systems andsteeper in dense systems.The observed e ect of Prandtl number is explainedby the d ecreasing ratio of the thickness of the thermal boundary layer to that of the momentum boundary layer.As the value of the Reynolds number increases,the wake region also grows in size thereby enhancing heat transfer under these conditions.

Representative temperature pro?les are shown in Figs.4 and5where isotherms are shown for a range of combi-nations of porosity,Reynolds number and Prandtl number. In these?gures,the isotherms are plottedat an interval of 0.05.The fore andaft symmetry of these plots at low Peclet numbers(showing the dominance of conduction over con-vection)was seen to be destroyed progressively as the value of the Reynolds or Prandtl numbers or both is gradually in-creased.However,smaller is the value of porosity,higher is the value of Peclet number upto which such a symme-try persists.This observation is qualitatively consistent with our previous?ndings regarding the limiting value of the Reynolds number marking the cessation of creeping ow (Jaiswal,Sundararajan,&Chhabra,1993;Satheesh et al., 1999).Furthermore,as the value of the Reynolds number or of Prandtl number or of both increases,more complicated patterns appear in the re-circulation zone in the rear endof the cylinder,whereas the isotherms are seen to be little in u-encedin the front region.The size of the re-circulating zone itself grows rapidly with the increasing value of voidage (e),e.g.,see Figs.4a,b and5a,b.Also,much sharper tem-

V.K.Mandhani et al./Chemical Engineering Science 57(2002)379–391

385

Fig.2.Variation of local Nusselt number on the surface of a representative cylinder in the bundle for Case I:(a)Re =20;Pr =0:7;(b)Re =100;Pr =0:7;(c)Re =500;Pr =0:7.

perature gradients are seen to appear closer to the cylinders as the Reynolds number increases.As inspection of Figs.4and5clearly shows a markedd epend ency upon the type of thermal boundary condition imposed at r =1.Indeed,

these complicatedtemperature pro?les are d irectly respon-sible for the increasing complexity of the surface variation

386V.K.Mandhani et al./Chemical Engineering Science57(2002)379–391

Fig.3.Variation of local Nusselt number on the surface of a representative cylinder in the bundle for Case II:(a)Re=20;Pr=0:7;(b)Re=100;Pr=0:7;

(c)Re=500;Pr=0:7.

V.K.Mandhani et al./Chemical Engineering Science 57(2002)379–391

387

Fig.4.Representative temperature pro?les (Pr =0:7)for Case I:(a)Re =500;e =0:4;(b)Re =500;e =0:

9.

Fig.5.Representative isotherms for Pr =0:7under constant heat ux condition:(a)Re =500;e =0:4;(b)Re =500;e =0:9.

of the Nusselt number seen in Figs.2and3.Qualitatively,similar temperature pro?les in staggeredarrays have also been documented in the literature (e.g.,see Chen &Wung,1989).

5.3.Average Nusselt number

Notwithstanding the importance of the detailed temper-ature ?eld,it is readily agreed that the mean value of the Nusselt number (averagedover the surface)represents an important design parameter for this problem.The scaling of the ?eldequations andthe bound ary cond itions reveals the mean Nusselt number to be a function of Re;Pr and e for a given type of thermal boundary condition.It is also custom-ary to introduce the so-called j H factor of heat transfer which is de?ned by Eq.(13).Fig.6shows the variation of the j H factor with the Reynolds number and porosity for the ow of air (Pr =0:715)for the two types of thermal boundary condition imposed on the surface of the cylinder.Qualita-tively,this type of functional dependence is consistent with the previously reportedtheoretical andexperimental results available in the literature.Similar type of dependence is

388V.K.Mandhani et al./Chemical Engineering Science 57(2002)

379–391

Fig.6.Dependence of average Nusselt number on Reynolds number for Pr =0:7(Fig.6a)and7.7(Fig.6b)for a range of porosity values.Solidlines for C ase I andbroken lines refer to C ase II.

obtainedwhen the present results for Pr =7:7and =or for the constant heat ux condition are plotted.As remarked ear-lier,the j H factor for Case I is always lower than that for Case II,especially at high Reynolds numbers.

In summary,the value of the mean Nusselt number in-creases with decreasing porosity and increasing Reynolds number and =or Prandtl number.Also,the imposition of the constant heat ux condition at r =1(cylinder surface)results in marginally higher values of the Nusselt number than those obtainedwith the constant temperature cond ition;however,the di erence between the two values progressively dimin-ishes as the value of the Reynolds number decreases and =or the porosity decreases.

https://www.360docs.net/doc/fb15511101.html,parison with literature studies

While numerous analytical studies based on the periodic arrays are available in the literature,only one approximate study based on the zero vorticity cell model is due to Le C lair andHamielec (1969).Some of these relate to low Peclet number andlow Reynold s number e.g.,see Sangani andAcrivos (1982)while in many other cases d ue to the in-herently di erent geometrical con?gurations employed and due to the lack of su cient details,it is not possible to make direct comparisons between these and the present re-

sults (https://www.360docs.net/doc/fb15511101.html,under &Massey,1978;Wilson &Bassiouny,2001).However,it is possible to contrast the present pre-d ictions with the results of C hen andWung (1989)andof Martin et al.(1998).C hen andWung (1989)have presented the mean values of Nusselt number for Case I for one value of porosity,namely,e =0:8;Re =40,120,400and800and for Pr =0:1,1and10.They correlatedtheir results using the following empirical expressions:?For in-line arrays Nu =0:8Re 0:4Pr 0:37(14a)

?For staggeredarrays Nu =0:78Re 0:45Pr 0:38:

(14b)

It is readily conceded that while the geometry of the array has a profounde ect on the d etailedkinematics of ow,the gross parameters like the mean Nusselt number are seen to be little in uenced,for the values of the empirical con-stants in Eqs.(14a)and(14b)are virtually id entical for the two types of arrays.Table 2shows a comparison between the present results andthe pred ictions of Eq.(14)over the common ranges of conditions.An inspection of these results shows that while the present values are consistently higher than the predictions of Eq.(14a)generally by 30–45%,good correspondence is seen to exist with the predictions of

V.K.Mandhani et al./Chemical Engineering Science 57(2002)379–391

389

Table 2

C omparison between the present results andthat of C hen andWung (1989)for e =0:8Re

Pr

Value of Nu Present

Chen &Wung In-line

Staggered 500.715 4.67 3.35 3.967.710.868.149.851000.715 6.31 4.42 5.417.715.7010.7413.462000.7158.90 5.847.397.722.9114.1718.38500

0.71514.398.4211.167.7

37.39

20.45

27.76

https://www.360docs.net/doc/fb15511101.html,parison between the present predictions and those of Martin et al.(1998).Open symbols for type I boundary condition.

Eq.(14b);the divergence being of the order of 15–25%.The discrepancy is somewhat smaller at Pr =7:7than that at Pr =0:715.

Similarly,Martin et al.(1998)have numerically solved the energy equation for the cross ow of air (Pr =0:71)past square andtriangular arrays of cylind ers for 0:86e 60:99and36Re 6160.Also,they have usedboth types of thermal boundary conditions.Fig.7shows a comparison between their andpresent values for e =0:8,0.9and0.99.While for e =0:8and0.9,the correspond ence between

the

Fig.8.Typical comparison between the present predictions (e =0:999;Pr =0:74)andthe experimental results d ue to Eckert and Soehngen (1952)for a single cylinder.

two sets of results is seen to be acceptable,the two results

are seen to diverge progressively with the increasing value of e ,especially beyond e =0:95irrespective of the type of the thermal boundary condition.Such high values of e ,however,are of little practical utility in the context of tubular heat exchangers.Once again,the correspondence between the two is seen to be about as goodas can be expectedin this kindof work.There are,however,no d is-cernable trends present either in Table 2or in Fig.7,except that the free surface cell model yields higher values of the Nusselt number than those basedon the period ic arrays.Some experimental data on heat transfer in such systems is available in the literature,albeit only some of these studies can be reduced to a form suitable for direct comparison with the present works.Eckert andSoehngen (1952)reportedthe values of the local Nusselt number for the ow of air over a heatedcylind er.A comparison between the present values for e =0:999andtheir values is shown in Fig.8,where a qualitative agreement is seen to exist.The discrepancy seen in Fig.8can be attributedin part at least to the ?nite values of L=d ratio andthe wall e ects encounteredin such

390V.K.Mandhani et al./Chemical Engineering Science 57(2002)

379–391

Fig.9.Typical comparison between the present predictions,approximate results of Le C lair andHamielec (1968)andthe experimental results of Bergelin et al.(1952).

experimental studies and to the fact that the predictions relate to e =0:999andnot to e =1.

Similarly,Fig.9shows a comparison between the present predictions (free surface cell model),the approximate results of Le C lair andHamielec (1968)for the zero vorticity cell model and the experimental results of Bergelin et al.(1952).The modi?ed de?nitions of the j H factor andthe Reynold s number are,however,requiredto account for the fact that Bergelin et al.(1952)usedan interstitial Reynold s number basedon the minimum ow area.Thus,

j

H =j H (1?√1?e )(15a)and

Re =

Re

1?√1?e

:(15b)Once again a satisfactory correspondence is seen to exist between the two predictions and the experimental results in the ranges of conditions embraced in this work (Fig.9).In summary,the present predictions of heat transfer char-acteristics in tube bundles are consistent with the previous scant numerical predictions as well as the experimental re-sults available in the literature.However,the present results encompass much wider ranges of physical and kinematic conditions than those associated with previous studies.6.Concluding remarks

In this work,the ?eldequations have been solvednumer-ically to obtain detailed temperature ?elds and the distribu-tion of Nusselt number on the surface of a typical cylinder in a cylinder bundle for the steady incompressible ow of Newtonian uids.The role of the type of thermal boundary conditions,namely,constant temperature and constant heat ux,on overall heat transfer characteristics has been eluci-dated.Overall,the range of parameters encompassed herein include two values of Prandtl number (air and water)and 0:46e 60:99,while the Reynolds number of ow varied from 1to 500.The nature of variation of Nusselt number with the position on the surface of the cylinder is strongly dependent on the values of e;Pr and Re .The surface av-eragedvalue of Nusselt number increases with the d ecreas-ing value of porosity andincreasing values of Prand tl and Reynolds numbers.

The present results are in satisfactory agreement with the previous numerical andexperimental results for a sin-gle cylinder and for the arrays of cylinders in the overlap-ping ranges of conditions.The limited comparisons included herein seem to suggest that the overall heat transfer charac-teristics are primarily governedby the value of e andthe e ect of the actual geometrical arrangement of the array to be of secondary importance.However,more experimental results are needed to thoroughly validate the numerical pre-dictions reported in this study.Finally,this study clearly shows that the cell models o er a viable approach to the modelling of momentum,heat and mass transfer in such multi-cylinder systems.

Notation C p heat capacity,J =kg K d cylinder diameter,m

e porosity or voidage,dimensionless h heat transfer coe cient,W =m 2K j H heat transfer factor,dimensionless k thermal conductivity o

f uid,W =mK

Nu Nusselt number based on cylinder diameter,di-mensionless p pressure,Pa

Pr Prandtl number,dimensionless q w heat ux at r =1;W =m 2r radial coordinate,m

r o cylinder radius,dimensionless

r ∞radius of hypothetical cylindrical envelope,di-mensionless

Re Reynolds number,dimensionless

T dimensionless temperature,dimensionless T o temperature of the uidin the free stream,K T s temperature on the surface of the cylinder,K U free stream velocity,m =s

V r ;V ?

r -and ?-components of velocity,dimensionless

Greek letters ?cylindrical coordinate viscosity of uid,Pa =s

density of uid,kg =m 3

V.K.Mandhani et al./Chemical Engineering Science57(2002)379–391391

References

Ad ams,D.,&Bell,K.J.(1968).Fluidfriction andheat transfer for ow of sodium carboxymethyl cellulose solutions across banks of tubes.Chemical Engineering Progress Symposium Series,64, 133–145.

Ahmad,R.A.(1996).Steady-state numerical solution of the Navier–Stokes and energy equations around a horizontal cylinder at moderate Reynolds numbers from100to500.Heat Transfer Engineering,17, 31–38.

Bergelin,O.P.,Brown,G.A.,&Doberstein,S.C.(1952).Heat transfer and uidfriction d uring ow across banks of tubes.Transactions of ASME,74,953–960.

Chen,C.J.,&Wung,T.-S.(1989).Finite analytic solution of convective heat transfer for tube arrays in cross ow:Part II—Heat transfer analysis.Journal of Heat Transf(ASME),111,641–648. Chhabra,R.P.(1993a).Bubbles,drops and particles in non-Newtonian uids.Boca Raton,FL:CRC Press.

C hhabra,R.P.(1993b).Fluid ow,heat andmass transfer in

non-Newtonian uids:multiphase systems.Advances in Heat Transfer, 23,187–278.

Chhabra,R.P.(1998).Rising velocity of a swarm of spherical bubbles in non-Newtonian power law uids at high Reynolds numbers.Canadian Journal of Chemical Engineering,76,137–140.

Chhabra,R.P.,Comiti,J.,&Machac,I.(2001).Flow of non-Newtonian uid s in?xedand uid izedbed s.Chemical Engineering Science,56, 1–27.

Chhabra,R.P.,Dhotkar,B.N.,Eswaran,V.,Satheesh,V.K.,&Vijaysri, M.(2000).Steady ow of Newtonian and dilatant uids over an array of long circular cylinders.Journal of Chemical Engineering of Japan, 33,832–841.

Dhotkar, B.N.,Chhabra,R.P.,&Eswaran,V.(2000).Flow of non-Newtonian polymeric solutions in?brous media.Journal of Applied Polymer Science,76,1171–1185.

Drummond,J.E.,&Tahir,M.I.(1984).Laminar viscous ow through regular arrays of parallel solidcylind ers.International Journal of Multiphase Flow,10,515–540.

Eckert,E.R.G.,&Soehngen,E.(1952).Distribution of heat transfer coe cients around circular cylinders in cross ow at Reynolds numbers from20to500.Transactions of ASME,74,343–347. Gummalam,S.,&Chhabra,R.P.(1987).Rising velocity of a swarm of spherical bubbles in a power-law non-Newtonian liquid.Canadian Journal of Chemical Engineering,65,1004–1008.

Happel,J.(1959).Viscous ow relative to arrays of cylinders.A.I.Ch.E.

Journal,5,174–177.

Happel,J.,&Brenner,H.(1965).LowReynolds number hydrodynamics.

EnglewoodC li s,NJ:Prentice Hall.

Jaiswal,A.K.,Sundararajan,T.,&Chhabra,R.P.(1993).Hydrodynamics of creeping ow of power law liquids through particle assemblages.

International Journal of Engineering Science,31,293–306. Kawase,Y.,&Ulbrecht,J.(1981a).Drag andmass transfer in non-Newtonian ows through multi-particle systems at low Reynolds numbers.Chemical Engineering Science,36,1193–1205. Kawase,Y.,&Ulbrecht,J.(1981b).Motion of andmass transfer from an assemblage of solidspheres moving in a non-Newtonian uidat high Reynolds numbers.Chemical Engineering Communications,8, 233–245.

Kiljanski,T.,&Dziubinski,M.(1996).Resistance to ow of molten polymers through?ltration screens.Chemical Engineering Science, 51,4533–4536.

Kuwabara,S.(1959).The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous ow at small Reynolds numbers.Journal of Physics Society of Japan,14,527–https://www.360docs.net/doc/fb15511101.html,nge,C.F.,Durst,F.,&Breuer,M.(1998).Momentum andheat transfer from cylinders in laminar cross ow at10?46Re62000. International Journal of Heat Mass Transfer,41,3409–3430. Launder,B.E.,&Massey,T.H.(1978).The numerical predictions of viscous ow andheat transfer in tube banks.Journal of Heat Transfer, 100,565–571.

Le Clair,B.P.,&Hamielec,A.E.(1968).Viscous ow through particle assemblages at intermediate Reynolds numbers:Heat or mass transport. Institution of Chemical Engineers Symposium Series,30,197–206. Martin,A.R.,Saltiel,C.,&Shyy,W.(1998).Frictional losses and convective heat transfer in sparse,periodic cylinder arrays in cross ow.International Journal of Heat Mass Transfer,41,2383–2397. Mauret,E.,&Renaud,M.(1997).Transport phenomena in multiparticle systems—I.Limits of applicability of capillary model in high voidage beds—application to?xed beds of?bers and uidized beds of spheres. Chemical Engineering Science,52,1807–1817.

Nishimura,T.(1986).Flow across tube banks.Encyclopedia of Fluid Mechanics,1,763–785.

Nishimura,T.,Itoh,H.,&Miyashita,H.(1993).The in uence of tube layout on ow andmass transfer characteristics in tube banks in the transitional ow regime.International Journal of Heat Mass Transfer, 36,553–563.

Nishimura,T.,Itoh,H.,Ohya,K.,&Miyashita,H.(1991).Experimental validation of numerical analysis of ow across tube banks for laminar ow.Journal of Chemical Engineering of Japan,24,666–669. Pfe er,R.(1964).Heat andmass transport in multiparticle systems. Industrial and Engineering Chemistry,Fundamentals,3,380–383. Pfe er,R.,&Happel,J.(1964).An analytical study of heat and mass transfer in multiparticle systems at low Reynolds numbers.A.I.Ch.E. Journal,10,605–611.

Sangani,A.S.,&Acrivos,A.(1982).Slow ow past periodic arrays of cylinders with application to heat transfer.International Journal of Multiphase Flow,10,515–540.

Satheesh,V.K.,Chhabra,R.P.,&Eswaran,V.(1999).Steady incompressible uid ow over a bundle of cylinders at moderate Reynolds numbers.Canadian Journal of Chemical Engineering,77, 978–987.

Shibu,S.,C hhabra,R.P.,&Eswaran,V.(2001).Power law uid ow over a bundle of cylinders at intermediate Reynolds numbers.Chemical Engineering Science,56,5545–5554.

Tripathi,A.,&C hhabra,R.P.(1992).Slow power law uid ow relative to an array of in?nite cylinders.Industrial and Engineering Chemistry Research,31,2754–2759.

Tripathi,A.,&Chhabra,R.P.(1996).Transverse laminar ow of non-Newtonian uids over a bank of long cylinders.Chemical Engineering Communications,147,197–212.

Vijaysri,M.,Chhabra,R.P.,&Eswaran,V.(1999).Power law uid ow across an array of in?nite circular cylinders:A numerical study. Journal of Non-Newtonian Fluid Mechanics,87,263–282. Wilson,A.S.,&Bassiouny,M.K.(2000).Modeling of heat transfer for ow across tube banks.Chemical Engineering and Processing,39, 1–14.

Wung,T.-S.,&Chen,C.J.(1989).Finite analytic solution of convective heat transfer for tube arrays in cross ow:Part I—Flow?eldanalysis. Journal of Heat Transfer,111,633–640.

Zhu,J.(2001).A note on slow non-Newtonian ows over an ensemble of spherical bubbles.Chemical Engineering Science,56, 2237–2241.

Zukauskas,A.(1987a).Heat transfer from tubes in cross ow.Advances in Heat Transfer,18,87–159.

Zukauskas, A.(1987b).Convective heat transfer in cross ow.In Handbook of single-phase convective heat transfer.New York: Wiley.

坦克世界答题

坦克世界答题 1坦克世界公测时间———2012年4月12日 2涂装功能出现———重装上阵 3121B出现于———战神归来 4C系科技树出现于———红色铁流 5M系T28反坦克出现于———铁甲洪流 6虎P出现于———铁十字光芒 7高爆———HE 8E4出现于———横扫千军 9成员技能出现于———钢铁洪流 10炮管标示———浴火重生 11虎式被称为———6号坦克 12攻防战出现于———百战雄狮 13猎虎88出现于———百战雄狮 14T69出现于———山姆大叔 1510级中坦出现于———横扫千军 16酋长视野———390 178级视野最小———T44 1862A出现于———横扫千军 19黑豹被称为———5式坦克 20Y系科技树出现版本———百夫长 2130B出现版本———诺曼底 224级反坦克炮出现于———铁甲洪流 23要塞出现于———百团大战 2459式的金币弹均伤———250 25Fv201(A45)是———7级 26百夫长(逊邱伦)Mk.VII替换FV4202———错误 27游戏中首张以中国地貌为原型制作的地图是———香格里拉 28静止不动但毫无遮蔽的坦克是否也具备一定隐蔽性?———是 29《坦克世界》研发团队位于哪个国家?———白俄罗斯 30拥有摇摆式炮塔及自动装弹机的M系坦克首次出现于哪个版本?———山姆大叔31酋长MK.VI的金币弹药是?———APCR 32D系10级自行反坦克炮E-100WT是在哪个版本加入游戏中?———集火 33公测版本是———铁甲洪流 34游戏中首张以中国地貌为原型制作的地图(版本)是———前进乌拉 3559式出现于———红旗下的铁流 36M系6级轻坦T21是在哪个版本加入游戏中———山姆大叔 37E100口径———128/150 38T57加入版本———山姆大叔 39当前游戏中高级光学观察镜与炮队镜能否同时生效?不能

巴尔扎克简介

巴尔扎克简介(1799~1850) 法国小说家.1799年5月20日生于巴黎以南的图尔城, 1850年8月18日卒于巴黎.巴尔扎克的一生,处于19世纪前半期的50年,经历了拿破仑帝国的战火纷飞的岁月,动荡不安的封建复辟王朝,以及以阴谋复辟帝制的路易□波拿巴为总统的第二共和国.他用总标题为《人间喜剧》的一系列小说,反映了剧烈的社会变革时期的法国生活. 巴尔扎克出生后不久就被送到附近的乡村去寄养. 上小学后一直到中学毕业,他始终寄住在宿舍里,没有能回 家过一段比较长的日子,享受家庭生活的温暖.离开家庭的童年生活的痛苦使他毕生难忘. 巴尔扎克的父亲原姓巴尔沙,是个精明强干的人. 他来自农村,幼年时跟当地教士学了一点文化,中年致富,在外省当过副市长,供应军粮的承包商,在巴黎经营过呢绒商业,当过巴黎驻军的军需负责人,是一个白手起家的资产者. 1816年,17岁的巴尔扎克结束中学的学业后进大学法科,并在文科旁听.18岁时,先后在诉讼代理人和公证人的办事处当见习生或书记. 从20岁开始,巴尔扎克决定从事文学创作.他在巴黎贫民区租了一间房顶上的阁楼,由父母供给极有限的一点生活费,埋头写作.他的第一部作品是五幕诗体悲剧《克伦威尔》,这是一部完全失败的作品,没有引起任何人的兴趣.接连又写了十多部小说,有的是自己所写,有的是和别人合写.这一阶段他所写的小说全用笔名发表.这些作品并没有给他带来生活所需要的物质条件,他只好暂时放弃文学.1826年借钱出版了一部普及版的《莫里哀全集》,接着又出版一部拉封丹寓言诗集, 销路不佳,亏损负债9,000法郎.后又借债经营印刷厂和铸字厂,均以赔本告终.他前后负债共达6万多法郎. 从1828年夏季开始,巴尔扎克决定重新回到文学事业上来.他写了一部以布列塔尼封建势力武装叛乱反对共和国为题材的小说《最后一个舒昂党人》(后来编入《人间喜剧》,改名《舒昂党的人们》).这是巴尔扎克所写的第一部严肃的文学作品,第一次用巴尔扎克真姓名发表.此书问世,初步奠定了作者在文学界的地位. 接着发表小说《婚姻生理学》,在读者之间引起广泛注意.1831年他的新著《驴皮记》出版,巴尔扎克立即成为法国最负盛名的作家之一. 1819到1829年,是巴尔扎克在文学事业上的探索阶段.从1829年开始,一直到1848年,是他创作《人间喜剧》的时期,也是他文学事业的全盛时期.他用超人的才智与精力,在不到20年的时间内,共创作小说91部.平均每年产生作品四,五部之多.他每日伏案一般都在10小时以上,常常连续工作18小时.有时文思如泉涌,或者为了赶写稿子,他一连几天废寝忘餐,夜以继日地劳动.根据阿尔贝·贝干教授提供的材料,巴尔扎克的杰作《高老头》(原名《高立欧老爹》)是他用三天三夜一气呵成的. 什么是《人间喜剧》的作者的创作动力人们说是因为他负债过多,需要用稿费还债.巴尔扎克年轻时经营印刷出版业确曾负债巨万.但从他成为名重一时的小说家之后,他的收入丰厚,出版商争着和他签订合同,不惜重金预约他尚未完成或尚未动笔的小说稿,早年的债务早已还清.名作家巴尔扎克生活阔绰,醉心于豪华的排场.他在巴黎同时安置了几处住宅和别墅,出门坐最富丽的马车,驾着骏马;仆役都穿制服;他也服饰华贵, 出入于名门大户的沙龙.由此可见,他的勤奋创作,绝对不是由于贫困. 巴尔扎克从年轻时开始就自信有很高的文学才能, 对文学有极大的抱负.他不舍昼夜地勤奋写作,主要因为有一股激情在内心沸腾,促使他充分发挥自己的才能, 要求在文艺界做一番伟大的事业.在他的书室里,有一座作为摆饰的小型拿破仑塑像.在塑像座盘边上,巴尔扎克亲笔写着:"他用宝剑未能完成的大业,我将用笔杆来完成." 巴尔扎克要完成的伟大事业就是《人间喜剧》这座巍峨的文学里程碑.第一次在这位小说家笔下出现《人间喜剧》这个名词是在1813年.毫无疑问,《人间喜剧》的命名是受但丁长诗《神圣喜剧》(中译《神曲》)标题的启发.1841年,巴尔扎克确定了这个庞大的创作计划.当时有四家出版商和巴尔扎克签订合同,合资承包《人间喜剧》的出版工作.1842年,巴尔扎克写了《人间喜剧·导言》,阐述他写作这部史无前例的文学巨著的宗旨.1845年巴尔扎克亲笔写的《人间喜剧总目》,一直保存到现在.根据这个《总目》,《人间喜剧》分为三大部分:《风俗研究》,《哲理研究》和《分析研究》. 《风俗研究》内容最为丰富,包括小说最多.因此这一部分又分为六个门类:1.《私人生活场景》,2.《外省生活场景》,3.《巴黎生活场景》,4.《政治生活场景》, 5.《军队生活场景》,6.《乡村生活场景》.《私人生活场景》包括32部小说,其中4部当时已有提纲,尚未起稿.已经完成的28部之中包括著名的《高老头》(1834), 《猫滚球布店》(1830),《夏倍上校》(1832)和《三十岁的女人》(1831~1834)等.《外省生活场景》包括17 部小说,其中6部尚未完成;已经发表的11部中包括《欧也妮·葛朗台》(1833),《幽谷百合》(1835)和《幻灭》(1837~1843)等.《巴黎生活场景》共有20部小说, 其中6部尚未产生;在已经发表的小说中有《金目少女》 (1834),《纽沁根银行》(1838),《塞沙·皮罗多兴衰记》(1837),

高中语文 名著导读《高老头》巴尔扎克简介素材 新人教版必修3

巴尔扎克简介 巴尔扎克(Honore de Balzac,1799~1850),他是19世纪法国伟大的批判现实主义作家,欧洲批判现实主义文学的奠基人和杰出代表。一生创作96部长、中、短篇小说和随笔,总名为《人间喜剧》。其中代表作为《欧也妮·葛朗台》、《高老头》。100多年来,他的作品传遍了全世界,对世界文学的发展和人类进步产生了巨大的影响。马克思、恩格斯称赞他“是超群的小说家”、“现实主义大师”。 巴尔扎克出生于一个法国大革命后致富的资产阶级家庭,法科学校毕业后,拒绝家庭为他选择的受人尊敬的法律职业,而立志当文学家。为了获得独立生活和从事创作的物质保障,他曾试笔并插足商业,从事出版印刷业,但都以破产告终。这一切都为他认识社会、描写社会提供了极为珍贵的第一手材料。他不断追求和探索,对哲学、经济学、历史、自然科学、神学等领域进行了深入研究,积累了极为广博的知识。 1829年,巴尔扎克完成长篇小说《朱安党人》,这部取材于现实生活的作品为他带来巨大声誉,也为法国批判现实主义文学放下第一块基石,巴尔扎克将《朱安党人》和计划要写的一百四五十部小说总命名为《人间喜剧》,并为之写了《前言》,阐述了他的现实主义创作方法和基本原则,从理论上为法国批判现实主义文学奠定了基础。 巴尔扎克在艺术上取得巨大成就,他在小说结构方面匠心独运,小说结构多种多样,不拘一格、并善于将集中概括与精确描摹相结合,以外形反映内心本质等手法来塑造人物,他还善于以精细人微、生动逼真的环境描写再现时代风貌。恩格斯称赞巴尔扎克的《人间喜剧》写出了贵族阶级的没落衰败和资产阶级的上升发展,提供了社会各个领域无比丰富的生动细节和形象化的历史材料,“甚至在经济的细节方面(如革命以后动产和不动产的重新分配),我学到的东西也要比从当时所有职业历史学家、经济学院和统计学家那里学到的全部东西还要多”。(恩格斯:《恩格斯致玛·哈克奈斯》) 巴尔扎克以自己的创作在世界文学史上树立起不朽的丰碑。

坦克世界闪电战怎么进行基本操作

坦克世界闪电战怎么进行基本操作 《坦克世界:闪电战》是一款模拟驾驶和竞技对战相结合的游戏。玩家需要在短短的几分 钟内,驾驶坦克与队友一起,完成一次又一次的战役。要不战死在战场上承担失败的苦果,要不 昂首挺胸击毁敌人,将红旗插在据点之上。 基本操作 在新手教程的讲解中,相信很多玩家都了解到如何操作坦克。通过屏幕右侧的滑动可以转动坦克的视觉(炮口瞄准会自动跟随),屏幕左下方的虚拟按键针则是指挥坦克前进、后退和拐弯。看起来很容易,但是上手之后就会发现操作会有难度,部分新手玩家在刚接触的时候寸步难行,下面龙鹰提供几点小技巧。 1.坦克行驶很简单,速度最快走直线 游戏中的坦克遵守现实的物理规则,起步之后的速度会有一个由慢到快的加速过程。新手刚接触容易手忙脚乱,手指容易不稳定,导致坦克撞到障碍物动弹不得。要想坦克稳定灵活行驶,需要玩家选定一个方向。然后直推虚拟按键走直线,坦克速度才能起来。 2.慢转弯,躲障碍,坦克灵活最关键 灵活的坦克能够更快赶到战场上参与战斗,能够更好地躲避敌人坦克轰击的炮火。而上文也 提到,坦克是会遵守现实的物理规则,启动会有一个从慢到快的过程。所以启动之后的坦克,除 非准备与敌人打阵地战,否则不应该停下来。 如何保证坦克在行进中保持最佳速度?最重要的是走直线。只要走直线,坦克就会时刻保持其 能达到的最佳速度。如果遇到障碍物,不宜进行大幅度转向操作。大幅度转向操作会令坦克的速 度直线降低。如果进行小幅度的转向,则不会太影响坦克的速度。 以上就是小编介绍的一些基础操作知识,特意提一句,小幅度转弯,会使得坦克转弯的范围 扩大,一不小心就容易碰撞到障碍物,这个需要玩家自行判断。 百度攻略&口袋巴士提供 1

巴尔扎克

巴尔扎克 1、巴尔扎克的文学史地位 巴尔扎克是法国伟大的小说家,是19世纪批判现实主义文学的主要代表。在20年间呕心沥血写作实践中,巴尔扎克在世界文学史上构筑了一座举世无双的巍峨大厦——《人间喜剧》,而他自己则成了“文学中的拿破仑”。 马克思非常推崇巴尔扎克,认为他“对现实关系具有深刻理解”。恩格斯赞誉他的作品有着“了不起的革命辩证法”,并在《致玛·哈克奈斯》一信中对他作了精辟的论述。 2、生平与创作概况 A.全称: xx·xx·巴尔扎克 B.本姓: xx C.生卒____年__月__日: 1799.5.20— 1850.8.18 D.出生地: xx E.家庭: 中产阶级之家 F.教育:1816年结束中学学业 G.主要经历:

1819-1829年,开始写作小说; 1825年起出版图书,开办印刷厂,铸造铅字,以欠债6万法郎告终; 1828-1850年,全力创作《人间喜剧》。 H.主要成就: 包括90余部长篇小说、中篇小说、短篇小说的文学巨著《人间喜剧》。 3、巴尔扎克的创作道路 1819-1829年,探索阶段;1819年,立志当作家。1820年,写作悲剧《克伦威尔》失败,开始创作神怪小说,也未获成功。此后至1828年前,屡屡经商失败,债台高筑。1828年夏起重走文学道路。1929年以真名发表历史小说《朱安党人》,初获成功,在文坛站稳脚跟。 1829-1845年,黄金时代;巴尔扎克怀着做“文学上的拿破仑”的雄心壮志,孜孜不倦地创作,建构着《人间喜剧》这座艺术大厦,接连发表了许多杰作,如《高布赛克》 (1830)、《驴皮记》 (1831)、《xx·xx》 (1833)、《xx》 (1834)、《无神论者做弥撒》 (1836)、《xx银行》 (1837)、《幻灭》(1837-1843)和《农民》 (1845)等。 1846-1850年,晚期。1848年前,巴尔扎克陆续完成了《贝姨》

新手必看:《坦克世界》新手攻略

新手必看:《坦克世界》新手攻略 一、分房篇 知己知彼方能制敌,新手首先要了解的是分房规则。进入战斗时是电脑随机分房,其中分房规则为:1-2级车房;1-3级车房(2级火炮TD房);2-4级车房(机率低);3-5级车房;3-6级车房(机率低)4-7级车房;4-8级车房(机率低);4-9级车房(不是没有过)。总结上面分房情况,出现最多的房有两种:1-2级车房、3-5级车房。1-2好混,3-5级房有火炮要小心火炮,4级车以后基本进大班,所以进入后更要小心。 二、战车篇 如果你打了一坦克10炮他还一滴血没费,恭喜你遇到BOSS了。每个房都会随后分来1-3个BOSS,这些房间的顶级车通常都要吃肉的,新人见了一定要小心应对。 1-2级房BOSS并不特别变态,像D国金车PzKpfw38H735(f)在1-2级房里正面基本无敌,唯一能打得动他的1级车,只有S国的MS-1完整体,但是穿透机率真也不是特别高。对付PzKpfw38H735(f)就是必开他倾角好的正面,用3、7MM炮攻击他平整的侧面车身,如果你只装了一般的机关炮,请不要轻易接近这个晓BOSS。

1-2级房里除PzKpfw38H735(f)这样的不坏金刚以外,还有像BT-2那样的凶狠猎手。干爹车神马都给力,这句话真不是随便说的。1级MS可以装3级4、5MM的炮试问谁能受得了。而BT-2所使用的致命武器确不是这个。而是37mmZiS-19,这门炮标准穿透力是58,完全无视1-2级房所车的装甲。但是火炮凶猛并不是BT2被称作猎手的唯一原因,除此之外BT-2还有着车身低矮、着弹面小、行进间射击的稳定,近距攻击对方车身易于瞄准等优点。总之,这种接近于T-34的车体设计理念带来的优势,已经使其远远超出同级古董车。如果你用心的去了解BT-2,你就是BOSS。 1-2级房里还有一些小给力,如D国的35t正面炮塔和车身装甲都有25,完全可以免疫一般机关炮,3、7MM也很给力,能打穿90%1-2级车,是LZ的最爱。D国2号有着2级车里最厚的正面装甲35,只能使用机关炮,虽然只能用机关炮,但是LZ认为该车最大问题不在于火炮口径,而是因为其硕大的观察观正好设在炮塔的正中,这样就使得强大的35MM装甲形同虚设,几乎所有3、7MM炮都可以轻易打穿他。S国T26有着跟兄弟BT-2一样的火炮,只机动力和稳定性不如BT-2,战斗力大打折扣。M国中坦T2,2级车就有中型坦克,M国就是不要脸。良好的装甲22,可以免疫初级机关炮,良好的火炮,良好机动,良好的视野,不过神马都良好的结果只能什么都不突出,或许在高手手中他是神器,但LZ不见意新手使用。M国神车,T2轻坦,最适合,狂野一族和极限选手使用,71KM的速度堪比跑跑坦克车,装载2、0MM机关炮,可以保证高速行进间命中目标,使用机关炮的好处就是,不求枪枪都命中,但是总有一发适合你。

坦克世界WOT火炮实用技巧

教你WOT坦克世界火炮实用技巧 自行火炮实用原则 一、火炮原则 本守则遵循的第一原则是生存。 只有活着,才有希望。做为战场的掌控者,火炮应该有足够的谨慎。即使是团灭,火炮也应该是最后一个阵亡者。 二、阵地选择 1、除特定情况,火炮严禁上第一线 躲在后方,只有火炮才能威胁到你的安全;冲到第一线,是个坦克的都能给你两炮。 特定情况指的是: A、弹尽粮绝,充当眼睛 B、后路已绝,破釜沉舟。 2、除特定情况,火炮阵地选择在有掩体或地势特殊区域。 无论在何种境地,火炮必须给自己留条后路。当对方火炮追寻到己方火炮弹道,或者发觉自己已经暴露,可以利用掩体或进入下坡路面进行规避等待救援。 3、尽量避免选择在常规地带或地图边缘 你能想到地方,对方也能想到。那么就去别人不太容易想到的地方。很多火炮玩家有个误区,喜欢钻森林或灌木丛。但是做为火炮玩家,预判敌方位置第一选择也就是森林和灌木地带。况且,这些地带除了增加隐蔽度,无法为火炮更多的保护。地图边缘同理。 4、火炮阵地的选择应该可以攻击到对方地图底线,覆盖地图百分之五十以上区域 不要等到队友杀到对方包围圈,需要你掩护的时候才发现打不到。不要等到对方冲杀过来才发现视线受阻。火炮的任务永远只有两个:掩护、狙杀。掩护我方队友突击;狙杀对方重型坦克和火炮。一切一切的前提是视野和射程。做好事先准备永远是不二法门。 三、攻击 1、做好战前准备 进入战斗后,一般进入两种状态。 A、迅速进入鹰眼模式,观察对方阵地。如果有菜炮开火直接反弹 B、选择阵地,预先埋伏。 之前看过记者团的帖子,他是优先选择A模式的。这里我持不同看法,根据火炮第一原则。火炮第一目的是存活下去。而目前国服的疯狂小坦克很普遍,很可能你还没发现对方就已经***掉了。所以一般情况下我是B模式开场。 2、火炮的防御作用远远大于攻击 可能很多玩家对这句话很不理解。做为极端攻击武器,如果做到防御,而且防御大于攻击。关于这点,牵涉到我个人的思考,仅供参考 在我看来,火炮的落点决定战局的成败。战局的胜负远远大于个人击杀数。当我方队友围殴对方单个坦克时,你的攻击只是锦山添花,或者是抢人头。而对方围殴我方坦克时,你的攻击却是雪中送炭,甚至是釜底抽薪。

巴尔扎克作品经典语录大全100句

巴尔扎克作品经典语录大全100句 1、男子的才对于德而言,就和美貌之于女子差不多:能给人以希望。——巴尔扎克《莫黛斯特·米尼翁婚约》 2、苦难好比一道神奇的符箓,能加强我们的天性,使猜忌与凶恶的人愈加猜忌愈加凶恶,慈悲的人愈加慈悲。——巴尔扎克《夏倍上校》 3、真正的考验是在痛苦和幸福上。当两个人通过了这两种人生的考验,在这过程中每人的优缺点都暴露无遗,也观察了彼此的性格时,他们就可以手携手一直走到坟墓了。——巴尔扎克《莫黛斯特·米尼翁婚约》 4、在爱情方面,别有用心的虚假总比真面目可爱,就因为此,才有许多男人肯在一般手段高明的女骗子身上挥金如土。——巴尔扎克 5、人类所有的力量,只是耐心加上时间的混合。所谓强者是既有意志,又能等待时机。守财奴的生活,便是不断的运用这种力量为自我效劳。他只依赖两种情感:自尊心与利益。但利益既是自尊心的实际表现并且是真正优越的凭据,所以自尊心与利益是一物的两面,都从自私自利来的。这种人物涉及所有的情感,可以说集情感之大成,而我们个个人都跟他们一脉相通。哪有什么全无欲望的人?而没有金钱,哪个欲望够满足?——巴尔扎克《欧叶妮·葛朗台》 6、精神生活与肉体生活一样,有呼也有吸:灵魂吸收另一颗灵魂的感情来充实自己,然后以更丰富的感情送回给人家。人与人之间要没有这点美妙的关系,心就没有了生机:它缺少空气,它会受难,枯萎。——巴尔扎克《欧叶妮·葛朗台》 7、逆境不就是命运的试金石吗? ——巴尔扎克《高

老头》8、"L'amour n'est pas seulement un sentiment, il est aussi un art. 爱不光是一种感情,也是一门艺术。- Honoréde Balzac 巴尔扎克-——巴尔扎克《网络名言集》"9、感情等于才分。感受是了解的对手,正如行动是思维的抗衡。一个有天才的朋友可以通过友情、领会,和他并驾齐驱。一个常人有感情作基础,就可以比倒最伟大的艺术家。这说明女人为什么爱着一些“蠢才”。——巴尔扎克10、到处是真苦难,假欢喜。——巴尔扎克《高老头》11、哪里有穷困,哪里就有苦难。苦难,穷困,蓄势极猛,苦了,穷了,斯滥矣,大权在握,就会滥用,其理自同。——巴尔扎克《乡村医生》12、做点好事,待人要仁慈、宽厚;总之,用你的谦虚来避免厄运吧。——巴尔扎克13、苦难对于人生是一块垫脚石……对于能干的人是一笔财富,对于弱者是个万丈深渊。——巴尔扎克14、目的高尚,会使所做的事情都同样高尚。——巴尔扎克15、实笃一清如水的生活,诚实不欺的性格,不论身处哪个阶级,就算心术最坏的人,也会对之肃然起敬。——巴尔扎克16、长命也许不够好,美好的生命却够长。——巴尔扎克17、人们有多少需求,就能创造多少财富。——巴尔扎克18、艺术就是用最小的面积,惊人地集中最大量思想。——巴尔扎克19、他不断地处于与人奋斗、与天地奋斗之中,没有功夫去尽情卖弄。只有花花公子才会大肆卖弄,迫不及待地将转瞬即逝的一季庄稼收割下来,那种自尊与不管是什么东西,凡从它手下经过就要抽税的海关相差无几。——巴尔扎克20、年轻时费过力气学到的东西,即使是无聊对我们也有用。——巴尔扎克21、拐弯抹角的路成不了

巴尔扎克——素材

巴尔扎克出生于一个法国大革命后致富的资产阶级家庭,法科学校毕业后,拒绝家庭为他 选择的受人尊敬的法律职业,而立志当文学家。为了获得独立生活和从事创作的物质保障,他曾试笔并插足商业,从事出版印刷业,但都以破产告终。这一切都为他认识社会、描写 社会提供了极为珍贵的第一手材料。他不断追求和探索,对哲学、经济学、历史、自然科学、神学等领域进行了深入研究,积累了极为广博的知识。 1822年正当巴尔扎克倍受冷遇,痛苦绝望的时刻,结识了贝尔尼夫人。贝尔尼夫人的母亲 曾是王后的侍女,对宫廷的生活,交际的秘密和妇女的命运十分熟悉。贝尔尼夫人比巴尔 扎克大22岁,具有完美的娇柔感,高雅的谈吐,沁人肺腑的同情心,以及慈祥的母爱。这一切深深吸引着巴尔扎克,使巴尔扎克感受到从小没有领略过的母爱般的温情。她对他的 一生产生了重大的影响。巴尔扎克把她称为他的母亲、朋友、家属、伴侣和顾问。[1] 1829年,巴尔扎克完成长篇小说《朱安党人》。历史小说《朱安党人》(1829)是巴尔扎 克用真名发表的 奥诺雷·德·巴尔扎克 第一部作品,描述1800年法国布列塔尼在保皇党煽动下发生的反对共和国政府的暴动。作者赋予英勇的共和国军人以应有的光彩,但也大大美化了朱安党首领孟多兰侯爵,表现出 他当时对贵族的同情。为了写这部小说,他曾细心研究有关暴动的历史文献,亲自去布列 塔尼调查山川形势和农民生活,访问暴动的目击者和参加者,还从友人柏尔里公爵夫人那 里收集许多关于朱安党人的掌故。从写神怪小说过渡到写历史小说,是巴尔扎克走向批判 现实主义的第一个重要步骤。他在《朱安党人》中描写的不是古代历史,而是属于当代社 会生活范畴的重要事件。着重反映当代社会生活,正是巴尔扎克日后所写的《人间喜剧》 的一个特点。 从1829年写《朱安党人》起,巴尔扎克的创作开始进入成熟时期,即《人间喜剧》时期(1829-1848)。在三、四十年代,他除致力于文艺创作以外,还出入巴黎上流社会的沙龙,为几种报刊撰稿,他接触的生活面非常广泛。[2] 巴尔扎克从这时期起,就在现实主义理论方面进行深入探索。他认为小说家必须面向现实 生活,使自己成为当代社会的风俗史家;又认为小说家的任务不仅在于摹写社会现象,还 须阐明产生这些现象的原因,指出人物、 影视剧中奥诺雷·德·巴尔扎克 欲念和事件背后的意义。在塑造人物的问题上,他强调特性,也强调共性;他说诗人的使 命在创造典型,使典型个性化,个性典型化;又说典型人物应该把那些多少和他类似的人 的性格特点集于一身。他还强调艺术必须为社会服务;认为艺术家不仅描写罪恶和德行, 而且要指出其中的教育意义;艺术家必须同时是道德家和政治家。 1830年4月,巴尔扎克《人间喜剧》中《私人生活场景》两卷出版了。然而,他深深地为 法国文学创作者的处境担忧。虽然法国于1791年颁布的《表演法令》和1793年颁布的

坦克世界T-34-2的攻略分析其特点优势

坦克世界T-34-2的攻略分析其特点优势坦克世界T-34-2的攻略分析其特点优势 本来两个版本之前有N部T-34-2的视频素材,但是由于一时偷懒和版本更新的速度,所以我所有的T-34-2的视频就永远的离开我们了。 作为国服第一黑豹2我没做过关于黑豹2和黑豹88的视频如果这算是不合时宜,月有阴晴圆缺的话,那么T34-2的视频没有出炉,就纯粹是我偷懒造成的了,在这里给大家道个歉…… 性能、优劣势的评价 粥要一锅一锅的端,性能要一个一个的说。 首先是我个人认为T34-2尤为突出的一大优势:机动。 这是我用装甲密档和T-44的对比,从功率和提速上来说T-34-2确实跟传统神车T-44比要略逊一筹。 但是从履带适应性上来说,车体的旋转速度和地面的阻力都是要高于T-44的,确实在实战里34-2这辆车非常灵活,中近距离转场,支援,偷炮等等之类的小范围性能体现,只要你有足够的意识和反应能力,T-34-2甚至要比其他同级中坦快上很多。 当黑豹2还在扭身子的时候,可能34-2已经找好优势地形准备还击了,所以34-2的机动性是没有任何槽点的。 但是同样的,灵活的机动需要的是有一个更加灵活思考的车长去驾驭才能体现出这一点优势,如果你觉得34-2的机动性还有槽点,请先提升自己…… 第二点特性:炮塔!

34-2的炮塔很硬!我曾经在视频里说过这样的话: “炮塔是一辆坦克的尊严,车身脆你可以找任何地形;掩体;尸体去挡住你的车身然后用炮塔探出去和对方对射” “如果一辆坦克炮塔装甲形同虚设但车身硬的话,比如百运,那么你总不能用掩体挡住你的炮塔用裤裆去和对面对射吧?” 咱们T-34-2的炮塔是8级所有银币中坦里数一数二的,虽然纸面数据上显示的装甲防护一般,但是由于炮塔的造型,以及个人卖头水平的能力,造就了T-34-2炮塔的硬度几乎碾压了T-44。 所以34-2卖头能力真心很强,也是尊严的一种表现。 俯角仅仅只有5度,5度俯角绝对是一辆坦克的正常水平,虽然不及T-44的7度,但是车身并没有T-44那么高,所以差别并不是太明显,如果你还是觉得5度不够用,那么请熟练领悟任何地形下垫俯角的车长技能。 那么至于车体装甲嘛,看看就可以了,很中庸的水平,这里就不多说废话了。 第三点特性:主炮。 依旧是和T-44的对比。 炮,是很多人觉得34-2很坑的原因之一,或者说就是这个原因没有之一,可以看到除了一些隐藏属性要比T-44好一些之外,其他比较关键的DPM、穿深、射速、精度、火控等性能都比T-44要弱很多。 确实,34-2的一大软肋没什么好替它翻身的。 但是大家可以换位思考一下,为什么它的炮要比T-44或者说同级车差这么多呢?是不是也是因为其他属性比较强,所以炮才这么辣鸡呢? 这里还需要给大家补充一点个人的感觉,我觉得34-2的炮,从手感上来说是59高清之前的手感,比现在的高清后的59手感要好很多,那么还是那句话吧,远距离打不到人,咱就离近点打呗? 扬长避短才是王道嘛! 那么至于隐蔽、视野、静默等等这些东西别来问我,我对这些一窍不通,我也不认为一辆8级

外国文学史 巴尔扎克汇编

第五节巴尔扎克与《高老头》分析 一、巴尔扎克简介(1799-1850) 1、《人间喜剧》的创作:《风俗研究》《哲理研究》《分析研究》,是一部关于19世纪法国的“包罗万象的社会史”。 (1)主题上要写出“一个完整的社会”,艺术上要呈现一个“统一、独创、新鲜的整体”。 (2)主题思想:反映出资产阶级取代贵族阶级的时代潮流。 A、资产阶级的发迹史。《赛查·皮罗托盛衰记》《欧也妮·葛朗台》《纽沁根银行》 B、贵族阶级的衰亡史。《古物陈列室》 C、金钱成为社会的轴心,操纵着社会关系,这不仅反映在广义的政界、社交界等社会层面,而且反映在最亲密的家庭关系中。 (3)艺术特征: A、艺术形式的多样化和富于变化,或客观描述,或转述故事,或深入人们的情感中探讨。 B、在典型环境中塑造具有典型意义的人物形象,人物性格与物质化的社会环境水乳交融。 C、作品文本的相互交织。《人间喜剧》的一部作品中的人物形象会在多部作品中出现,人物的命运具有时间上的连续性,因而众多作品相互勾连,构成一部完整的社会生活的记录。如《高老头》中鲍赛昂夫人的凄凉结局、拉斯蒂涅的飞黄腾达。 D、写实与幻想交相辉映,突出金钱统治下的法国社会的疯狂喧嚣。《萨拉辛》

二、《高老头》分析([法]巴尔扎克著,张冠尧译,北京:人民文学出版社,2003年) 一、作品背景与主要内容介绍 当时的法国现实是,资产阶级已经获得彻底的胜利,而贵族阶级逐渐地退出历史舞台。这样资本主义的生产关系的重要基础即金钱在社会生活中占据着绝对地位,支配着各种社会关系,并且渗透在人们的亲情、友情和爱情中。 《高老头》是法国批判现实主义大师巴尔扎克最具代表性的作品之一,充分展现了金钱的罪恶与对人类美好感情与人性的腐蚀作用。 二、作品简介 作品中有着两条线索,一条是高老头的命运正由盛转向衰败,另一条是拉斯蒂涅正步步高升,但展现的是相同主题。拉斯蒂涅为高老头奔走于两地之间,作品通过他的奔走将这两条线索结合起来,凸现法国巴黎各个社会阶层的生活。从代表着法国社会底层的缩影的伏盖公寓,到法国的上流社会人人趋之若骛的地方鲍赛昂夫人的门庭和舞会;从社会的底层人物伏盖公寓中住客之间的关系,到贵族与银行家的家庭关系,《高老头》描写得详尽细致,淋漓尽致。与法国社会各阶层的接触使拉斯蒂涅逐步认识到法国社会的本质,即金钱至上,人人为己,但这也使他彻底泯灭的人性的良知。 三、作品主题 1、金钱主宰着社会的一切关系 2、高老头的沦落意味着,在资本阶级上升时期金钱对社会的统治和金钱至上的原则的冲击下,传统的宗法制家庭伦理关系彻底解体。 四、拉斯蒂涅的人物形象分析 作者塑造高老头人物形象的意义,不仅是想通过高老头的命运对作品中另一主要人物拉斯蒂涅发生重要的作用,让拉斯蒂涅再一次受到了资产阶级自私自利

巴尔扎克作品中的现实主义风格

龙源期刊网 https://www.360docs.net/doc/fb15511101.html, 巴尔扎克作品中的现实主义风格 作者:梁萧 来源:《现代交际》2016年第01期 摘要:法国文学巨匠巴尔扎克的作品充满了批判现实主义色彩,以写实为基调,成为19 世纪法国社会的一面镜子。他善于在特定环境下塑造典型的、具有代表性的、富有个性化的人物;再通过人物再现的写作手法,折射社会,堪称现实主义写作风格的代表作家之一。他所描绘的现实世界,并非是生活的复制品,而是基于小说家敏锐的观察力,用小说写作手法呈现“真实”的世界。可以说,他是一位创造现实的现实主义作家。 关键词:巴尔扎克;现实主义;写实 中图分类号:G6343文献标识码:A文章编号:1009-5349(2016)01-0140-05 作为现实主义小说的奠基人,巴尔扎克不仅开辟了小说的新天地,更将小说的表现力提升到空前的高度。他强调塑造人物要典型化,从典型化中突出人物个性,再通过典型人物这一个“点”去折射社会现实的一个“面”。他所刻画的人物如“伏脱冷”、高老头的女儿,将个性与共性完美结合,又展现得淋漓尽致,使之成为典型的小说人物。他的作品反映社会现实,以写实为基调,长于描写丰富多彩的生活,刻画的法国社会风俗细致入微,读者通过人物命运的变化,看到了19世纪法国社会所经历的巨变。他通过创造现实来描写“真实”世界的创作模式,被誉为“创造现实的现实主义者”。 一、还原巴尔扎克 巴尔扎克作为现实主义文学巨匠,是塑造典型小说人物的大师。在其二十载的创作生涯中,创作了《高老头》、欧也妮·葛朗台》《幽谷百合》等脍炙人口的不朽之作,而《人间戏剧》更是被誉为“法国社会的百科全书”,真实地呈现了19世纪法国社会中金钱的统治地位,深刻剖析了人性的丑与美,在世界小说史上树立了一块迄今为止仍无法超越的丰碑。[1]与他 同时代的法国文学巨匠维克多·雨果在其葬礼上发表了这样的赞誉:“在最伟大的人物中间,巴尔扎克是第一等的人;在最优秀的人物中间,巴尔扎克是最高的一个。”[2] 尽管巴尔扎克在生前并未得到应有的赞誉,但在其死后,人们逐渐认识到他作品的伟大之处,并将其誉为“现实主义”小说的奠基人。在今天,我们重读巴尔扎克作品时,不禁被其光怪陆离的小说场景、极富个性的人物形象、对现实世界中追逐金钱名利心理的深刻剖析所折服。他的作品兼具了现实主义小说的三大特性,即真实的细节描写、典型的人物形象、客观的叙述方式。要解读巴尔扎克作品,剖析他是如何创作出如此“真实”的小说,首先要还原巴尔扎克,还原他的创作历程。 (一)折射社会的镜子

巴尔扎克的简介

巴尔扎克的简介 巴尔扎克的简介奥诺雷·德·巴尔扎克,法国小说家,被称为现代法国小说之父。生于法国中部图尔城一个中产者家庭。1816年入法律学校学习,毕业后不顾父母反对,毅然走上文学创作道路,但是第一部作品五幕诗体悲剧《克伦威尔》却完全失败。尔后他与人合作从事滑稽小说和神怪小说的创作,曾一度弃文从商和经营企业,出版名著丛书等,均告失败。商业和企业上的失败使他债台高筑,拖累终身,但也为他日后创作打下了厚实的生活基础。1829年发表长篇小说《朱安党人》,迈出了现实主义创作的第一步。1831年出版的《驴皮记》使他声名大震。他要使自己成为文学事业上的拿破仑,在30至40年代以惊人的毅力创作了大量作品。一生创作甚丰,写出了91部小说,合称《人间喜剧》。但由于早期的债务和写作的艰辛,终因劳累过度于1850年8月18日与世长辞。 巴尔扎克的生平人物档案 早年 出生 1799.5.20 寄养 1803-1807 效区列盖公寓 小学 1807-1813 旺多姆教会学校 中学 1814-181 5 黎毕德拉学校 大学 1815-1819 巴黎法律专科学校

青年 初试文学 1819-1825 流行小说写作 从事实业 1825-1828 从事实业,负债累累 文坛新秀 1828-1835 日渐成熟,形成自己风格 晚年 文坛宿将 1835-1850 创作高潮 文学家协会委员时期 1839-1850[1] 生平概述 100多年来,他的作品传遍了全世界,对世界文学的发展和人类进步产生了巨大的影响。马克思、恩格斯称赞他“是超群的小说家”、“现实主义大师”。 巴尔扎克法科学校毕业后,拒绝家庭为他选择的受人尊敬的法律职业,而立志当文学家。为了获得独立生活和从事创作的物质保障,他曾试笔并插足商业,从事出版印刷业,但都以破产告终。这一切都为他认识社会、描写社会提供了极为珍贵的第一手材料。他不断追求和探索,对哲学、经济学、历史、自然科学、神学等领域进行了深入研究,积累了极为广博的知识。 1829年,巴尔扎克完成长篇小说《朱安党人》,巴尔扎克将《朱安党人》和计划要写的136部小说总命名为《人间喜剧》,并为之写了《前言》,阐述了他的现实主义创作方法和基本原则,从理论上为法国批判现实主义文学奠定了坚固的基础。巴尔扎克在艺术上取得巨大成就,他在小说结构方面匠心独运,小说结构多种多样,不拘一格、并善于将集中概括与精确描摹相结合,以外形反映内心本质等手法来塑造人物,他还善于以精细人微、生动逼真

坦克世界战车弱点

C 系十级重型坦克,113,其实这个车可以用中型来命名,拥有所有苏联车有的弱点,前挡 泥 板 、 正 面
前部装甲,蓝色叉子和圆圈的地方不要轻易尝试,反正我 T95 都没打穿过! 用 T95 可是经常吃这个车的亏,虽然装甲不厚但是异常难打,尤其是上方装甲倾斜角都快

达到 60° 了。 红色的地方用 E50 都击穿过,上半身不好打不推荐(如果你们认为有那个远程精准的话可
263 在没火炮房 最大的弱点就是裤裆了 其次是炮盾上的小眼 训练房被 3485 击穿了! 不 过目前很好 很多人不会打这车 看见一个苏系 TD 出来 有的人就冲首上一发 有的人就冲 战斗室一发 有的人心想自瞄肯定能穿 于是猛一探头经常叮铃咣啷 爽死了 不过也有人断 带和抽档的 风险也


E75 重型坦克,9 级房的霸主,弱点不是太多,尤其是摆好角度以后,正面炮塔和车身衔接 地方有两个凹槽, 用 59 击穿过....! 正面地盘低级车不要考虑了, 需要很高的穿深, 表示 IS-3 的炮也是各种跳!
最爱打这个货了,脆皮到一定境界了,是个上 200 穿的炮怎么都能打穿!白色的地方有惊 喜
收起回复
? ? ?
15 楼 2013-06-17 19:43 举报 |
?
少女丶如痴如醉: 神马惊喜 2013-6-17 19:50 回复
?

o0 柯哀永恒 0o: 回复 少女丶如痴如醉 :爆弹药架... 举报 | ;2013-6-17 19:54 回复
?
少女丶如痴如醉: 噗 2013-6-17 20:14 回复
?
鄍経: 回复 少女丶如痴如醉 :蛋碎了 2013-6-17 20:25 回复
?
丛林中的野玫瑰: 谁要是打不中这货删号吧,炮塔太大了! 2013-6-17 20:28 回复
?
我也说一句 还有 8 条回复,点击查看

巴尔扎克资料

巴尔扎克兄弟姐妹共四人(父亲在外又有几个非婚生孩子),母亲宠爱的弟弟是母亲瞒着父亲与他人的私生子。他从小怕母亲,回忆童年时曾说一听到母亲的声音便会吓一大跳,成年后更感到生母的贪婪和冷酷。他有一次破产欠了6万法郎,其中4万的债主便是母亲,长期不还时也始终拒绝勾销。无妻小的巴尔扎克常外出游荡,只好把留在巴黎的房产财物交给唯一可信的老娘管理,结果被做了些小手脚,使得母子反目。有暴发户特点的布尔乔亚式的贪欲、自私、放荡,充分显现在这个家中,无怪他笔下能入木三分地发掘恶习、解剖情欲。 巴尔扎克一生放荡不羁,经常挥霍无度和负债破产,爱情婚姻又十分复杂。他早期想娶阔家小姐却被人看不上,出名后又成为不少有闲贵妇追逐和消遣的对象。他在理发店剪下的发屑,有时竟然成为一些少妇和太太的争夺品。他曾痴情于逢场作戏的侯爵夫人而遭耍弄,23岁至33岁时与比自己母亲年纪还大的一位夫人成了长期情人。后来他十几年追求自己作品的崇拜者、一位拥有4万佃农的俄国贵族庄园太太,两人还生过一个孩子(可惜夭折)。这个伯爵夫人丧夫后却因门第之见,拖了八年不肯结婚。直至作家去世三个月前,寒斯卡夫人出于怜悯及其他目的才勉强举行了婚礼,不久又有了新情人。巴尔扎克长期卧床带着周身恶臭病逝时,仅有妹妹、妹夫看望,床边守护的只是感情不睦却毕竟血肉相连的母亲。 “伟人的一生势必不幸”。巴尔扎克这句自诩的话,也是其生平的写照。他个人经历颇受非议,然而这个生活凡人却是思想巨人,留下的作品成为警世的不朽艺术篇章。 。《巴尔扎克传》从巴尔扎克的童年生活入笔,既记述了他在成功前的种种努力,奇异的幻想和追求,令世人咋舌的传奇,又记述了他成名后与同时代名人、朋友、家庭的交往及他的写作生活,使多侧面的巴尔扎克——他的痛苦与欢乐,他的天才和刻苦,他伟大的人性力量,都一一展现出来。传记还充分揭示了巴尔扎克个性中鲜为人知的冒险因素,从而为他的笔锋直入法国社会提供了有力的佐证。传记中巴尔扎克身后的背景如同他的伟大作品中所展现的,是一部丰富多彩的法国历史 巴尔扎克童年所渴望得到的,就是这种母性的爱抚,然而他自己的母亲却拒绝给予他。他一直在苦苦追寻,而竟在此时却得到了他早想获得 的东西。他就是要这样一个能负保护之责的天使般的女人,让他自觉到他身体里的蕴含着的力量如何排泄出来:一个既爱他而又是他知已的人来解除他内心的紧张;把他纤维中粗糙的部分提取出来但又不伤及他的身体;既能鼓励他,同时又以一种合作者的态度指出其缺点,但决不是恶意地批评;尽力了解他的思想,但对他丰富多彩的梦想并不加以嘲弄。他迫不及待地要把他的内心思想感情坦露出来让别人知道。这个年纪与他母亲相仿的人,在听他倾诉时,给他留下的是值得信赖的感觉;当他谈到他那些众多的、充满了幻想的计划时,她的明朗而且聪慧的双眼温和地闪耀着。就是这个女人,她用她的温柔与和善,把他那由于粗俗和缺乏自控力而造成的神经质矫正过来。经过她温柔小心地调教,经过她的熏陶和教育,便使他已失掉的自信力重新恢复了。在他的《费米安尼夫人》一书中,描写到他们两人的接触而给他带来的幸福: 尔扎克所闯进的是一种特殊而又新颖的氛围。跟这个家庭的交往,竟 给这位年青的巴尔扎克一个机会去体验当代历史上的真正精神,他原本对民众及其时代的关系有着深厚的感情 司汤达

坦克世界新手前期速成攻略 经典

一、分房篇 知己知彼方能制敌,新手首先要了解的是分房规则。进入战斗时是电脑随机分房,其中分房规则为。1-2级车房;1-3级车房(2级火炮TD房)2-4级车房(机率低);3-5级车房;3-6级车房(机率低)4-7级车房;4-8级车房(机率低);4-9级车房(不是没有过)。 总结上面分房情况,出现最多的房有两种,1-2级车房,3-5级车房,1-2好混,3-5级房有火炮要小心火炮。4级车以后基本进大班,所以进入后更要小心。 二、战车篇 如果你打了一坦克10炮他还一滴血没费,恭喜你遇到BOSS了。每个房都会随后分来1-3个BOSS,这些房间的顶级车通常都要吃肉的,新人见了一定要小心应对。 1-2级房BOSS并不特别变态,像D国金车PzKpfw 38H735 (f)在1-2级房里正面基本无敌,唯一能打得动他的1级车,只有S国的MS-1完整体,但是穿透机率真也不是特别高。对付PzKpfw 38H735 (f)就是必开他倾角好的正面,用3.7MM炮攻击他平整的侧面车身,如果你只装了一般的机关炮,请不要轻易接近这个晓BOSS。

1-2级房里除PzKpfw 38H735 (f)这样的不坏金刚以外,还有像BT-2那样的凶狠猎手。干爹车神马都给力,这句话真不是随便说的。1级MS-可以装3级4.5MM的炮试问谁能受得了。而BT-2所使用的致命武器确不是这个。而是37mm ZiS-19,这门炮标准穿透力是58,完全无视1-2级房所车的装甲。但是火炮凶猛并不是BT2被称作猎手的唯一原因,除此之外BT-2还有着车身低矮、着弹面小、行进间射击的稳定,近距攻击对方车身易于苗准等优点。总之,这种接近于T-34的车体设计理念带来的优势,已经使其远远超出同级古董车。如果你用心的去了解BT-2,你就是BOSS。 1-2级房里还有一些小给力,如D国的35t正面炮塔和车身装甲都有25,完全可以免疫一般机关炮,3.7MM也很给力,能打穿90%1-2级车,是LZ的最爱;D国2号有着2级车里最厚的正面装甲35,只能使用机关炮,随然只能用机关炮,但是LZ认为该车最大问题不在于火炮口径,而是因为其硕大的观察观正好设在炮塔的正中,这样就使得强大的35MM装甲形同虚设,几呼所有3. 7MM炮都可以轻易打穿他。S国T26有着跟兄弟BT-2一样的火炮,只机动力和稳定性不如BT-2,战斗力大打折扣。M国中坦T2,2级车就有中型,M国就是不要脸。良好的装甲22,可以免疫初级机关炮,良好的火炮,良好机动,良好的视野,不过神马都良好的结果只能什么都不突出,改许在高手手中他是神器,但LZ不见意新手使用。M国神车,T2轻坦,最适合,狂野一族和极限选手使用,71KM的速度堪比跑跑坦克车,装载2.0MM机关炮,可以保证高速行进间命中目标,使用机关炮的好处就是,不求枪枪都命中,但是总有一发适合你。

巴尔扎克的小说赏析

论巴尔扎克的小说 奥诺雷·德·巴尔扎克,法国小说家,现代法国小说之父,生于法国中部图尔城一个中产者家庭,1816年入法律学校学习,毕业后毅然走上文学创作道路,但是第一部作品五幕诗体悲剧《克伦威尔》却完全失败。曾一度弃文从商和经营企业,出版名著丛书等,均告失败。商业和企业上的失败使他债台高筑,拖累终身,但也为他日后创作打下了厚实的生活基础。1829年,他发表长篇小说《朱安党人》,迈出了现实主义创作的第一步,1831年出版的《驴皮记》使他声名大震。他要使自己成为文学事业上的拿破仑,在30至40年代以惊人的毅力创作了大量作品,一生创作甚丰,写出了91部小说,合称《人间喜剧》。《人间喜剧》被誉为“资本主义社会的百科全书”。但他由于早期的债务和写作的艰辛,终因劳累过度于1850年8月18日与世长辞。他的小说善于描写细节,精细入微,生动逼真;成功塑造典型环境中的典型人物;人物形象生动、充满个性。其作品具有巨大的艺术力量,是法国现实批判主义的最高峰。 一百多年来,他的作品传遍了全世界,对世界文学的发展和人类进步产生了巨大的影响。巴尔扎克在世界文学史上的地位早已确定无疑了,这主要是由他的长篇小说取得的伟大成就所奠定的。但是,综观他的创作,不能不看到他的中篇和短篇小说也起着举足轻重的作用,它们组成了他的鸿篇巨制《人间喜剧》不可或缺的一部分,其中不少是翘楚之作,堪称世界中短篇小说中的精品。巴尔扎克在法国中短篇小说发展史上所起的作用是巨大的。19世纪初,法国中短篇小说正处于发展的转折期。在此之前,中短篇小说应该说还处于萌芽状态,尽管已有不少著名的作品问世。从16世纪开始,玛格丽特·纳瓦尔的《七日谈》、德·拉法耶特夫人的《克莱夫王妃》、伏尔泰(1694—1778)的哲理小说《老实人》、《天真汉》、《查第格》、《如此世界》,狄德罗的《两个朋友》和《众口铄金》,萨德侯爵(1760一1814)的《爱情的策略》等,在中短篇小说的发展史上都是不可不提的作品。可是,无论从人物形象的塑造还是结构方面来说,法国中短篇小说在19世纪之前还没有臻于成熟,就短篇而言,只能说这些作家写的是故事,而并非是真正的短篇小说。也许,法国的中短篇小说要从夏多布里昂的《阿达拉》和《勒内》开始。尤其是《勒内》,塑造了所谓“世纪病”的典型——勒内。这

相关文档
最新文档