基于离散余弦变换的人脸画像识别方法_丁宾

基于离散余弦变换的人脸画像识别方法_丁宾
基于离散余弦变换的人脸画像识别方法_丁宾

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

离散余弦变换(DCT)

离散余弦变换(DCT)及其C++实现:1.定义:离散余弦是一种基于实数的正交变换。一维离散余弦的 定义如下: 式中,F(u)为第u个余弦变换系数,u为广义频率分量,f(x)为时域中N点序列,x=0,1,2,…N-1。 对于二维的离散余弦变换的定义如下: 2.基本算法 二维的DCT可分解为两个一维的DCT,即现对图像信号(二维数据)的行进行一位DCT,然后再对列进行一维DCT。 基本算法描述如下: 1)求对行进行一位DCT的变换矩阵系数coefa 2)求系数矩阵coefa的转置矩阵coefb用来对列进行一维DCT 3)利用系数矩阵coefa和coefb对二维信号data先近行行变换,再进行列变换。 3.快速算法 利用快速傅立叶变换可以得到DCT的快速算法。首先,将f(x)进行延拓: 按照上述定义,f e(x)的离散余弦变换为: 式中,R e{}表示取复数的实部。 由上式知,为f e(x)的2N点离散傅立叶变换。以此,对于快速离散余弦变换,可以把长度为N的序列f(x)的长度延拓为2N的序 列f e(x),然后再对延拓的结果 f e(x)进行离散傅立叶变换,最后取离散傅立叶变换的实部便是离散余弦变换的结果,完成快速的DCT。 4.程序说明 采用C++语言编写,共有三个函数: 主函数void main()完成DCT变换; 子函数void FFT_1D(complex *TD, complex *FD, int r)完成快速傅立叶变换; 子函数void dct(double *f, double *F, int r)完成快速DCT。 参数说明见源程序注释。

人脸识别技术的应用背景及研究现状

1.人脸识别技术的应用 随着社会的不断进步以及各方面对于快速有效的自动身份验证的迫切要求,生物特征识别技术在近几十年中得到了飞速的发展。作为人的一种内在属性,并且具有很强的自身稳定性及个体差异性,生物特征成为了自动身份验证的最理想依据。当前的生物特征识别技术主要包括有:指纹识别,视网膜识别,虹膜识别,步态识别,静脉识别,人脸识别等。与其他识别方法相比,人脸识别由于具有直接,友好,方便的特点,使用者无任何心理障碍,易于为用户所接受,从而得到了广泛的研究与应用。除此之外,我们还能够对人脸识别的结果作进一步的分析,得到有关人的性别,表情,年龄等诸多额外的丰富信息,扩展了人脸识别的应用前景。当前的人脸识别技术主要被应用到了以下几个方面:(1)刑侦破案公安部门在档案系统里存储有嫌疑犯的照片,当作案现场或通过其他途径获得某一嫌疑犯的照片或其面部特征的描述之后,可以从数据库中迅速查找确认,大大提高了刑侦破案的准确性和效率。 (2)证件验证在许多场合(如海口,机场,机密部门等)证件验证是检验某人身份的一种常用手段,而身份证,驾驶证等很多其他证件上都有照片,使用人脸识别技术,就可以由机器完成验证识别工作,从而实现自动化智能管理。 (3)视频监控在许多银行,公司,公共场所等处都设有24小时的视频监控。当有异常情况或有陌生人闯入时,需要实时跟踪,监控,识别和报警等。这需要对采集到的图像进行具体分析,且要用到人脸的检测,跟踪和识别技术。 (4)入口控制入口控制的范围很广,既包括了在楼宇,住宅等入口处的安全检查,也包括了在进入计算机系统或情报系统前的身份验证。 (5)表情分析根据人脸图像中的面部变化特征,识别和分析人的情感状态,如高兴,生气等。此外,人脸识别技术还在医学,档案管理,人脸动画,人脸建模,视频会议等方面也有着巨大的应用前景。 2.人脸识别技术在国外的研究现状 当前很多国家展开了有关人脸识别的研究,主要有美国,欧洲国家,日本等,著名的研究机构有美国MIT的Media lab,AI lab,CMU的Human-Computer I nterface Institute,Microsoft Research,英国的Department of Engineerin g in University of Cambridge等。综合有关文献,目前的方法主要集中在以下几个方面: (1)模板匹配 主要有两种方法,固定模板和变形模板。固定模板的方法是首先设计一个或几个参考模板,然后计算测试样本与参考模板之间的某种度量,以是否大于阈值来判断测试样本是否人脸。这种方法比较简单,在早期的系统中采用得比较

人脸识别主要算法原理

人脸识别主要算法原理 主流的技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。 3. 特征脸方法(Eigenface或PCA)

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

人脸识别技术的应用背景及研究现状

人脸识别技术的应用背景及研究现状 1.人脸识别技术的应用 随着社会的不断进步以及各方面对于快速有效的自动身份验证的迫切要求,生物特征识别技术在近几十年中得到了飞速的发展。作为人的一种内在属性,并且具有很强的自身稳定性及个体差异性,生物特征成为了自动身份验证的最理想依据。当前的生物特征识别技术主要包括有:指纹识别,视网膜识别,虹膜识别,步态识别,静脉识别,人脸识别等。与其他识别方法相比,人脸识别由于具有直接,友好,方便的特点,使用者无任何心理障碍,易于为用户所接受,从而得到了广泛的研究与应用。除此之外,我们还能够对人脸识别的结果作进一步的分析,得到有关人的性别,表情,年龄等诸多额外的丰富信息,扩展了人脸识别的应用前景。当前的人脸识别技术主要被应用到了以下几个方面:(1)刑侦破案公安部门在档案系统里存储有嫌疑犯的照片,当作案现场或通过其他途径获得某一嫌疑犯的照片或其面部特征的描述之后,可以从数据库中迅速查找确认,大大提高了刑侦破案的准确性和效率。 (2)证件验证在许多场合(如海口,机场,机密部门等)证件验证是检验某人身份的一种常用手段,而身份证,驾驶证等很多其他证件上都有照片,使用人脸识别技术,就可以由机器完成验证识别工作,从而实现自动化智能管理。 (3)视频监控在许多银行,公司,公共场所等处都设有24小时的视频监控。当有异常情况或有陌生人闯入时,需要实时跟踪,监控,识别和报警等。这需要对采集到的图像进行具体分析,且要用到人脸的检测,跟踪和识别技术。 (4)入口控制入口控制的范围很广,既包括了在楼宇,住宅等入口处的安全检查,也包括了在进入计算机系统或情报系统前的身份验证。 (5)表情分析根据人脸图像中的面部变化特征,识别和分析人的情感状态,如高兴,生气等。此外,人脸识别技术还在医学,档案管理,人脸动画,人脸建模,视频会议等方面也有着巨大的应用前景。 2.人脸识别技术在国外的研究现状 当前很多国家展开了有关人脸识别的研究,主要有美国,欧洲国家,日本等,著名的研究机构有美国MIT的Media lab,AI lab,CMU的Human-Computer I nterface Institute,Microsoft Research,英国的Department of Engineerin g in University of Cambridge等。综合有关文献,目前的方法主要集中在以下几个方面:

人脸识别主要算法原理

人脸识别主要算法原理 主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧 面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是: 设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的 基础。 3. 特征脸方法(Eigenface或PCA)

DCT变换原理

数字图像的冗余包括空间冗余、结构冗余、知识冗余和视觉冗余等。空间冗余是指规则物体和规则背景的表面物理特性都具有相关性,数字化后表现为数字冗余。例如:某图片的画面中有一个规则物体,其表面颜色均匀,各部分的亮度、饱和度相近,把该图片作数字化处理,生成位图后,很大数量的相邻像素的数据是完全一样或十分接近的,完全一样的数据当然可以压缩,而十分接近的数据也可以压缩,因为恢复后人亦分辨不出它与原图有什么区别,这种压缩就是对空间冗余的压缩。再比如视觉冗余,视觉系统对于图像场的注意是非均匀和非线性的,视觉系统不是对图像的任何变化都能感知,因此对图像进行压缩后人眼也并不会非常敏锐地察觉画面内容有所删减。 所谓的图像压缩编码技术就是对要处理的图像数据按一定的规则进行变换和组合, 从而达到以尽可能少的数据流(代码)来表示尽可能多的数据信息。在众多的图像压缩编码标准中,JPEG(Joint Photographic Experts Group)格式是一种称为联合图像专家组的图像压缩格式,它适用于不同类型、不同分辨率的彩色和黑白静止图像。 而在JPEG图像压缩算法中,有一种是以离散余弦变换(DCT,Discrete Cosine Transform)为基础的有损压缩算法,是为本论文的主要研究对象。 DCT变换利用傅立叶变换的性质。采用图像边界褶翻将像变换为偶函数形式,然后对图像进行二维傅立叶变换,变换后仅包含余弦项,所以称之为离散余弦变换。 DCT编码属于正交变换编码方式,用于去除图像数据的空间冗余。变换编码就是将图像光强矩阵(时域信号)变换到系数空间(频域信号)上进行处理的方法。在空间上具有强相关的信号,反映在频域上是在某些特定的区域内能量常常被集中在一起,或者是系数矩阵的分布具有某些规律。我们可以利用这些规律在频域上减少量化比特数,达到压缩的目的。图像经DCT变换以后,DCT系数之间的相关性就会变小。而且大部分能量集中在少数的系数上,因此,DCT变换在图像压缩中非常有用,是有损图像压缩国际标准JPEG的核心。从原理上讲可以对整幅图像进行DCT变换,但由于图像各部位上细节的丰富程度不同,这种整体处理的方式效果不好。为此,发送者首先将输入图像分解为8*8或16*16块,然后再对每个图像块进行二维DCT变换,接着再对DCT系数进行量化、编码和传输;接收者

人脸识别介绍

人脸识别技术是生物识别技术的一种,它结合了图像处理、计算机图形学、模式识别、可视化技术、人体生理学、认知科学和心理学等多个研究领域。从二十世纪六十年代末至今,人脸识别算法技术的发展共经历了如下四个阶段: 1. 基于简单背景的人脸识别 这是人脸识别研究的初级阶段。通常利用人脸器官的局部特征来描述人脸。但由于人脸器官没有显著的边缘且易受到表情的影响,因此它仅限于正面人脸(变形较小)的识别。 2. 基于多姿态/表情的人脸识别 这是人脸识别研究的发展阶段。探索能够在一定程度上适应人脸的姿态和表情变化的识别方法,以满足人脸识别技术在实际应用中的客观需求。 3. 动态跟踪人脸识别 这是人脸识别研究的实用化阶段。通过采集视频序列来获得比静态图像更丰富的信息,达到较好的识别效果,同时适应更广阔的应用需求。 4. 三维人脸识别 为了获得更多的特征信息,直接利用二维人脸图像合成三维人脸模型进行识别,即将成为该领域的一个主要研究方向。 人脸识别技术的研究范围主要包括以下几个方面: 1. 人脸检测:在输入的图像中寻找人脸区域。 2. 人脸的规范化:校正人脸在尺度、光照和旋转等方面的变化。 3. 特征提取:从人脸图像中映射提取一组能反映人脸特征的数值表示样本。 4. 特征匹配:将待识别人脸与数据库中的已知人脸比较,得出相关信息。 人脸识别流程 1图像预处理 1.1 图像去噪 一般来说,自然界中的噪声可以看成是一种随机信号。根据图像获取的途径人脸图像获取 人脸检测 定位人脸区域 预处理 特征抽取 人脸特征 对比识别 结果 人脸特征库

不同,噪声的融入也有多种方式: 1. 图像是直接以数字形式获取的,那么图像数据的获取机制会不可避免地 引入噪声信号; 2. 在图像采集过程中,物体和采集装置的相对运动。或采集装置的抖动, 也会引入噪声,使图像变的模糊不清; 3. 在图像数据的电子传输过程中,也不同程度的引入噪声信号。 这些噪声信号的存在,严重的情况会直接导致整幅图像的不清晰,图象中的景物和背景的混乱。对于用于人脸识别的图像。由于噪声的引入,将不可避免地造成识别率的下降。对图像噪声的消除可以通过两个途径:空间域滤波或频率域滤波。消除噪声的方法很多,对于不同的噪声应该采用不同的除噪方法。主要的方法是:线性滤波、中值滤波、维纳滤波以及小波去噪等。 1.2 增强对比度 为了使人脸在图像中更为突出以便于下一步的特征提取,增强图像对比度是很有必要的。增强对比度有很多种方法,常见的有直方图均衡化和“S ”形变换等方法。 “S ”形变换方法将灰度值处于某一范围(人脸特征范围)内的像素灰度分布差距拉开,从而保证了对比度的提高,但此方法降低了其他灰度值的对比度。而直方图均衡化则是将像素的灰度分布尽量展开在所有可能的灰度取值上,这样的方法同样能使得图像的对比度提高。 将彩色图像转化成灰度图像是人脸识别方法中常见的处理过程,虽然转化过程丢失了一部分色彩信息,但是灰度图像拥有更小的存储空间和更快的计算速度。文献[1]给出了一种能够将RGB 色彩转换成灰度级且适于突出人脸区域对比度的转换模型:()5.0144.0587.0299.0,+?+?+?=b g r y x f ;其中f 代表灰度值,r ,g ,b 分别表示Red,Green,Blue 分量的值。 文献[2]通过将人脸彩色图像从RGB 色彩空间转换到RIQ 色彩空间,得到了更适于频谱分析的特征分量。

人脸识别算法都有哪些

主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。 可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临

近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。 3. 特征脸方法(Eigenface或PCA) 特征脸方法是90年代初期由Turk和Pentland提出的目前最流行的算法之一,具有简单有效的特点, 也称为基于主成分分析(principal component analysis,简称PCA)的人脸识别方法。 特征子脸技术的基本思想是:从统计的观点,寻找人脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。这些特征向量称为特征脸(Eigenface)。 实际上,特征脸反映了隐含在人脸样本集合内部的信息和人脸的结构关系。将眼睛、面颊、下颌的样本集协方差矩阵的特征向量称为特征眼、特征颌和特征唇,统称特征子脸。特征子脸在相应的图像空间中生成子空间,称为子脸空间。计算出测试图像窗口在子脸空间的投影距离,若窗口图像满足阈值比较条件,则判断其为人脸。 基于特征分析的方法,也就是将人脸基准点的相对比率和其它描述人脸脸部特征的形状参数或类别参数等一起构成识别特征向量,这种基于整体脸的识别不仅保留了人脸部件之间的拓扑关系,而且也保留了各部件本身的信息,而基于部件的识别则是通过提取出局部轮廓信息及灰度信息来设计具体识别算法。

人脸识别技术的主要研究方法

1、绪论 人脸识别是通过分析脸部器官的唯一形状和位置来进行身份鉴别。人脸识别是一种重要的生物特征识别技术,应用非常广泛。与其它身份识别方法相比,人脸识别具有直接、友好和方便等特点,因而,人脸识别问题的研究不仅有重要的应用价值,而且在模式识别中具有重要的理论意义,目前人脸识别已成为当前模式识别和人工智能领域的研究热点。本章将简单介绍几种人脸识别技术的研究方法。 关键词:人脸识别 2、人脸识别技术的主要研究方法 目前在国内和国外研究人脸识别的方法有很多,常用的方法有:基于几何特征的人脸识别方法、基于代数特征的人脸识别方法、基于连接机制的人脸识别方法以及基于三维数据的人脸识别方法。人脸识别流程图如图2.1所示: 图2.1人脸识别流程图 3、基于几何特征的人脸识别方法 基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。 模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。 基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。因此,这也是j 种自下而上的方法。这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且

人脸识别的主要方法

1.1 人脸识别的主要方法 目前,国内外人脸识别的方法很多,并且不断有新的研究成果出现。人脸识别的方法根据研究角度的不同,有不同的分类方法。根据输入图像中人脸的角度不同,可以分为正面,侧面,倾斜的人脸图像的识别;根据图像来源的不同,可分为静态和动态的人脸识别;根据输入图像的特点,又可分为灰度图像和彩色图像的人脸识别等等。本文重点研究基于正面的、静态的灰度图像的识别方法。 对于静态的人脸识别方法从总体上看可以分为三大类:一是基于统计的识别方法,主要包括特征脸(Eigenface)方法和隐马尔科夫模型(Hidden Markov Model 简称HMM)方法等;二是基于连接机制的识别方法,包括人工神经网路(Artifical Neural Network 简称ANN)方法和弹性图匹配(Elastic Bunch Graph Matching 简称EBGM)方法等;三是一些其他的综合方法及处理非二维灰度图像的方法。下面分别进行介绍。 1.1.1 基于特征脸的方法 特征脸方法[5],又称为主成份分析法(Principal Component Analysis 简称PCA),它是20 世纪90 年代初期由Turk 和Pentland 提出的,是一种经典的算法。它根据图像的统计特征进行正交变换(即K-L 变换),以消除原有向量各个分量之间的相关性。变换得到对应特征值依次递减的特征向量,即特征脸。 特征脸方法的基本思想是将图像经过K-L 变换后由高维向量转换为低维向量,并形成低维线性向量空间,利用人脸投影到这个低维空间所得到的投影系数作为识别的特征矢量。这样,就产生了一个由“特征脸”矢量张成的子空间,称为“人脸子空间”或“特征子空间”,每一幅人脸图像向其投影都可以获得一组坐标系数,这组坐标系数表明了人脸在子空间中的位置,因此利用特征脸方法可以重建和识别人脸。 通过人脸向量向特征子空间作投影得到的向量称之为主分量或特征主分量。主分量特征

人脸识别技术的应用背景及研究现状

人脸识别技术的应用背景及研究现状 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

人脸识别技术的应用背景及研究现状1.人脸识别技术的应用 随着社会的不断进步以及各方面对于快速有效的自动身份验证的迫切要求,生物特征识别技术在近几十年中得到了飞速的发展。作为人的一种内在属性,并且具有很强的自身稳定性及个体差异性,生物特征成为了自动身份验证的最理想依据。当前的生物特征识别技术主要包括有:指纹识别,视网膜识别,虹膜识别,步态识别,静脉识别,人脸识别等。与其他识别方法相比,人脸识别由于具有直接,友好,方便的特点,使用者无任何心理障碍,易于为用户所接受,从而得到了广泛的研究与应用。除此之外,我们还能够对人脸识别的结果作进一步的分析,得到有关人的性别,表情,年龄等诸多额外的丰富信息,扩展了人脸识别的应用前景。当前的人脸识别技术主要被应用到了以下几个方面: (1)刑侦破案公安部门在档案系统里存储有嫌疑犯的照片,当作案现场或通过其他途径获得某一嫌疑犯的照片或其面部特征的描述之后,可以从数据库中迅速查找确认,大大提高了刑侦破案的准确性和效率。 ??(2)证件验证在许多场合(如海口,机场,机密部门等)证件验证是检验某人身份的一种常用手段,而身份证,驾驶证等很多其他证件上都有照片,使用人脸识别技术,就可以由机器完成验证识别工作,从而实现自动化智能管理。

?(3)视频监控在许多银行,公司,公共场所等处都设有24小时的视频监控。当有异常情况或有陌生人闯入时,需要实时跟踪,监控,识别和报警等。这需要对采集到的图像进行具体分析,且要用到人脸的检测,跟踪和识别技术。 (4)入口控制入口控制的范围很广,既包括了在楼宇,住宅等入口处的安全检查,也包括了在进入计算机系统或情报系统前的身份验证。 (5)表情分析根据人脸图像中的面部变化特征,识别和分析人的情感状态,如高兴,生气等。此外,人脸识别技术还在医学,档案管理,人脸动画,人脸建模,视频会议等方面也有着巨大的应用前景。 2.人脸识别技术在国外的研究现状 当前很多国家展开了有关人脸识别的研究,主要有美国,欧洲国家,日本等,着名的研究机构有美国MIT的Media lab,AI lab,CMU的Human-Compute r Interface Institute,Microsoft Research,英国的Department of Engine ering in University of Cambridge等。综合有关文献,目前的方法主要集中在以下几个方面: (1)模板匹配 主要有两种方法,固定模板和变形模板。固定模板的方法是首先设计一个或几个参考模板,然后计算测试样本与参考模板之间的某种度量,以是否大于阈值来判断测试样本是否人脸。这种方法比较简单,在早期的系统中采用得比较多。但是由于人脸特征的变化很大,很难得到有效的模板来表示人脸的共性。变形模板在原理上与固定模板相同,但其中包含一些非固定的元素,一种方法是手工构造参数化的曲线和曲面以表征人脸中的某些非固定特征,如眼

图像处理DCT变换

DCT 变换 一、 实验目的: 1.熟悉图像变换的思想; 2.熟悉掌握DCT 变换的处理过程; 3.深入学习和了解DCT 变换的公式以及规律; 4.掌握图像的DCT 变换的Matlab 实现; 5.掌握图像的DCT 变换,求出图像的频谱。 二、实验内容: 练习图像的DCT 变换的Matlab 实现 三、 实验原理: 离散余弦变换是一种实数域变换,其变换核心为实数余弦函数。对一幅图像进行离散余弦变换后,许多有关图像的重要可视信息都集中在DCT 变换的一小部分系数中。因此,离散余弦变换是有损图像压缩JPEG 的核心,同时也是所谓“变换域信息隐藏算法”的主要“变换域(DCT 域)”之一。因为图像处理运用二维离散余弦变换,所以直接介绍二维DCT 变换。 离散余弦变换(DCT )的定义 ()()?? ????+??????+=∑∑-=-=N y v COS N x u y x f N v u F N x N y c 212212cos ),(2),(1010ππ 其逆变换: ()()??????+??????+=∑∑-=-=N y v COS N x u y x F N v u f N x N y c 212212cos ),(2),(101 0ππ 离散余弦变换使图像压缩中常用的一个变换编码方法,任何是对称函数的傅里叶变换中只含余弦项,就成为余弦变换,因此余弦变换是傅里叶变换的特例。余弦变换与傅里叶变换一样有明确的物理意义,是简化傅里叶变换的重要方法。 四、实验步骤: DCT 变换的Matlab 实现 [A,map]=imread('lenna'); %显示原图 imshow(A,map),

离散余弦变换

编辑本段基本介绍 最常用的一种离散余弦变换的类型是下面给出的第二种类型,通常我们所说的离散余弦变换指的就是这种。它的逆,也就是下面给出的第三种类型,通常相应的被称为"反离散余弦变换","逆离散余弦变换"或者"IDCT"。 有两个相关的变换,一个是离散正弦变换(DST for Discrete Sine Transform),它相当于一个长度大概是它两倍的实奇函数的离散傅里叶变换;另一个是改进的离散余弦变换(MDCT for Modified Discrete Cosine Transform),它相当于对交叠的数据进行离散余弦变换。 编辑本段主要应用 离散余弦变换,尤其是它的第二种类型,经常被信号处理和图像处理使用,用于对信号和图像(包括静止图像和运动图像)进行有损数据压缩。这是由于离散余弦变换具有很强的"能量集中"特性:大多数的自然信号(包括声音和图像)的能量都集中在离散余弦变换后的低频部分,而且当信号具有接近马尔科夫过程(Markov processes)的统计特性时,离散余弦变换的去相关性接近于K-L变换(Karhunen-Loève 变换--它具有最优的去相关性)的性能。 例如,在静止图像编码标准JPEG中,在运动图像编码标准MJPEG和MPEG 的各个标准中都使用了离散余弦变换。在这些标准制中都使用了二维的第二种类型离散余弦变换,并将结果进行量化之后进行熵编码。这时对应第二种类型离散余弦变换中的n通常是8,并用该公式对每个8x8块的每行进行变换,然后每列进行变换。得到的是一个8x8的变换系数矩阵。其中(0,0)位置的元素就是直流分量,矩阵中的其他元素根据其位置表示不同频率的交流分类。 一个类似的变换, 改进的离散余弦变换被用在高级音频编码(AAC for Advanced Audio Coding),Vorbis 和MP3 音频压缩当中。 离散余弦变换也经常被用来使用谱方法来接偏微分方程,这时候离散余弦变换的不同的变量对应着数组两端不同的奇/偶边界条件。 编辑本段计算方式 尽管直接使用公式进行变换需要进行O(n2)次操作,但是和快速傅里叶变换类似,我们有复杂度为O(nlog(n))的快速算法,这就是常常被称做蝶形变换的一种分解算法。另外一种方法是通过快速傅里叶变换来计算DCT,这时候需要O(n)的预操作和后操作。 编辑本段参考资料

人脸识别方法与制作流程

本技术公开了一种人脸识别方法,自从上个世纪七十年代以来,随着人工智能技术的兴起,以及人类视觉研究的进展,人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域。如今,人脸识别在安全验证系统(电脑登陆和手机解锁)、档案管理、视频会议、公安系统(罪犯识别等)等方面的巨大应用前景,更令其成为一个研究热点。本技术利实现了一个集多种预处理方法于一体的人脸识别方法,利用灰度图像的直方图比对来实现人脸图像的识别判定。 技术要求 1.一种人脸识别方法,其特征在于,包括以下步骤: 101.预存储目标对象面部图像信息; 102.对预存储的图像进行数字化处理; 103.采用人脸比对方法对目标对象与上述102步骤形成的图像进行比对。 2.根据权利要求1所述的人脸识别方法,其特征在于,步骤102中所述的数字化处理方法 为直方图均衡化方法,具体过程如下: 假设源图在坐标(a,b)处的灰度为s,通过映射转换为图像p,在灰度直方图均衡化的处理过程中,假定图像的映射函数定义为:p = EQ (s); 直方图均衡化映射函数为: 其中K为图像的灰度级数。 3.根据权利要求1所述的人脸识别方法,其特征在于,步骤102中所述的数字化处理方法 为直方图规定化方法,具体过程为: 假设A为原始图的灰度级数,B为规定图的灰度级数,且B≤A;

第一步,完成对原图像直方图的灰度均衡化; 第二步,规定直方图,并对规定的直方图进行均衡化; 第三步,逆转第一个步骤的变换,即将原始直方图一一对应到规定的直方图,将所有函数映射到函数上,其中原始图像的概率密度函数为,期望获得的图像概率密度函数为,r表示源图的灰度级,z表示期望获得图像的灰度级。 技术说明书 一种人脸识别方法 技术领域 本技术涉及识别方法,具体地,涉及一种人脸识别方法。 背景技术 目前,远程身份认证已成为一个热门应用,在很多领域都存在强烈需求,例如门禁系统,各种账户身份认证等,为了加快认证效率,机器化系统化智能认证已是大势所趋,随之产生了各种不同的验证方式,比如指纹、虹膜和人脸识别等,其中人脸识别是最近比较受重视的验证方式,但是由于人脸识别时都需采用预存目标人面部图像然后比的方式进行,而图像比对的精度则很难得到保证。 技术内容 本技术的目的在于,针对上述问题,提出一种人脸识别方法,以实现准确识别的优点。为实现上述目的,本技术采用的技术方案是:一种人脸识别方法,包括以下步骤:101.预存储目标对象面部图像信息; 102.对预存储的图像进行数字化处理; 103.采用人脸比对方法对目标对象与上述102步骤形成的图像进行比对。 进一步的,步骤102中所述的数字化处理方法为直方图均衡化方法或直方图规定化方法。

人脸识别技术的几个主要研究方向

人脸识别技术的几个主要研究方向 1 引言 计算机人脸识别是指基于已知的人脸样本库,利用计算机分析图像和模式识别技术从静态或动态场景中,识别或验证一个或多个人脸。通常识别处理后可得到的基本信息包括人脸的位置、尺度和姿态信息。利用特征提取技术还可进一步抽取出更多的生物特征(如:种族、性别、年龄..) 。计算机人脸识别是目前一个非常活跃的研究课题,它可以广泛应用于保安系统、罪犯识别以及身份证明等重要场合。虽然人类对于人脸的识别能力很强,能够记住并辨识上千个不同的人脸,可是对于计算机则困难多了,其表现在:人脸表情丰富;人脸随年龄的增长而变化;发型、胡须、眼镜等装饰对人脸造成的影响;人脸所成图像受光照、成像角度以及成像距离等影响。 计算机人脸识别技术是近20年发展起来的,90年代更成为科研热点,仅从1990 年到1999年之间,EI 可检索到的相关文献多达数千篇,关于人脸识别的综述也屡屡可见[1] 。自动人脸识别系统包括两个主要技术环节首先是人脸检测和定位,然后是对人脸进行特征提取和识别(匹配)。本文着重介绍人脸识别技术的各类方法,通过对比指出各类方法的优缺点及今后的发展方向。 2 人脸检测和定位 人脸检测和定位即对于给定的一幅图像检测图像中是否有人脸,若有则确定其在图像中的位置,并从背景中分割出来。这是个极富挑战性的问题,因为人脸是非刚体,且人脸在图像中的大小和方向以及人的肤色和纹理等方面有很大的可变形。人脸检测问题主要有四种:(1)对于给定的一幅人脸图像,将其中的人脸定位并给出其位置;(2)在一幅混乱的单色场景图中检测出所有的人脸;(3)在彩色图像中检测(定位)所有人脸;(4)在某一视频序列中,检测和定位出所有人脸。文献[2]对人脸检测进行了较为详细的综述,指出常用的人脸检测方法有四种:(1)基于知识的方法;(2)基于人脸固定特征的方法;(3)基于模板匹配的方法;(4)基于外貌的方法(Appearance-based methods),在基于模板匹配的方法中所采用的是预先确定的模板,而在基于外貌的方法中其模板的选择是通过对一系列图像的学习而确定的。一般来说,基于外貌的方法依靠统计和学习技术来找出人脸和非人脸图像的相关特征。在该方法中有特征脸法、基于聚类的方法、神经网络方法和支持向量机的方法。CMU库是常用的人脸检测库,主要的算法评定指标为错误接受率(FAR)和错误拒绝率(ARR)。 3 人脸特征提取和识别 目前大部分研究主要是针对二维正面人脸图像,也有基于三维人脸模型的方法,还有一种所谓的混合系统的身份鉴定系统。 3.1 二维正面人脸识别 在对人脸图像进行特征提取和分类之前一般需要做几何归一化和灰度归一化。几何归一化是指根据人脸定位结果将图像中人脸变换到同一位置和同样大

离散余弦变换(DCT)的DSP程序设计与实现

D S P课程设计论文 题目离散余弦变换(DCT)的DSP实现 专业电气工程及其自动化 姓名陈梦泽班级 11东电气 学号 11811527 执行学期 2014-2015

离散余弦变换(DCT)的DSP实现 一、实验目的 1. 掌握离散余弦变换的概念和实现方法; 2. 掌握用 C 语言或汇编语言编写 DSP 程序的方法; 3. 熟悉DCT原理; 二、实验设备 1. 一台装有 CCS 软件的计算机; 2. DSP 实验箱的TMS320C5410 主控板; 3. DSP 硬件仿真器; 三、实验原理论述 1、原理 离散余弦变换(Discrete Cosine Transform,简称DCT变换)是一种与傅立叶变换紧密相关的数学运算。在傅立叶级数展开式中,如果被展开的函数是实偶函数,那么其傅立叶级数中只包含余弦项,再将其离散化可导出余弦变换,因此称之为离散余弦变换。对于给定的实际数据序列x(0),X(1) ,x(2).... X( N-1 )的DCT(FDCT)算法如下: z(k) N ()()cos () = + ? ?? ? ?? = - ∑ 221 2 1 α π k x n n k N n N (1) 其中: αα() () k k = =≠ 1 2 for k=0 1 for k0 (2) 二维离散余弦变换(FDCT): z(k,)()()(,)cos () cos () l N k l x m n m k N n l N m N n N =? ? ? ? ? + ? ?? ? ?? + ? ?? ? ?? = - = - ∑ ∑ 221 2 21 2 1 1 αα ππ (3) 其逆运算是:

相关文档
最新文档