塑胶内应力测试方法

塑胶内应力测试方法
塑胶内应力测试方法

PC塑胶材料的内应力检测方法

1、测试辅料:

正丙醇、乙酸乙酯/甲醇(比例为1:3)、甲苯/正丙醇(比例为 1:10)、甲苯/ 正丙醇(比例是 1:3)、碳酸丙烯、测试夹具(或者负载)。

2、测试过程:

2.1 测试夹具的选择:

2.1.1因为TnP混合液存放时间过长,其成分会蒸发,性质会改变,从而导致测试结果不一,所以要选择一个可以存放正丙醇、乙酸乙酯/甲醇、甲苯/ 正丙醇、碳酸丙烯试剂的密封瓶,并且能保证试剂在密封瓶内循环流动。

2.2 测试试剂的选择:

2.2.1选择测试试剂时应满足测试程度的要求,必须符合安全要求.

2.2.2 如果PC料在使用过程中不能承受机械负载,测试试剂由正丙醇或者乙酸乙酯和甲醇以1:3的比例调制而成.

2.2.3 如果PC料在使用过程中能承受机械负载,测试液必须为1:10比例的TnP(即甲苯和正丙醇混合液).如果外荷载更大或者在临界情况下,测试液可改为1:3比例的TnP,甚至可用碳酸丙烯替代.

2.2.4 如内应力较小的情况下,可用乙酸乙酯/甲醇代替TnP测试液.比如,将乙酸乙酯/甲醇的混合比例调为1:2.5, 因为此试剂可让PC材料达到7兆帕的反应力值.

2.2.5 如果没有特殊的要求可根据“图表二”的内应力要求选择合适的试剂,试剂量要求能将测试样品完全沉浸在试剂中。

2.3 测试时间:

2.3.1 因为PC材料在注塑模表面形成一层液体薄膜.此液体薄膜不易蒸发,尤其经过更长时间的浸泡,使得产生裂纹更难被察觉.所以PC材料在碳酸丙烯试剂中浸泡时间不应超过一分钟.曝光时间越长,内应力值越小.但内应力更小,也会出现应力裂纹. 2.3.2 PC材料在其它的试剂沉浸的时间可以参考下表

2.4 材料的选择:

2.4.1对于有着色的PC材料或者有色材料上如果有由内应力产生的裂纹也很难觉查的到,所以测试样品要求选择透明的材料进行测试。

2.4.2 测试样品要求保证在出模后在室温条件下放置1个小时后才能进行内应力测试。测试样品的厚度要求保证在1毫米以上,因为在1毫米以下的材料可能在注塑的过程中就可能产生裂纹。 2.5 测试方法:

2.5.1 223在经过试剂所对应的时间浸泡后将样品从试剂中取出并用清水冲洗干净,用裸眼检查所有可能出现的裂纹及破裂程度、并根据图表一来判定内应力范围。

2.5.2 在裸眼检查不明显的情况下可以使用放大镜检查。

3.结果判定:

a.如果测试显示裂纹导致过大内应力,即意味着铸模形状不佳,模型设计不符,或者出现加工错误.

b.内应力的测试值判定可参考:表一、表二(出现裂纹表示内应力高于表中相应数值,反之小于相应数值)。

表面残余应力测试方法

表面残余应力测试方法 由于X射线的穿透深度极浅,对于钛合金仅为5μm,所以X射线法是一种二维平面残余应力测试方法。现在暂定选择钛靶,它与钛合金的晶面匹配较好。(110)晶面 一、试样的表面处理 X射线法测定的是试件的表面应力,所以试件的表面状况对测量结果也有很大的影响。试件表面不应有油污、氧化皮或锈蚀等;测试点附近不应被碰、擦、刮伤等。 (1)一般可以使用有机溶剂(汽油)洗去表面的油泥和脏污。 (2)去除氧化皮可以使用稀盐酸等化学试剂(根据试样选择合适浓度,如Q235钢用10%的硝酸酒精溶液浸蚀5min)。 (3)然后依据测试目的和测试点表面实际情况,正确进行下一步的表面处理。如果测量的是切削、磨削、喷丸、光整、化铣、激光冲击等工艺之后的表面应力,以及其它表面处理后引起的表面残余应力,则绝不应破坏原有表面不能进行任何处理,因上述处理会引起应力分布的变化,达不到测量的目的。必须小心保护待测试样的原始表面,也不能进行任何磕碰、加工、电化学或化学腐蚀等影响表面应力的操作。对于粗糙的表面层,因凸出部分释放应力,影响应力的准确测量,故对表面粗糙的试样,应用砂纸磨平,再用电解抛光去除加工层,然后才能测定。 (5)若被测件的表面过于粗糙,将使测得的应力值偏低。为了提高试件的表面光洁度,又不产生附加产力,比较好的办法是电解抛光法。该法还可用于去除表面加工层或进行试件表层剥除。 (6)若单纯为了进行表层剥除,亦可以用更为简单的化学腐蚀法,较好的腐蚀剂是浓度为40%的(90%H202+10%HF)的水溶液。但化学腐蚀后的表面光洁度不如电解抛光。为此可在每次腐蚀前用金相砂纸打磨试件表面,但必须注意打磨的影响层在以后的腐蚀过程中应全部除去。 二、确定测量材料的物相,选定衍射晶面。 被测量的衍射线的选择从所研究的材料的衍射线谱中选择哪一条(hkl)面干涉线以及相应地使用什么波长的X射线是应力测定时首先要决定的。当然事先要知道现有仪器提供的前提条件:一是仪器配置了哪几种靶材的x射线管,它决定了有哪几个波长的辐射可以选用;二是测角仪的2θ范围。一般选用尽可能高的衍射角,使得⊿θ的增大可以准确测得。 在一定的应力状态下具有一定数值的晶格应变εφ,ψ对布拉格角θ0值越大的线条造成的衍射线角位移d(2θ)φ.ψ必也越大,因此测量的准确度越高。同时,在调整衍射仪时不可避免的机械调节误差对高角线条的角位置2θ的影响相对地也比较小。正因为如此X射线应力测定通常在2θ>90°的背反射区进行,并尽量选择多重性因子较高的衔射线。举例来说,对铁基材料常选用Cr靶的Ka线,α—Fe的(211)晶面的衍射线。 若已知X射线管阳极材料和Ka线波长,利用布拉格方程可计算出各条衍射线的2θ值,从中选择出高角线条。可以从《材料中残余应力的X射线衍射分析和作用》的附录中查得常用重要的金属材料和部分陶瓷材料在Cu,Co,Fe,Cr四种Kal线照射下的高角度衍射线。由于非立方晶系材料受波长较短的X射线照射时出现较多的衍射线,因此最好选择那些弧立的、不与其它线条有叠合的高角衍射线作为测量对象。

常见的塑料检测标准和方法

常见的塑料检测标准和方法

常见的塑料检测标准和方法 检测产品/类别检测项目/参数 检测标准(方法)名称及编号(含年号)序 号 名称 塑料1 光源暴露试验方 法通则 塑料实验室光源暴露试验方法第1部分:通则ISO 4892-1:1999 2 氙弧灯光老化 汽车外饰材料的氙弧灯加速暴露试验SAE J2527:2004 汽车内饰材料的氙弧灯加速暴露试验SAE J2412:2004 塑料实验室光源暴露试验方法第2部分:氙弧灯ISO 4892-2:2006 /Amd 1:2009 室内用塑料氙弧光暴露试验方法ASTM D4459-06 非金属材料氙弧灯老化的仪器操作方法ASTM G155-05a 塑料暴露试验用有水或无水氙弧型曝光装置的操作ASTM D2565-99(2008) 3 荧光紫外灯老化 塑料实验室光源暴露试验方法第3部分:荧光紫外灯ISO 4892-3:2006 汽车外饰材料UV快速老化测试SAE J2020:2003 塑料紫外光暴露试验方法ASTM D4329-05 非金属材料UV老化的仪器操作方法ASTM G154-06 4 碳弧灯老化 塑料实验室光源暴露试验方法第4部分:开放式碳弧灯 ISO 4892-4:2004/ CORR 1:2005 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯 GB/T16422.4-1996 5 荧光紫外灯老化 机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法荧 光紫外灯GB/T14522-2008 6 热老化 无负荷塑料制品的热老化 ASTM D3045-92(2010) 塑料热老化试验方法GB/T7141-2008 7 湿热老化 塑料暴露于湿热、水溅和盐雾效应的测定ISO4611:2008 塑料暴露于湿热、水喷雾和盐雾中影响的测定GB/T12000-2003 塑料8 拉伸性能塑料拉伸性能的测定第1部分:总则GB/T1040.1-2006

薄膜应力测试方法

薄膜的残余应力测试 一、薄膜应力分析 图一、薄膜应变状态与应力 薄膜沉积在基体以后,薄膜处于应变状态,若以薄膜应力造成基体弯曲形变的方向来区分,可将应力分为拉应力(tensile stress)和压应力 (compressive stress),如图一所示。拉应力是当膜受力向外伸张,基板向内压缩、膜表面下凹,薄膜因为有拉应力的作用,薄膜本身产生收缩的趋势,如果膜层的拉应力超过薄膜的弹性限度,则薄膜就会破裂甚至剥离基体而翘起。压应力则呈相反的状况,膜表面产生外凸的现象,在压应力的作用下,薄膜有向表面扩张的趋势。如果压应力到极限时,则会使薄膜向基板内侧卷曲,导致膜层起泡。数学上表示方法为拉应力—正号、亚应力—负号。 造成薄膜应力的主要来源有外应力 (external stress)、热应力 (thermal stress) 及內应力 (intrinsic stress),其中,外应力是由外力作用施加于薄膜所引起的。热应力是因为基体与膜的热膨胀系数相差太大而引起,此情形发生于制备薄膜時基板的温度,冷卻至室温取出而产生。內应力则是薄膜本身与基体材料的特性引起的,主要取决于薄膜的微观结构和分子沉积缺陷等因素,所以薄膜彼此的界面及薄膜与基体边界之相互作用就相當重要,這完全控制于制备的参数与技术上,此为应力的主要成因。 二、薄膜应力测量方法

测量薄膜内应力的方法大致可分为机械法、干涉法和衍射法三大类。前两者为测量基体受应力作用后弯曲的程度,称为曲率法;后者为测量薄膜晶格常数的畸变。 (一)曲率法 假设薄膜应力均匀,即可以测量薄膜蒸镀前后基体弯曲量的差值,求得实际薄膜应力的估计值,其中膜应力与基体上测量位置的半径平方值、膜厚及泊松比(Poisson's ratio) 成反比;与基体杨氏模量 (Es,Young's modulus)、基体厚度的平方及蒸鍍前后基体曲率(1/R)的相对差值成正比。利用这些可测量得到的数值,可以求得薄膜残余应力的值。 1、悬臂梁法 薄膜沉积在基体上,基体受到薄膜应力的作用发生弯曲。当薄膜的应力为拉应力时,基体表面成为凹面,若为压应力,基板的表面变为凸面。于是可以将一基体的一端固定,另一端悬空,形成机械式悬臂梁,如图二所示。测量原理为将激光照在自由端上的一点,并在沉积薄膜后再以相同方法测量一次,得到反射光的偏移量,进而求得薄膜的残余应力。 图二、悬臂梁法示意图 2、牛顿环法 本法是利用基体在镀膜后,薄膜产生的弯曲面与一参考平面,产生干涉条纹的牛顿环,利用测量到的牛顿环间距与条纹数,推算基体的曲率半径R,其中R 与牛顿环直径之平方差成正比,并与波长的4倍、牛頓环条纹数的差成反比,將所求得的R帶入牛顿环应力公式,可求出残余应力值 (如图三)。

钻孔崩落应力测量方法简介

钻孔崩落应力测量方法简介 一.孔壁崩落的力学机制 根据弹性理论,在单项水平应力σ作用下的一个无限大矩形平板中,其内部为一均匀应力场。这时的应力分布状态为: 式中,θ由σ方向逆时针量取,σ r 、σ θ 和τ rθ 分别为径向,切向和剪切应力。 当在矩形板中心钻了一个半径为α的圆孔后,势必扰动原来的应力场,寻致应力的重新分布。这时,在圆孔附近的应力分布由基尔希方程给出: 而当γ=α时,也就是说,孔壁上的应力分布为: 由方程(3)可以看出,当时,即在与σ垂直的孔径的两个端点上,切向应力σ θ 有最大值3σ,当θ=0和π时,即在平行于σ的孔径的两个端点上,切向应力仅有极小值为-σ。 由上述可见,应力的集中,仅仅是在与σ正交的直径的孔壁上,切向应力取得最大值。而随着径向的延伸(即r逐渐增大),在与σ垂直的方向(即)上,切向应力变化为:

显然,切向应力σ θ 随着径向的延伸而迅速减小。当半径(r)等于几个钻孔半径时,切向应力就近似地等于施加应力(σ)。如当r=1.3α时,σ θ =1.82lσ,而当r=4α时,σ θ 就仅为1.0372σ。 地壳中的岩石,一般都是处在各向不等载荷的压应力作用下。对于一个沿直铅孔来说,它的横载面往往都是处于两项水平主应力σ 1 和σ 2 (σ 1 >σ 2 )的压缩之下。根据叠加原理,这时孔壁上(即r=α处)的应力分布状态为: 由上式可见,当时,即在与最小水平主应力平行的钻孔直径的两个端点(M和N),切向应力σ θ 达到最大值(σ θ =3σ 1 -σ 2 );而当θ=0和π时,即在与最大水平主应力平行的直径的两个端点(P和Q),切向应力σ θ 达到最小值(σ θ =3σ 2 -σ 1 图2)。根据脆性破裂理论,当作用在M和N点处的切向应力,达到或超过该点处的破裂强度时,就会使孔壁岩石崩落,形成崩落椭圆孔段,其长轴方向与最小水平主应力方向平行。 二.钻孔崩落椭圆的形成条件 在不同地质时期形成的各种岩石,都具有一定的强度,因而在地壳应力场的作用下,能够发生弹性变形,并可以在孔壁附近引起应力集中。 钻孔崩落椭圆的形成,必须满足一定的地应力场条件,即最大水平主应力与最小水平主应力不相等。如果钻孔处于各项均匀的地应力场中(即σ 1 =σ 2 ),这时沿钻孔圆周的切向应力σ θ ≈2σ 1 ,假定岩石也是各项均匀的话,则不会产生优势方向的孔壁崩落现象。 大量的地壳应力测量资料表明,在地壳中各项应力都存在着明显差异,而且两项水平主应力值及其差值(σ 1 -σ 2 ),大都是随深度呈线性增加的。因此,一般来说,形成钻孔孔壁崩落的地应力场条件是普遍存在的。

塑胶原料来料检验指导书

塑料粒子检验指导书 JY/CH-005 A/0 序号检验/验证项目技术要求检测仪器检测规定及方法抽检数备注 1 合格证 出厂检验报告 1、合格证内容:产品名称/规格型号/厂商/状态/日期/检 验确认章 2、出厂检验报告内容:产品名称/规格型号/日期/检验 项目数据/ROHS项目/厂商名称/出证部门章戳。 目测 1、目视合格证内容 2、检查出厂检验报告。 GB2828.1 2 包装 标志 1、包装完好无污染,拆开包装袋结构为牛皮纸或编织 袋内覆膜。 2、包装袋应标明生产厂家,产品名称、牌号、批号、 净重量等标志,ROHS标识或ROHS章。 目测 1、目视包装袋外观及标志 2、拆包检查内袋 GB2828.1 3 污/黑点的检验取100克塑胶粒,在放大镜下观察,直径不大于0.3MM 的黑点数不得超过5个(注:1、透明料不允许有黑点; 2、黑色原料不做污/黑点的检测) 放大镜 正常光照下用5倍放大镜观 测。 GB2828.1 4 颜色与色差检验1、用色差仪与标准值对比ΔE≤0.6; 2、与样品对比目视无明显色差 目测、色 差仪 1、目测实物与样品对比 2、用色差仪与标准值对比 GB2828.1 5 阻燃性能见《材料性能要求及试验方法》燃烧仪《垂直燃烧仪试验方法》3个试样 6 拉伸强度Mpa 见《材料性能要求及试验方法》万能拉力 试验机《塑料拉伸试验方法》测出试 样的拉伸强度、断裂伸长率 3个试样 7 断裂伸长率% 见《材料性能要求及试验方法》 8 缺口冲击强度KJ/㎡见《材料性能要求及试验方法》悬臂梁冲 击试验机 《塑料悬臂梁冲击试验方法》 测出试样的冲击强度值 3个试样 9 玻纤或无机物含量% 见《材料性能要求及试验方法》马弗炉《无机物含量检测方法》5克

塑料应力测试方法及判定标准

塑料应力测试方法及判定 标准 This model paper was revised by the Standardization Office on December 10, 2020

三:常用塑料: 1. PA、PVC、PMMA、PC、POM、PE、PP、ABS、PS、EVA以及一些混合物。 2. 常用塑料特征、性能: 2.(尼龙):8026上盖、532支撑体、049D内芯等。 ①原色为乳白、微褐,燃烧缓慢,离火后慢熄,火焰呈上黄下蓝,熔融滴落,起泡,有特殊的羊皮或指甲烧焦气味。 ②较好的物理、机械性能, ③应力测试:正丙烷、乙无开裂、裂纹。 2.:聚氯乙烯 ①原色为无色透明,难燃离火即灭,火焰上黄下绿,白烟,燃烧变软有刺激性酸味。紫外线下,使PVC产生浅蓝、紫白的莹光。软的PVC发蓝或蓝白的荧光。②根据增剂的不同分为硬质和软质,硬质PVC采用分子量小的树脂,不含5%的曾剂,机械强度好,耐腐蚀、耐阳光、耐燃烧,软质PVC采用分子量较大的树脂,加入30%-70%增剂制成柔韧性好,抗化学药品性强。 2.:有机玻璃、压克力①原色为无色透明、易燃、离火后继续燃烧,火焰上黄下浅蓝,熔融滴落,加热到 120°C可自由弯曲,不自浊,冒出特有的压克力臭,易熔于丙酮、苯。②高透明性耐光折射率高,用丙酮、氯仿等溶剂自体粘结,制品成型收缩率,料粒的吸湿性可导致制品起泡。③应力测试:乙醇或异丙醇,十秒无开裂、裂痕。 2.:聚甲醛 ①原色为浅黄或白色,慢燃,离火后继续燃烧,火焰上黄下蓝,熔融滴落,强烈鱼腥臭。 ②较强机械性能,缺点不耐酸,强碱和不耐日光紫外线的辐射,长期在大气中暴晒会老化,粘合性差。 ③应力测试:12-18%盐酸溶液浸泡2H,无变形、裂纹。 2.:聚乙烯①原色为半透明——腊色,易燃,火焰上黄下蓝,边熔边滴落,有石腊气味,常温下不熔于溶剂,加热时可溶于丙酮、苯、甲醛。②根据加工方法,可分为高密度PE和低密度PE 高密度PE为半透明腊状固体,质地坚韧,不透水性,耐磨性,抗化学药品性较好。缺点:受热后因应力消失而发生尺寸减少,柔韧性、耐剧冷热差。低密度PE为无色无味无毒的固体,低温仍能保持柔曲特性,抗水性,化学稳定性较强。③应力测试:硬脂酸钠或肥皂水,无变形、裂纹、断裂。 2.:丙烯腈、丁乙烯和苯乙烯三种单体的三元共聚物①原色为乳白或白色,不透明,燃烧缓慢,离火后继续燃烧,火焰呈黄色,黑烟,软化烧焦,溶于丙酮、苯、甲苯。②丙烯腈具有拉伸强度、热稳定性、化学稳定性,丁二烯具有韧性、抗冲击能力以及低温性能,苯乙烯具有良好的光泽性、刚性和加工性;调节三者之间比例,可调节高冲击型、中冲击型、通用型、特殊耐热型ABS。缺点:耐热性不够高,易老化,不耐燃不透明。③应力测试:95%以上醋酸浸泡30秒,无变形、裂纹、断裂。 2.:聚丙烯①原色为半透明腊色,易燃,离火燃烧,火焰上黄下蓝,有少量黑烟,熔融滴落,发出石油气味。②密度cm3,是密度最小的塑料之一,熔点

残余应力检测方法概述

第1 页 共 2页 残余应力检测方法概述 目前国际上普遍使用的残余应力检测方法种类十分繁多,为便于分类,人们往往根据测试过程中被测样品的破坏与否将测试方法分为:应力松弛法(样品将被破坏)和无损检测法(样品不被破坏)两类。以下我们简单归纳了现阶段较为常用的一些残余应力检测方法。 一、常见的残余应力检测方法: 1. 应力松弛法 (1) 盲孔法 该方法最早由Mather 于1934年提出,其基本原理就是通过孔附近的应变变化,用弹性力学来分析小孔位置的应力,孔的位置和尺寸会影响最终的应力数值。由于这类设备操作起来非常简单,近年来被广泛使用。 (2) 切条法 Ralakoutsky 在1888年提出了采用该方法测量材料的残余应力。在使用这种方法时需要沿特定方向将试件切出一条,然后通过测量试件切割位置的应变来计算残余应力。 (3) 剥层法 该方法是通过物理或化学的方法去除试件的 一层并测量其去除后的曲率,根据测定的试件表面曲率变化就能计算出残余应力。该方法常用于形状简单的试件,且测试过程快捷。 2. 无损检测方法 (1) X 射线衍射法 X 射线方法是根据测量试件的晶体面间距变化来确定试件的应变,进而通过弹性力学方程推导计算得到残余应力,目前最被广泛使用的是Machearauch 于1961提出的sin2ψ方法。日本最早研制成功了基于该方法的X 射线残余应力分析仪,为该方法的推广做出了巨大的贡献。 (2) 中子衍射法。 中子衍射方法的原理和X 射线方法本质上是一样的,都是根据材料的晶体面间距变化来求得应变,并根据弹性力学方程计算残余应力。但中子散射能量更高,可以穿透的深度更大,当然中子衍射的成本也是最昂贵的。 (3) 超声波法。 该方法的物理和实验依据是S.Oka 于1940年发现的声双折射现象,通过测定声折射所导致的声速和频谱变化反推出作用在试件上的应力。试件的晶体颗粒及取向会影响数据的准确度,尽管超声波方法也属无损检测方法,但其仍需进一步完善。 二、最新的残余应力检测方法 cos α方法早在1978年就由S.Taira 等人提出, 但真正应用于残余应力测试设备中还是近几年的事情。日本Pulstec 公司于2012年研制出了世界上首款基于cos α方法的X 射线残余应力分析仪,图1是设备图片(型号:μ-x360n )。

薄膜应力测试方法

薄膜的残余应力 一、薄膜应力分析 图一、薄膜应变状态与应力 薄膜沉积在基体以后,薄膜处于应变状态,若以薄膜应力造成基体弯曲形变的方向来区分,可将应力分为拉应力(tensile stress)和压应力 (compressive stress),如图一所示。拉应力是当膜受力向外伸张,基板向内压缩、膜表面下凹,薄膜因为有拉应力的作用,薄膜本身产生收缩的趋势,如果膜层的拉应力超过薄膜的弹性限度,则薄膜就会破裂甚至剥离基体而翘起。压应力则呈相反的状况,膜表面产生外凸的现象,在压应力的作用下,薄膜有向表面扩张的趋势。如果压应力到极限时,则会使薄膜向基板内侧卷曲,导致膜层起泡。数学上表示方法为拉应力—正号、亚应力—负号。 造成薄膜应力的主要来源有外应力 (external stress)、热应力 (thermal stress) 及內应力 (intrinsic stress),其中,外应力是由外力作用施加于薄膜所引起的。热应力是因为基体与膜的热膨胀系数相差太大而引起,此情形发生于制备薄膜時基板的温度,冷卻至室温取出而产生。內应力则是薄膜本身与基体材料的特性引起的,主要取决于薄膜的微观结构和分子沉积缺陷等因素,所以薄膜彼此的界面及薄膜与基体边界之相互作用就相當重要,這完全控制于制备的参数与技术上,此为应力的主要成因。 二、薄膜应力测量方法

测量薄膜内应力的方法大致可分为机械法、干涉法和衍射法三大类。前两者为测量基体受应力作用后弯曲的程度,称为曲率法;后者为测量薄膜晶格常数的畸变。 (一)曲率法 假设薄膜应力均匀,即可以测量薄膜蒸镀前后基体弯曲量的差值,求得实际薄膜应力的估计值,其中膜应力与基体上测量位置的半径平方值、膜厚及泊松比(Poisson's ratio) 成反比;与基体杨氏模量 (Es,Young's modulus)、基体厚度的平方及蒸鍍前后基体曲率(1/R)的相对差值成正比。利用这些可测量得到的数值,可以求得薄膜残余应力的值。 1、悬臂梁法 薄膜沉积在基体上,基体受到薄膜应力的作用发生弯曲。当薄膜的应力为拉应力时,基体表面成为凹面,若为压应力,基板的表面变为凸面。于是可以将一基体的一端固定,另一端悬空,形成机械式悬臂梁,如图二所示。测量原理为将激光照在自由端上的一点,并在沉积薄膜后再以相同方法测量一次,得到反射光的偏移量,进而求得薄膜的残余应力。 图二、悬臂梁法示意图 2、牛顿环法 本法是利用基体在镀膜后,薄膜产生的弯曲面与一参考平面,产生干涉条纹的牛顿环,利用测量到的牛顿环间距与条纹数,推算基体的曲率半径R,其中R 与牛顿环直径之平方差成正比,并与波长的4倍、牛頓环条纹数的差成反比,將所求得的R帶入牛顿环应力公式,可求出残余应力值 (如图三)。 图三、牛頓环法示意图 3、干涉仪相位移式应力测量法

塑胶件阻燃测试方法和标准

塑胶件阻燃测试方法和 标准 Revised as of 23 November 2020

等级代表 HB 水平燃烧 (Horizontal Burn) ,仅有一个等级可能。 V 垂直燃烧 (Vertical Burn) ,有 3 个等级: V-0 是最高, V-1 较低,然后是 V-2 。 5V 垂直燃烧 (Vertical Burn) ,使用大型 125mm 火焰,有 1 个或 2 个等级 5V-A 或5V-B 。 VTM 垂直薄材料 (Vertical Thin Material) ,和 V 等级之可能性类型相同,但在 V 后面加 TM 。 测试有 3 个主要的层级: 1. 20mm 火焰,判定结果 HB 、 V-0 、 V-1 或 V-2 的等级 2. 125mm 火焰,判定结果 5V-A 或 5V-B 的等级 3. 20mm 火焰针对薄材料,判定结果 VTM-0 、 VTM-1 或 VTM-2 的等级 任何材料针对 V-0 、 V-1 或 V-2 等级的可能性之起始点都是开始于 20mm 火焰的测试。所有的三个等级基于该单一个测试。等级是视测试结果而定;针对这些等级的各别并没有独立的测试。 V 等级需要 5 个样品, HB 只需要 3 个。当开始以 V 测试但若材料在前 2 个样品显示出不良特性时可以使用所剩下的第 3 个样品转换测试到 HB 。 当材料测试成为 V-0 时,该材料可以接着用 125mm 火焰测试看看 5V-A 或 5V-B等级之可能性。但是仅有在该材料通过 V-0 等级时才可以施行该 VTM 测试。 若材料很薄,则不能依任何 V 等级测试之,因为材料在火焰的热度中会 " 飘动 " 该材料应该被当成一个薄材料以 VTM 测试程序来测试。同样地,仅有在该材料没通过或无法依据 V 测试程序适当地测试时才可以施行该 VTM 测试。 耐燃等级— UL 颁布

残余应力及如何测量

为什么会有残余应力 金属材料在产生应力的条件消失后,为什么有部分的应力会残留在物体内?为什么这些应力不会随外作用力一起消失? 金属材料在外力作用下发生塑性变形后会有残余应力出现!而只发生弹性变形时却不会产生残余应力. 原因:金属在外力作用下的变形是不均匀的,有的部位变形量大,而有的部位小,它们相互之间又是互相牵连在一起的整体,这样在变形量不同的各部位之间就出现了一定的弹性应力-----当外力去除后这部分力仍然存在,就是所谓的残余应力.根据它们存在的范围可分为:宏观应力\微观应力和晶格畸变应力.注意它们是在一定范围存在的弹性应力. 残余应力不只是金属有,非金属也存在,比如混凝土构件。残余应力的根源在于卸载后受力物体变形的不完全可逆性。 金属残留在物体内的应力是由分子间力的取向不同导致的。外力撤销后,外力所造成的残余变形导致了残余应力。通常用热处理、时效处理来消除残余应力。因为材料受外力作用后,金属的组织产生晶格变形,并不会随外力消失而恢复。所以会产生残余应力。组织产生晶格变形了,自身储存了一些能量但级别又克服不了别的晶格的能量。所以就回有残余应力。 我们真正关心的是零件加工后的质量。由于毛坯制造过程中会造成较大的残余应力,而这些零件毛坯中处于“平衡”状态的残余应力在加工之前不引起毛坯明显变形。当零件加工之后,原来毛坯中残余应力的“平衡状态”被打破,应力释放出来,会造成零件很快变形而失去应有的加工精度。减小毛坯中因制造而残留在毛坯内部残余应力对零件加工质量的影响,通常要进行消除应力的热处理,对要求精度高的零件要在粗加工后进行人工时效处理,加快残余应力的重新分布面引起的变形过程,然后再精加工。不仅对细长轴,而且包括所有要经过冷校直的零件(如型钢、导轨),应当注意残余应力对零件加工精度的影响。影响高精度零件质量的残余应力主要是在加工过程中产生的。在切削过程中的残余应力由机械应力和热应力两种外因引起。机械应力塑性变形是切削力使零件表层金属产生塑性变形,切削完成后又受到里层未变形金属牵制而残留拉应力(里层金属产生残余压应力)。第三变形区内后刀面与已加工表面的挤压与摩擦又使表面金属产生残余压应力(里层金属产生残余拉应力)。如果第一变形区内应力造成的残余应

pc塑胶材料内应力测试方法精编版

p c塑胶材料内应力测试 方法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

P C塑胶材料内应力测试方法表二 塑料电水壶使用一段时间后,水尺(PC料)容易漏水,是因为PC塑胶材料的内应力不够,那又怎样检测呢下面我来介绍一个检测方法: 1、测试辅料: 正丙醇、乙酸乙酯/甲醇(比例为1:3)、甲苯/正丙醇(比例为 1:10)、甲苯/ 正丙醇(比例是 1:3)、碳酸丙烯、测试夹具(或者负载)。 2、测试过程: 2.1 测试夹具的选择:

2.2 测试试剂的选择: 2.2.2 如果PC料在使用过程中不能承受机械负载,测试试剂由正丙醇或者乙酸乙酯和甲醇以1:3的比例调制而成. 2.2.3 如果PC料在使用过程中能承受机械负载,测试液必须为1:10比例的TnP (即甲苯和正丙醇混合液).如果外荷载更大或者在临界情况下,测试液可改为1:3比例的TnP,甚至可用碳酸丙烯替代. 2.2.4 如内应力较小的情况下,可用乙酸乙酯/甲醇代替TnP测试液.比如,将乙酸乙酯/甲醇的混合比例调为1:2.5, 因为此试剂可让PC材料达到7兆帕的反应力值. 2.2.5 如果没有特殊的要求可根据“图表二”的内应力要求选择合适的试剂,试剂量要求能将测试样品完全沉浸在试剂中。 2.3 测试时间: 2.3.1 因为PC材料在注塑模表面形成一层液体薄膜.此液体薄膜不易蒸发,尤其经过更长时间的浸泡,使得产生裂纹更难被察觉.所以PC材料在碳酸丙烯试剂中浸泡时间不应超过一分钟.曝光时间越长,内应力值越小.但内应力更小,也会出现应力裂纹. 2.3.2 PC材料在其它的试剂沉浸的时间可以参考下表 (表一) 测试试剂浸泡时间(分钟)内应力值(兆帕)

ISO 527-2塑料拉伸性能测试方法

塑料拉伸性能的测定 第二部分:模塑和挤塑塑料的试验条件 1 范围 1.1GB/T 1040的本部分在第1部分基础上规定了用于测定模塑和挤塑塑料拉伸性能的实验条件。 1.2本部分适合下述范围的材料: ----硬质和半硬质的热塑性模塑、挤塑和铸塑材料,除未填冲类型外还包括列入用短纤棒、细棒、小薄片或细粒料填充和增强的复合材料,但不包括纺织纤维增强的复合材料; ----硬质和半硬质热固性模塑和铸塑材料,包括填充和增强的复合材料,但不包括纺织纤维增强的复合材料; ----热致液晶聚合物。 本部分不适用于纺织纤维增强的复合材料、硬质微孔材料或含有微孔材料夹层结构的材料2.名词和定义 见ISO 527-1:2012,章节3 3原理和方法 见ISO 527-1:2012,章节4 4仪器 4.1概述 见ISO 527-1:2012,章节5,特别是5.1.1致5.1.4 4.2引伸计 4.3测试记录装置 5测试样品 5.1形状和尺寸 只要可能,试样应为如图一所示的1A型和1B型的哑铃型试样,直接模塑的多用途试样选择1A型,机加工试样选择1B型。 关于使用小试样时的规定,见附录A/ISO 20753 注:具有4mm厚的IA型和1B型试样分别和ISO 3167规定的A型和B型多用途试样相同。与ISO 20753的A1和A2也相同

5.2试样的制备 应按照相关材料规范制备试样,当无规范或无其他规定时,应按ISO293、ISO 294-1,ISO295或者ISO 10724-1以适宜的方法从材料直接压塑制备试样,或按照ISO 2818由压塑或注塑板材经机加工制备试样。 试样所有表面应吴可见裂痕、划痕或其他缺陷。如果模塑试样存在毛刺应去掉,注意不要损伤模塑表面。 由制件机加工制备试样时应取平面或曲率最小的区域。除非确实需要,对于增强塑料试样不宜使用机加工来减少厚度,表面经过机加工的试样与未经机加工的试样实验结果不能互相比较。 5.3标线 见ISO 527-1:2012,6.3 5.4检查测试样品 见ISO 527-1:2012,6.4 5.5各向异性 5.6测试样数量 见ISO 527-1:2012,章节7. 6 状态调节 见ISO 527-1:2012,章节8 7 测试过程 见ISO 527-1:2012,章节9 在测量弹性模量时,1A型、IB型试样的试验速度应为1mm/min,对于小试样见附录A。8结果计算和表示 见ISO 527-1:2012,章节10 9精确度 见附录B 10实验报告 试验报告应包扩一下内容: a)注明引用ISO 527的本部分,包括试样类型和试验速度,并按下列方式表示;

残余应力测试

2.测试方法 目前常用的残余应力测试方法主要有三种:一是盲孔法,二是X射线衍射法,三是磁弹性法。 盲孔法需在工件表面测量部位钻φ1.5~2mm深2mm的小孔(粘贴专用应变花),通过测读释放应变确定残余应力的大小,所测应力为孔深范围内的平均应力,同一测点无法重复测量比较; X射线衍射法可以做到无损测试,但由于X射线穿透力有限,一般只能测出几个微米范围内平均应力; 磁弹性法是近几年发展较快应用比较成熟的一种残余应力测试方法,具有方便、无损、快速、准确的特点。 对采用盲孔法和X射线衍射法检测残余应力,施工强度大,测量精度难以保证。尤其盲孔法不能对同一位置进行重复性测量,测量数据的符合性差。因此,三峡发电机组转子圆盘支架焊缝残余应力的测试采用了磁弹法技术。 残余应力的测量方法 残余应力的测量方法可以分为有损和无损两大类。 有损测试方法就是应力释放法,也可以称为机械的方法;无损方法就是物理的方法。 机械方法目前用得最多的是钻孔法(盲孔法),其次还有针对一定对象的环芯法。 物理方法中用得最多的是X射线衍射法,其他主要物理方法还有中子衍射法、磁性 法和超声法。 X射线衍射法依据X射线衍射原理,即布拉格定律。布拉格定律把宏观上可以准确测 定的衍射角同材料中的晶面间距建立确定的关系。材料中的应力所对应的弹性应变必然表征 为晶面间距的相对变化。当材料中有应力σ存在时,其晶面间距d 必然随晶面与应力相对 取向的不同而有所变化,按照布拉格定律,衍射角2θ也会相应改变。因此有可能通过测量 衍射角2θ随晶面取向不同而发生的变化来求得应力σ。从这里可以看出X射线衍射法测定 应力的原理是成熟的,经过半个多世纪的历程,在国内外,测量方法的研究深入而广泛,测 试技术和设备已经比较完善,不但可以在实验室进行研究,可且可以应用到各种实际工件, 包括大型工件的现场测量。

塑料测试方法(中文版)

拉伸强度和拉伸模量 ASTM D 638, ISO R527, DIN 53455, DIN53457 了解材料对负载的响应程度是了解材料性能的基础。通过测试在一定应力下材料的变形程度(应变),设计者可以预测材料在其工作环境下的应用(如图1)。 图1 拉伸应力-应变曲线 A:弹性形变的极限值 B:屈服点 C:最大强度 O-A:屈服区域,发生弹性形变 超过A点:塑性变形 图2:ASTM D 6, 拉伸试样的尺寸 模量:应力/应变 Mpa

屈服应力:开始发生塑性变形的应力 Mpa 断裂应力发生断裂时的应力 Mpa 断裂伸长率材料发生断裂时的应变% 弹性极限开始发生弹性形变的终点 弹性模量发生在塑性变形时的模量 Mpa 测试速度: A速度:1mm/mm 拉伸模量 B速度:5mm/mm 填充材料 的拉伸应力/应变 C速度:50mm/mm 为填充材料的拉伸应力/应变 弯曲强度和弯曲模量 ASTM D 790, ISO 178, DIN 53452 弯曲强度是用来测量材料抵制挠曲变形的能力或者是测试材料的刚性。与拉伸负载不同的是,在测试弯曲时,所有的应力加载在一个方向上。用压头压在试样的中部使其形成一个3点的负载,在标准测试仪上,恒定的压缩速度为2mm/mm. 通过计算机收集的数据,测绘出试样的压缩负荷-变形曲线,来计算压缩模量。在曲线的线性区域至少取5个点的负载和变形。 弯曲模量(应力与应变的比值)是表征材料弯曲性能的重要指标。压缩模量是指在应力-应变的曲线的线性范围内,压缩应力与压缩应变之比。 压缩应力与压缩应变的单位都是Mpa。 图3:弯曲测试示意图 耐磨性能测试

pc塑胶材料内应力测试方法

表二 塑料电水壶使用一段时间后,水尺(PC料)容易漏水,是因为PC塑胶材料的内应力不够,那又怎样检测呢下面我来介绍一个检测方法: 1、测试辅料: 正丙醇、乙酸乙酯/甲醇(比例为1:3)、甲苯/正丙醇(比例为 1:10)、甲苯/ 正丙醇(比例是 1:3)、碳酸丙烯、测试夹具(或者负载)。 2、测试过程: 测试夹具的选择: 因为TnP混合液存放时间过长,其成分会蒸发,性质会改变,从而导致测试结果不一,所以要选择一个可以存放正丙醇、乙酸乙酯/甲醇、甲苯/ 正丙醇、碳酸丙烯试剂的密封瓶,并且能保证试剂在密封瓶内循环流动。 测试试剂的选择: 选择测试试剂时应满足测试程度的要求,必须符合安全要求. 如果PC料在使用过程中不能承受机械负载,测试试剂由正丙醇或者乙酸乙酯和甲醇以1:3的比例调制而成. 如果PC料在使用过程中能承受机械负载,测试液必须为1:10比例的TnP(即甲苯和正丙醇混合液).如果外荷载更大或者在临界情况下,测试液可改为1:3比例的TnP,甚至可用碳酸丙烯替代. 如内应力较小的情况下,可用乙酸乙酯/甲醇代替TnP测试液.比如,将乙酸乙酯/甲醇的混合比例调为1:, 因为此试剂可让PC材料达到7兆帕的反应力值. 如果没有特殊的要求可根据“图表二”的内应力要求选择合适的试剂,试剂量要求能将测试样品完全沉浸在试剂中。 测试时间: 因为PC材料在注塑模表面形成一层液体薄膜.此液体薄膜不易蒸发,尤其经过更长时间的浸泡,使得产生裂纹更难被察觉.所以PC材料在碳酸丙烯试剂中浸泡时间不应超过一分钟.曝光时间越长,内应力值越小.但内应力更小,也会出现应力裂纹. PC材料在其它的试剂沉浸的时间可以参考下表 (表一) 测试试剂浸泡时间(分钟)内应力值(兆帕) 正丙醇 1 5 >15 乙酸乙酯/甲醇, (1:3) 1 5 >15 甲苯/正丙醇, (1:10) (TnP 1:10) 1 5 >9 甲苯/ 正丙醇, (1:3) (TnP 1:3) 1 5 >4 碳酸丙烯 1 >2 材料的选择: 对于有着色的PC材料或者有色材料上如果有由内应力产生的裂纹也很难觉查的到,所以测试样品要求选择透明的材料进行测试。 测试样品要求保证在出模后在室温条件下放置1个小时后才能进行内应力测试。测试样品的厚度要

薄膜应力

薄膜应力 通常薄膜由它所附着的基体支承着,薄膜的结构和性能受到基体材料的重要影响。因此薄膜与基体之间构成相互联系、相互作用的统一体,这种相互作用宏观上以两种力的形式表现出来:其一是表征薄膜与基体接触界面间结合强度的附着力;其二则是反映薄膜单位截面所承受的来自基体约束的作用力—薄膜应力。薄膜应力在作用方向上有张应力和压应力之分。若薄膜具有沿膜面收缩的趋势则基体对薄膜产生张应力,反之,薄膜沿膜面的膨胀趋势造成压应力[1-2]。应该指出,薄膜和基体间附着力的存在是薄膜应力产生的前提条件,薄膜应力的存在对附着力又有重要影响[3]。 图1薄膜中压应力与张应力的示意图[4] 1薄膜应力的产生及分类: 薄膜中的应力受多方面因素的影响,其中薄膜沉积工艺、热处理工艺以及材料本身的机械特性是主要影响因素。按照应力的产生根源将薄膜内的应力分为热应力和本征应力,通常所说的残余应力就是这两种应力的综合作用,是一种宏观应力[4]。 本征应力又称内应力,是在薄膜沉积生长环境中产生的(如温度、压力、气流速率等),它的成因比较复杂,目前还没有系统的理论对此进行解释,如晶格失配、杂质介入、晶格重构、相变等均会产生内应力[5]。本征应力又可分为界面应力和生长应力。界面应力来源于薄膜与基体在接触界面处的晶格错配或很高的缺陷密度,而生长应力则与薄膜生长过程中各种结构缺陷的运动密切相关。本征应力与薄膜的制备方法及工艺过程密切相关,且随着薄膜和基体材料的不同而不同[6]。 热应力是由薄膜与基底之间热膨胀系数的差异引起的。在镀膜的过程中,薄膜和基体的温度都同时升高,而在镀膜后,下降到初始温度时,由于薄膜和基体的热膨胀系数不同,便产生了内应力,一般称之为热应力,这种现象称作双金属效应[7]。但由这种效应引起的热应力不能认为是本质的论断。薄膜热应力指的是在变温的情况下,由于受约束的薄膜的热胀冷缩

应力测量方法的历史

应力测试方法的概述 在几乎所有的机械设备中, 都有金属构件承受负载。这些构件内部应力的大小及其变化是造成失效( 如疲劳等) 的主要原因。金属构件内部应力的大小变化除了与其受力情况有关外, 还与其加工过程, 形变及周围的温度有关。为了维护、检查这些和延长使用寿命, 长期以来人们很关注应力的检测。应力的测量方法也很多, 如盲孔法、x 射线法、磁力法、超声方法等。由于超声波所固有的特性, 如穿透能力强、仪器设备简单、测量速度快、低成本等, 利用超声波无损测量材料表面和内部的应力状况的潜力是显而易见的。目前应力超声波测量的主要理论有: 1 声速与应力关系的Hu g h e s 和ke lly 理论 超声波测量应力方法是基于声弹性效应, 其理论基本假设为: ( 1 ) 固体连续性假设; ( 2 ) 声波的小扰动叠加在物体静态有限变形上; ( 3 ) 物体是超弹性的、均匀的; ( 4 ) 物体在变形中可视为等温或等熵过程。1949 年Hughes 利用超声波测量晶体的三阶弹性常数, 以此为基础, 随后超声波应力测量技术得到了较大的发展。1953 年Hughes 和Kelly 利用Lame 常数λ和μ, 以及Murnaghan 常数l 、m 和n提出了各向同性材料的声弹性理论表达式, 建立了超声波在材料中传播速度与应力之间的关系。 设固体不存在机械耗散过程,可得质点的运动方程为: (1) 式中 是固体的单位体积中的势能, η是拉格朗日坐标下的应变矩阵, ai, xk( i , k =1 , 2 , 3 ) 是拉格朗日坐标和位移坐标。这一方程是研究声波在固体中传播的基础。利用( 1 ) 式, Hughes 和kelly 从理论上研究了各向同性中的波速与附加静压力或常应力的关系, 这些关系也是后来人们测量固体应力的理论基础。 选自变量为拉格朗日变量a , b , c , 质点位移用u , v, w 把表示, 由力学定律方程( 1 ) 可以写成

塑料内应力检测方法和内应力消除方法的

塑料内应力检测方法和内应力消除方法的 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

塑料内应力检测方法和内应力消除方法的资料 最近公司产品客户投诉有不明原因的开裂现象,个人怀疑是内应力集中所致。以下资料中遗憾的是没有PP和PVC及PE塑料注射成形零件由于结构设计,模具设计和工艺的局限性,在注塑和冷却过程中总会同时伴有压力和拉力的产生,而较高的残余应力(表面拉力)将会导致零件过早失效。为了有效规避零部件产生这种失效,更合理的设计和工艺是必需的。同时,快速而有效的检测在研发和生产过程中可以帮助我们及时发现缺陷,并可避免问题的扩散。目前评估塑料注射成形零件表面及附近区域残余应力的方法之一是溶剂沉浸测试法。沉浸后,高应力集中区域会有相应的裂纹产生,以此我们就可以快速有效地对设计和工艺进行评估和改进。以下部分是主要树脂生产商GE和Bayer推荐的适合于各自主要产品的溶剂测试法。我们需要在供应商品质控制流程中加入该检测结果。GEP Lexan/Cycoloy系列塑料Lexan 系列(PC):常用于手机镜片,导光板,机壳。Cycoloy系列(PC+ABS):常用于手机机壳。对于用Lexan和Cycoloy系列塑料成形的零件,内应力的检查都可以采用以下方法:1.醋酸沉浸法:(1)将零件完全浸入24摄氏度的冰醋酸中30秒;(2)取出后立即清洗,后晾干检查表面;(3)仔细观察外观,若有细小致密的裂纹,说明此处有应力存在,裂纹越多,应力越大;(4)重复上述操作,在冰醋酸中浸2分钟,再检查零件,若有深入塑料的裂纹,说明此处有很高的内应力,裂纹越严重,内应力越大。2.甲乙酮 + 丙酮沉浸法:将零件完全浸入21摄氏度的1:1的甲乙酮 + 丙酮的混合液中,取出后立即甩干,依上法检查,有应力的零件应在60-75摄氏度下加热2-4小时以清除应力,也可在25%的丙酮中浸

盲孔法测残余应力

关于构件的残余应力检测(盲孔法检测) 一、前言 (1)应力概念 通常讲,一个物体,在没有外力和外力矩作用、温度达到平衡、相变已经终止的条件下,其内部仍然存在并自身保持平衡的应力叫做内应力。 按照德国学者马赫劳赫提出的分类方法,内应力分为三类: 第Ⅰ类内应力是存在于材料的较大区域(很多晶粒)内,并在整个物体各个截面保持平衡的内应力。当一个物体的第Ⅰ类内应力平衡和内力矩平衡被破坏时,物体会产生宏观的尺寸变化。 第Ⅱ类内应力是存在于较小范围(一个晶粒或晶粒内部的区域)的内应力。 第Ⅲ类内应力是存在于极小范围(几个原子间距)的内应力。 在工程上通常所说的残余应力就是第Ⅰ类内应力。到目前为止,第Ⅰ类内应力的测量技术最为完善,它们对材料性能和构件质量的影响也研究得最为透彻。除了这样的分类方法以外,工程界也习惯于按产生残余应力的工艺过程来归类和命名,例如铸造应力、焊接应力、热处理应力、磨削应力、喷丸应力等等,而且一般指的都是第Ⅰ类内应力。 (2)应力作用 机械零部件和大型机械构件中的残余应力对其疲劳强度、抗应力腐蚀能力、尺寸稳定性和使用寿命有着十分重要的影响。适当的、分布合理的残余压应力可能成为提高疲劳强度、提高抗应力腐蚀能力,从而延长零件和构件使用寿命的因素;而不适当的残余应力则会降低疲劳强度,产生应力腐蚀,失去尺寸精度,甚至导致变形、开裂等早期失效事故。 (3)应力的产生 在机械制造中,各种工艺过程往往都会产生残余应力。但是,如果从本质上讲,产生残余应力的原因可以归结为: 1.不均匀的塑性变形; 2.不均匀的温度变化; 3.不均匀的相变 (4)应力的调整 针对工件的具体服役条件,采取一定的工艺措施,消除或降低对其使用性能不利的残余拉应力,有时还可以引入有益的残余压应力分布,这就是残余应力的调整问题。 通常调整残余应力的方法有: ①自然时效 把构件置于室外,经气候、温度的反复变化,在反复温度应力作用下,使残余应力松弛、尺寸精度获得稳定。一般认为,经过一年自然时效的工件,残余应力仅下降2%~10%,但工件的松弛刚度得到了较大地提高,因而工件的尺寸稳定性很好。但由于时效时间过长,一般不采用。 ②热时效 热时效是传统的时效方法,利用热处理中的退火技术,将工件加热到500~650℃进行较长时间的保温后再缓慢冷却至室温。在热作用下通过原子扩散及塑性变形使内应力消除。从理论上讲采用热时效,只要退火温度和时间适宜,应力

相关文档
最新文档