2017届二轮复习 不等式选讲 专题卷(全国通用)

2017届二轮复习  不等式选讲    专题卷(全国通用)
2017届二轮复习  不等式选讲    专题卷(全国通用)

1.[2016·湖北八校联考]已知函数f (x )=|x -10|+|x -20|,且满足f (x )<10a +10(a ∈R )的解集不是空集.

(1)求实数a 的取值集合A ;

(2)若b ∈A ,a ≠b ,求证:a a b b >a b b a .

解 (1)|x -10|+|x -20|<10a +10的解集不是空集,

则(|x -10|+|x -20|)mi n <10a +10,

∴10<10a +10,∴a >0,A =(0,+∞).

(2)证明:不妨设a >b ,则a a b b a b b a =? ??

??a b a -b , ∵a >b >0,∴a b >1,a -b >0,? ??

??a b a -b >1, ∴a a b b >a b b a .

2.[2016·河南测试]已知函数f (x )=|x -2|.

(1)解不等式f (x )+f (x +5)≥9;

(2)若|a |<1,|b |<1,求证:f (ab +3)>f (a +b +2).

解 (1)f (x )+f (x +5)=|x -2|+|x +3|

=????? -2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.

当x <-3时,由-2x -1≥9,解得x ≤-5;

当-3≤x ≤2时,f (x )≥9,不成立;

当x >2时,由2x +1≥9,解得x ≥4.

所以不等式f (x )+f (x +5)≥9的解集为{x |x ≤-5或x ≥4}.

(2)证明:f (ab +3)>f (a +b +2),即|ab +1|>|a +b |.

因为|a |<1,|b |<1,

所以|ab +1|2-|a +b |2=(a 2b 2+2ab +1)-(a 2+2ab +b 2)=(a 2-

1)(b 2-1)>0,

所以|ab +1|>|a +b |,

故所证不等式成立.

3.已知函数f (x )=|x -2|-|x +1|.

(1)解不等式f (x )>1;

(2)当x >0时,函数g (x )=ax 2-x +1x

(a >0)的最小值总大于函数f (x ),试求实数a 的取值范围.

解 (1)当x >2时,原不等式可化为x -2-x -1>1,此时不成立; 当-1≤x ≤2时,原不等式可化为2-x -x -1>1,即-1≤x <0; 当x <-1时,原不等式可化为2-x +x +1>1,即x <-1, 综上,原不等式的解集是{x |x <0}.

(2)因为g (x )=ax +1x -1≥2a -1,当且仅当ax =1x ,即x =a a 时

“=”成立,

所以g (x )mi n =2a -1,

f (x )=?????

1-2x ,02,所以f (x )∈[-3,1), 所以2a -1≥1,即a ≥1为所求.

4.[2016·全国卷Ⅲ]已知函数f (x )=|2x -a |+a.

(1)当a =2时,求不等式f (x )≤6的解集;

(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围.

解 (1)当a =2时,f (x )=|2x -2|+2.

解不等式|2x -2|+2≤6得-1≤x ≤3.

因此f (x )≤6的解集为{x |-1≤x ≤3}.

(2)当x ∈R 时,

f (x )+

g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a. 所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.①

当a ≤1时,①等价于1-a +a ≥3,无解.

当a >1时,①等价于a -1+a ≥3,解得a ≥2.

所以a 的取值范围是[2,+∞).

5.[2016·湖北七市联考]设函数f (x )=|x -a |,a ∈R .

(1)若a =1,解不等式f (x )≥12(x +1);

(2)记函数g (x )=f (x )-|x -2|的值域为A ,若A ?[-1,3],求a 的取值范围.

解 (1)由于a =1,故f (x )=?????

1-x ,x <1,x -1,x ≥1. 当x <1时,由f (x )≥12(x +1),得1-x ≥12(x +1),解得x ≤13.

当x ≥1时,由f (x )≥12(x +1),得x -1≥12(x +1),解得x ≥3.

综上,不等式f (x )≥12(x +1)的解集为? ??

??-∞,13∪[3,+∞). (2)当a <2时,g (x )=????? a -2,x ≤a ,2x -2-a ,a

g (x )的值域A =[a -2,2-a ],

由A ?[-1,3],得?????

a -2≥-1,2-a ≤3,解得a ≥1,又a <2,故1≤a <2; 当a ≥2时,g (x )=????? a -2,x ≤2,-2x +2+a ,2

2-a ,x ≥a ,

g (x )的值域A =[2-a ,

a -2], 由A ?[-1,3],得?????

2-a ≥-1,a -2≤3,解得a ≤3,又a ≥2, 故2≤a ≤3.

综上,a 的取值范围为[1,3].

6.[2016·西安交大附中六诊]设函数f (x )=????

??x -52+|x -a |. (1)求证:当a =-12时, 不等式l n f (x )>1成立;

(2)关于x 的不等式f (x )≥a 在R 上恒成立,求实数a 的最大值.

解 (1)证明:由f (x )=??????x -52+????

??x +12 =????? -2x +2,x <-12,3,-12≤x ≤52,

2x -2,x >52

得函数f (x )的最小值为3,从而f (x )≥3>e.

所以l n f (x )>1成立.

(2)由绝对值的性质得f (x )=??????x -52+|x -a |≥????

??? ????x -52-(x -a )=?

?????a -52, 所以f (x )最小值为??????52-a ,从而????

??52-a ≥a , 解得a ≤54,

因此a 的最大值为54.

7.[2016·太原测评]对于任意的实数a (a ≠0)和b ,不等式|a +b |+|a -b |≥M ·|a |恒成立,记实数M 的最大值是m .

(1)求m 的值;

(2)解不等式|x -1|+|x -2|≤m .

解 (1)不等式|a +b |+|a -b |≥M ·|a |恒成立,

即M ≤|a +b |+|a -b ||a |

对于任意的实数a (a ≠0)和b 恒成立, 所以M 的最大值m 是|a +b |+|a -b ||a |

的最小值. 因为|a +b |+|a -b |≥|(a +b )+(a -b )|=2|a |,

当且仅当(a -b )(a +b )≥0时等号成立,即|a |≥|b |时, |a +b |+|a -b ||a |

≥2成立,所以m =2. (2)|x -1|+|x -2|≤2.

解法一:利用绝对值的意义得12≤x ≤52.

解法二:当x <1时,原不等式化为-(x -1)-(x -2)≤2,

解得x ≥12,所以x 的取值范围是12≤x <1;

当1≤x ≤2时,原不等式化为(x -1)-(x -2)≤2,

得x 的取值范围是1≤x ≤2;

当x >2时,原不等式化为(x -1)+(x -2)≤2,解得x ≤52.

所以x 的取值范围是2

综上所述,x 的取值范围是12≤x ≤52.

解法三:构造函数y =|x -1|+|x -2|-2,

作出y =????? -2x +1(x <1),-1(1≤x ≤2),的图象如图所示,

2x -5(x >2)

利用图象有当y ≤0,得12≤x ≤52.

8.[2016·洛阳统考]已知a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞).

(1)求x 1a +x 2b +2x 1x 2

的最小值; (2)求证:(ax 1+bx 2)(ax 2+bx 1)≥x 1x 2.

解 (1)因为a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞),

所以x 1a +x 2b +2x 1x 2

≥3·3x 1a ·x 2b ·2x 1x 2=3·32ab ≥3·32? ??

??a +b 22=3×38=6,

当且仅当x 1a =x 2b =2x 1x 2

,a =b ,即a =b =12且x 1=x 2=1时,x 1a +x 2b +2

x 1x 2有最小值6.

(2)证法一:由a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞), 及柯西不等式可得:

(ax 1+bx 2)(ax 2+bx 1)=[(ax 1)2+(bx 2)2]·[(ax 2)2+(bx 1)2]≥(ax 1·ax 2+bx 2·bx 1)2=(a x 1x 2+b x 1x 2)2=x 1x 2, 当且仅当ax 1ax 2=bx 2bx 1,即x 1=x 2时取得等号.

证法二:因为a,b∈(0,+∞),a+b=1,x1,x2∈(0,+∞),所以(ax1+bx2)(ax2+bx1)

=a2x1x2+abx22+abx21+b2x1x2

=x1x2(a2+b2)+ab(x22+x21)

≥x1x2(a2+b2)+ab(2x1x2)

=x1x2(a2+b2+2ab)

=x1x2(a+b)2

=x1x2,

当且仅当x1=x2时,取得等号.

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

高中数学专题复习:不等式选讲学生版

不等式选讲 考点一解绝对值不等式 例1.已知函数=│x+1│-│x–2│.(1)求不等式≥1的解集;(2)若不等式≥x2–x +m 的解集非空,求实数m的取值范围. 【变式探究】已知函数.(I)在答题卡第(24)题图中画出的图像;(II)求不等式的解集.

考点二不等式的证明 例2.已知。证明:(1);(2)。 【变式探究】 已知函数,为不等式的解集.(Ⅰ)求;(Ⅱ)证明:当时,.

练习:1.已知函数,.(1)当时,求不等式的解集;(2)若不等式的解集包含[–1,1],求的取值范围. 2.已知函数.(I)当时,求不等式的解集;(II)设函数.当 时,,求的取值范围.

3.已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围. 4.若,且.(Ⅰ)求的最小值;(Ⅱ)是否存在,使得?并说明理由.

5.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a >-1,且当x∈[-a 2 , 1 2 )时,f(x)≤g(x),求a的取值范围. 6.已知函数f(x)=|2x+1|+|2x-3|.(1)求不等式f(x)≤6的解集;(2)若关于x的不等式f(x)<|a-1|的解集不是空集,求实数a的取值范围. 7.已知函数f(x)=|x+3|-|x-2|.(1)求不等式f(x)≥3的解集;(2)若f(x)≥|a-4|有解,求a的取值范围.

8.设函数f(x)=|x -3|-|x +1|,x ∈R.(1)解不等式f(x)<-1;(2)设函数g(x)=|x +a|-4,且g(x)≤f(x)在x ∈[-2,2]上恒成立,求实数a 的取值范围. 9.已知a>0,b>0,a +b =1,求证:(1)1a +1b +1ab ≥8;(2)? ????1+1a ? ?? ??1+1b ≥9.

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

基本不等式题型总结

基本公式 (1)R b a ab a a ∈≥+、,222(2)ab b a 2≥+,一定二正三相等(3 )b a a b b a b a 1122222+≥≥+≥+,当b a =时,等号成立(4)33abc c b a ≥++推广: n n n x x x n x x x 2121≥+++,0>i x 题型 (1)对勾函数:x b ax y +=当x b ax =时,函数取得极值点 (2)1的代换 当题目中有b a b a 11、、、时。例1:正数n m 、满足12=+n m ,求m n 11+的最小值解:223212)21111+≥+++=+?+=+m n n m n m m n m n ()(

(3)xy y x 、、型 例2:已知2=++xy y x ,求y x +最小值①因式分解(提取公因式)2 3232113 )1)(1(2 -≥+∴≥+++=++∴=++y x y x y x xy y x 又②求谁留谁 22208)(4)())(2(4)())(2(44)(2222-≥+≥-+++∴+-≥+∴+-=≥+∴≥+y x y x y x y x y x y x xy y x xy y x 解得: ③?判别法:0 ≥?2 320 )2(40 22 )(,22-≥≥--=?=-+-∴=-+∴-=+=z z z z zy y z y y z z y x y x z 解得则令④技巧、完全对称为最值 解得:原式完全对称和式子中2322 22-==+=∴=∴x x x y x y x

(4)xy y x 、、22型①完全对称 ②求谁留谁 ③?判别法:0≥?④配方,三角换元例3:已知1422=++xy y x 求y x +2的最大值配方: 1)2(41522=++x y x ;则:12(21522=++x y x )(换元: ]2,0[cos 2;sin 215πθθθ∈=+=。x y x θθθsin 15 1cos ,sin 152-==∴y x )sin(58cos sin 15 32?θθθ+=+=+∴y x 510 22≤+∴y x

2021届高考数学二轮复习第二部分专题篇素养提升文理专题七第2讲选修4_5不等式选讲学案含解析新人教

第2讲选修4-5:不等式选讲 JIE TI CE LUE MING FANG XIANG 解题策略·明方向 ⊙︱考情分析︱ 主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围、不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式、绝对值不等式的应用成为命题的热点. ⊙︱真题分布︱ (理科) 年份卷别题号考查角度分值 2020Ⅰ卷23分段函数的图象,以及利用图象解不等式10 Ⅱ卷23 绝对值不等式的求解、利用绝对值三角不等式求解最 值的问题 10 Ⅲ卷23不等式的基本性质以及基本不等式的应用10 2019Ⅰ卷23重要不等式、基本不等式、证明10 Ⅱ卷23绝对值不等式的解法、分类讨论10 Ⅲ卷23柯西不等式求最值10 2018Ⅰ卷23 含绝对值的不等式的求解、利用不等式恒成立求参数 范围 10 Ⅱ卷23 含绝对值不等式的求解、利用不等式恒成立求参数的 取值范围 10 Ⅲ卷23 含绝对值的函数的图象,利用不等式恒成立求两参数 和的最值 10 年份卷别题号考查角度分值

2020 Ⅰ卷23分段函数的图象,以及利用图象解不等式10 Ⅱ卷23 绝对值不等式的求解、利用绝对值三角不等式求解 最值的问题 10 Ⅲ卷23不等式的基本性质以及基本不等式的应用10 2019 Ⅰ卷23重要不等式、基本不等式、证明10 Ⅱ卷23绝对值不等式的解法、分类讨论10 Ⅲ卷23柯西不等式求最值10 2018 Ⅰ卷23 含绝对值的不等式的求解、利用不等式恒成立求参 数范围 10 Ⅱ卷23 含绝对值不等式的求解、利用不等式恒成立求参数 的取值范围 10 Ⅲ卷23 含绝对值的函数的图象,利用不等式恒成立求两参 数和的最值 10 KAO DIAN FEN LEI XI ZHONG DIAN 考点分类·析重点 考点一绝对值不等式的解法 知识再现 含有绝对值的不等式的解法 (1)|f(x)|>a(a>0)?f(x)>a或f(x)<-a; (2)|f(x)|<a(a>0)?-a<f(x)<a; (3)对形如|x-a|+|x-b|≤c,|x-a|+|x-b|≥c的不等式,可利用绝对值不等式的几何意义求解. 典例悟通 典例1 (2020·沙坪坝区校级模拟)设函数f(x)=|x-1|+|2x+a|. (1)若a=2,求f(x)≤8的解集;

均值不等式综合复习题

基本不等式巩固提高 例 1.解不等式 25123 x x x -<--- (答:(1,1)(2,3)-); 2. 若2 log 13 a <,则a 的取值范围是__________ 3 .关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式02 >-+x b ax 的解集为____________ (答:),2()1,(+∞--∞ ) 基本不等式 (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为 定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” 常用方法 (1)凑项 例1:已知5 4x <,求函数14245 y x x =-+-的最大值。 (2)凑系数 例2. 当时,求(82)y x x =-的最大值 (3)分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 配出含有(x +1)的项,再将其分离。

练习 1. 已知a ,b 都是正数,则 a +b 2 、 a 2+ b 2 2 的大小关系是 。 2.已知 12 1(0,0),m n m n +=>>则mn 的最小值是 3.已知:226x y +=, 则 2x y +的最大值是___ 4求1 (3)3 y x x x = +>-的最小值. 5求(5) (05)y x x x =-<<的最大值. 6求1 (14)(0)4 y x x x =-<<的最大值。 7求12 3 (0)y x x x =+<的最大值. 8若2x >,求1 252 y x x =-+-的最小值 9若0x <,求21 x x y x ++=的最大值。 10求222 y x =+的最小值. 习题A 1.已知a >0,b >0,a 1+b 3=1,则a+2b 的最小值为( ) +2 6 B.2 3 +2 3 2.设a >0,b >0,下列不等式中不成立的是( ) A. b a a b +≥2 +b 2 ≥2ab C.b a a b 22+ ≥a+b D.b a 11+≥2+ b a +2 3.已知x >0,y >0,x,a,b,y 成等差数列,x,c,d,y 成等比数列,则()cd b a 2 +的最小 值是( ) B.1 D. 4 +3y-2=0,则3x +27y +1的最小值为 ( ) B.339 +2 2

不等式的基本性质知识点

不等式的基本性质知识点 不等式的基本性质知识点 1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a<b。 ① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。 ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。 作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。 如证明y=x3为单增函数, 设x1, x2∈(-∞,+∞), x1<x2, f(x1)-f(x2)=x13-x23=(x1-x2)(x12+x1x2+x22)=(x1-x2)[( x1+)2 +x22] 再由(x1+)2+x22>0, x1-x2<0,可得f(x1)<f(x2), ∴ f(x)为单增。 2.不等式的性质: ① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。 不等式基本性质有: (1) a>bb<a (对称性)

(2) a>b, b>ca>c (传递性) (3) a>ba+c>b+c (c∈R) (4) c>0时,a>bac>bc c<0时,a>bac<bc。 运算性质有: (1) a>b, c>da+c>b+d。 (2) a>b>0, c>d>0ac>bd。 (3) a>b>0an>bn(n∈N, n>1)。 (4) a>b>0>(n∈N, n>1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ② 关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。 (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

高考数学复习+不等式选讲大题-(文)

专题十五不等式选讲大题 (一)命题特点和预测: 分析近8年全国新课标1不等式选讲大题,发现8年8考,主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题.2019年不等式选讲大题仍将主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题. (二)历年试题比较: . 时,求不等式 时不等式成立,求的取值范围. 已知函数, 的解集; 的解集包含

已知函数 ?并说明文由 ( )≤ 【解析与点睛】 (2018年)【解析】(1)当时,,即 故不等式的解集为. (2)当时成立等价于当时成立.若,则当时;

若,的解集为,所以,故. 综上,的取值范围为. (2017年)【解析】 x>时,①式化为,从而. 当1 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题. (2016年)【解析】(I) y=的图像如图所示. f ) (x

(II )由)(x f 的表达式及图像,当1)(=x f 时,可得1=x 或3=x ; 当1)(-=x f 时,可得3 1 = x 或5=x , 故1)(>x f 的解集为{} 31<x f 的解集为 . 【名师点睛】不等式选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写成集合的形式. 以△ABC 的面积为22 (1)3 a +. 由题设得 22 (1)3 a +>6,解得2a >.

高考一轮复习专题8:不等式专题题型归纳,解不等式、均值不等式、线性规划

第七章 不等式 第一节 解不等式 题型82、一元二次不等式的解法 ? 知识点摘要: 一元二次不等式)0(02 ≠≥++a c bx ax 解法步骤: 1. 先看不等式对应的一元二次方程)0(02 ≠=++a c bx ax 根的情况; 2. 再画出不等式对应的二次函数大致图像,确定一元二次不等式的解集。 ? 典型例题精讲精练: 1. 解下列不等式 ①0322 ≥++x x ②0322 <++x x ③062 ≥--x x 2. 不等式组?????--0 30 122<<x x x 的解集为( ) {}11|.< <x x A - {}30|.<<x x B {}10|.<<x x C {}31|.<<x x D - 3. 已知{ } ?? ? ??-=++2310|2 , >c bx ax x ,则关于x 的不等式02<a bx cx ++的解集为。 4. 已知关于x 的不等式02 <c bx ax ++的解集为{2|-<x x 或}2 1- >x ,求关于x 不等式 02>c bx ax +-的解集。 5. 解关于x 的不等式() ()R a a x a a x ∈++-, >03 2 2 。 { }{ } 034|023|2 22 <,<a ax x x B x x x A +-=++=B A ?a

题型83、一元高次不等式的解法 ? 知识点摘要: 简单的一元高次不等式常用穿根法(穿针引线法)求解,用穿根法解一元高次不等式需要注意一下3点: 1. 每一个一次项系数都要化成正数; 2. 奇穿偶不穿; 3. 从右上角开始穿。 穿根法的解题原理,其实就是画出了相应高次函数大致图像,根据高次函数图像求解相应一元高次不等式的解集。 ? 典型例题精讲精练: 1. 解不等式()()()()021123 2 <--++x x x x ; 2. 解不等式()()()0211≥--+x x x ; 3. 解不等式()()()03212 ≤--+x x x ; 4. 解不等式()()0)2(113 2 ≥++-x x x x 。

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab b a +≤ +≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 已知,,a b c R + ∈,且1a b c ++=,求证:1111118a b c ??????---≥ ??????????? 6、选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、选修4—5:不等式选讲: 已知0>≥b a ,求证:b a ab b a 2 23322-≥- 题型二:利用不等式求函数值域

不等式常见考试题型总结

不等式常见考试题型总结 Prepared on 22 November 2020

《不等式》常见考试题型总结一、高考与不等式 高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。不等式常与下列知识相结合考查: ①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大; ②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题; ③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查. 二、常见考试题型 (1)求解不等式解集的题型 (分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法) (2)不等式的恒成立问题 (不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合 法) (3)不等式大小比较 常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法;

4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。 (4)不等式求函数最值 技巧一:凑项 例:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例. 当 时,求(82)y x x =-的最大值。 技巧三: 分离 例. 求2710 (1)1 x x y x x ++= >-+的值域。 技巧四:换元 例. 求2710 (1)1x x y x x ++= >-+的值域。 技巧五:函数的单调性 (注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。) 例:求函数22 4 y x = +的值域。 技巧六:整体代换 (多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。) 例:(1)已知0,0x y >>,且19 1x y +=,求x y +的最小值。 (2)若+ ∈R y x ,且12=+y x ,求y x 11+的最小值 (3)已知+ ∈R y x b a ,,,且1=+y b x a ,求y x +的最小值

不等式选讲专题(文科)

不等式选讲专题(文科) 已知函数()23f x x x =-++. (1)求不等式()15f x ≤的解集; (2)若()2x a f x -+≤对x ∈R 恒成立,求a 的取值范围. 【答案】(1)[]87-,;(2)(]5-∞,. 【解析】(1)因为()213532 212x x f x x x x --<-??=-??+>? ≤≤, 所以当3x <-时,由()15f x ≤得83x -<-≤; 当32x -≤≤时,由()15f x ≤得32x -≤≤; 当2x >时,由()15f x ≤得27x <≤, 综上,()15f x ≤的解集为[]87-,; (2)【方法一】由()2x a f x -+≤得()2a x f x +≤, ,当且仅当32x -≤≤取等号, 所以当32x -≤≤时,()f x 取得最小值5. 所以,当0x =时,()2x f x +取得最小值5, 故5a ≤,即a 的取值范围为(]5-∞,. 【方法二】设()2g x x a =-+,则()()0max g x g a ==, 当32x -≤≤时,()f x 的取得最小值5, 所以当0x =时,()2x f x +取得最小值5, 故5a ≤,即a 的取值范围为(]5-∞,. 一、(优质试题广西高三下学期第二次模拟

已知函数()22f x x =-,()g x x a =-. (1)若1a =,解不等式()()3f x g x +≥; (2)若不等式()()f x g x >至少有一个负数解,求实数a 的取值范围. 【答案】(1){}1|0x x -≤≤.(2 【解析】(1)若1a =,则不等式()()3f x g x +≥化为 当1x ≥时,2213x x +--≥,即220x x -+≤, 当1x <时,2213x x -+-≥,即20x x +≤,解得10x -≤≤. 综上,不等式()()3f x g x +≥的解集为{}1|0x x -≤≤. (2)作出()y f x =的图象如图所示,当0a <时,()g x 的图象如折线①所示, 由2 2y x a y x =-=-??? 得220x a x +--=,若相切,则()1420a ?=++= 当0a =时,满足()()f x g x >至少有一个负数解. 当0a >时,()g x 的图象如折线②所示, 此时当2a =时恰好无负数解,数形结合知, 当2a ≥时,不等式无负数解,则02a <<. 综上所述,若不等式()()f x g x >至少有一个负数解, 则实数a 二、(优质试题四川广元高三下学期第二次统

江苏省2014届一轮复习数学试题选编16:均值不等式(教师版)

江苏省2014届一轮复习数学试题选编16:均值不等式 填空题 错误!未指定书签。 .(江苏省泰兴市2013届高三上学期期中调研考试数学试题)从公路旁的材料工地沿笔 直公路向同一方向运送电线杆到500m 以外的公路边埋栽,在500m 处栽一根,然后每间隔50m 在公路边栽一根.已知运输车辆一次最多只能运3根,要完成运栽20根电线杆的任务,并返回材料工作,则运输车总的行程最小为____m . 【答案】14000 m . 错误!未指定书签。 .(徐州、宿迁市2013届高三年级第三次模拟考试数学试卷)若0,0a b >>,且 11121 a b b =+++,则2a b +的最小值为____. 【答案】 错误!未指定书签。 .(江苏省徐州市2013届高三上学期模底考试数学试题)已知a ,b ,c 是正实数,且abc +a +c =b , 设222223111 p a b c =-++++,则p 的最大值为________. 【答案】103 错误!未指定书签。 .(苏北三市(徐州、淮安、宿迁)2013届高三第二次调研考试数学试卷)若对满足条件 )0,0(3>>=++y x xy y x 的任意y x ,,01)()(2≥++-+y x a y x 恒成立,则实数a 的取值范围是_____. 【答案】37(,6-∞ 错误!未指定书签。 .(江苏省姜堰市2012—2013学年度第一学期高三数学期中调研(附答案) )已知x >1, 则21 x x +-的最小值为_________. 【答案】1 错误!未指定书签。 .(2010年高考(江苏))将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两 块,其中一块是梯形,记S=梯形的面积 梯形的周长)2 (,则S 的最小值是______________ 【答案】 错误!未指定书签。 .(江苏省海门市四校2013届高三11月联考数学试卷 )二次函数 2()2()f x ax x c x R =++∈的值域为[0,+∞),则 11a c c a +++的最小值为_____. 【答案】4 错误!未指定书签。 .(江苏省苏南四校2013届高三12月月考试数学试题)设正实数,,x y z 满足21x y z ++=,

基本不等式知识点归纳教学内容

基本不等式知识点总结 向量不等式: ||||||||||||a b a b a b -±+≤≤ 【注意】: a b 、 同向或有0?||||||a b a b +=+≥||||||||a b a b -=-; a b 、反向或有0?||||||a b a b -=+≥||||||||a b a b -=+; a b 、不共线?||||||||||||a b a b a b -<±<+.(这些和实数集中类似) 代数不等式: ,a b 同号或有0||||||||||||a b a b a b a b ?+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ?-=+-=+≥. 绝对值不等式: 123123a a a a a a ++++≤ (0)a b a b a b ab -≤-≤+≥时,取等 双向不等式:a b a b a b -±+≤≤ (左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.) 放缩不等式: ①00a b a m >>>>,,则b m b b m a m a a m -+<<-+. 【说明】: b b m a a m +<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a b a n b n a m a m b a b <++<<++<1. ②,,a b c R + ∈, b d a c <,则b b d d a a c c +<<+; ③n N +∈ < < ④,1n N n +∈>,211111 11n n n n n - <<-+-. ⑤ln 1x x -≤(0)x >,1x e x +≥()x R ∈. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0).

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

高考数学复习专题10不等式选讲考点剖析

不等式选讲 主标题:不等式选讲 副标题:为学生详细的分析不等式选讲的高考考点、命题方向以及规律总结。 关键词:绝对值不等式,含参数不等式,不等式证明 难度:3 重要程度:5 考点剖析: 1.理解绝对值三角不等式的代数证明和几何意义,能利用绝对值三角不等式证明一些简单的绝对值不等式. 2.掌握|ax+b|≤c,|ax+b|≥c,|x-a|+|x-b|≤c型不等式的解法. 3.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法,并能用它们证明一些简单不等式. 命题方向:本部分主要考查绝对值不等式的解法,求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式、绝对值不等式的应用成为命题的热点,从能力上主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想 规律总结:1.对于带有绝对值的不等式的求解,要掌握好三个方法:一个是根据绝对值的几何意义,借助于数轴的直观解法;二 是根据绝对值的意义,采用零点分区去绝对值后转化为不等式组的方法;三是构造函数,通过函数图象的方法.要在解题过程中根据不同的问题情境灵活选用这些方法. 2.使用绝对值三角不等式求最值很方便,如|x+2|+|x-4|≥|(x+2)-(x-4)|=6. 3.易错点:解绝对值不等式时忽视去掉绝对值的分界点;在使用算术—几何平均不等式求最值时忽视讨论等号成立的条件. 知识梳理 1.含有绝对值的不等式的解法 (1)|f(x)|>a(a>0)?f(x)>a或f(x)<-a; (2)|f(x)|0)?-a

均值不等式综合复习题

基本不等式巩固提高 例 1.解不等式 2 5123 x x x -<--- (答:(1,1)(2,3)-); 2. 若2 log 13 a <,则a 的取值范围是__________ 3 .关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式 02 >-+x b ax 的解集为____________ (答:),2()1,(+∞--∞ ) 基本不等式 (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” 常用方法 (1)凑项 例1:已知5 4x <,求函数14245 y x x =-+-的最大值。 (2)凑系数 例2. 当时,求(82)y x x =-的最大值 (3)分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 配出含有(x +1)的项,再将其分离。 练习 1. 已知a ,b 都是正数,则 a +b 2、 a 2+ b 2 2的大小关系是 。 2.已知12 1(0,0),m n m n +=>>则mn 的最小值是 3.已知:226x y +=, 则 2x y +的最大值是___ 4求1 (3)3 y x x x = +>-的最小值. 5求(5) (05)y x x x =-<<的最大值. 6求1 (14)(0)4 y x x x =-<<的最大值。 7求12 3 (0)y x x x =+<的最大值. 8若2x >,求1 252 y x x =-+-的最小值 9若0x <,求21 x x y x ++=的最大值。

基本不等式学习知识梳理

基本不等式 【考纲要求】 1. 2 a b +≤ 的证明过程,理解基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2. 2 a b +≤ 解决最大(小)值问题. 3.会应用基本不等式求某些函数的最值;能够解决一些简单的实际问题 【知识网络】 【考点梳理】 考点一:重要不等式及几何意义 1.重要不等式: 如果,R a b ∈,那么2 2 2a b ab +≥(当且仅当a b =时取等号“=”). 2.基本不等式: 如果,a b 是正数,那么 2a b +≥(当且仅当a b =时取等号“=”). 要点诠释:22 2a b ab +≥ 和2 a b +≥ (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;

(2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”。 (3)2 2 2a b ab +≥可以变形为:222a b ab +≤,2a b ab +≥可以变形为:2()2 a b ab +≤. 3.如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD . 易证~Rt ACD Rt DCB ??,那么2 CD CA CB =?,即CD ab = . 这个圆的半径为2b a +,它大于或等于CD ,即ab b a ≥+2 ,其中当且仅当点C 与圆心重合,即a b =时,等号成立. 要点诠释:1.在数学中,我们称 2 b a +为,a b 的算术平均数,称ab 为,a b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2.如果把 2 b a +看作是正数,a b 的等差中项,ab 看作是正数,a b 的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项. 考点二:基本不等式2 a b ab +≤的证明 1. 几何面积法 如图,在正方形ABCD 中有四个全等的直角三角形。 设直角三角形的两条直角边长为a 、b 22a b +4个直角三角形 的面积的和是2ab ,正方形ABCD 的面积为2 2 a b +。由于4个直角三角形的面积小于正方形的面积,所 以:22 2a b ab +≥。当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有2 2 2a b ab +=。

高考数学大二轮总复习与增分策略 专题八 系列4选讲 第2讲 不等式选讲练习 理

第2讲 不等式选讲 1.(2016·课标全国Ⅱ)已知函数f (x )=??????x -12+???? ??x +12,M 为不等式f (x )<2的解集. (1)求M ; (2)证明:当a ,b ∈M 时,|a +b |<|1+ab |. (1)解 f (x )=????? -2x ,x ≤-1 2 , 1,-12-1,所以,-10. (1)当a =1时,求不等式f (x )>1的解集; (2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-10,解得2 30,解得1≤x <2. 所以f (x )>1的解集为? ????? ??? ?x ??? 2 3

(完整版)均值不等式高考一轮复习(教师总结含历年高考真题)

基础篇 一、单变量部分 1、 求)0(1 >+ =x x x y 最小值及对应的x 值答案当x=1最小值2 2、 2、(添负号)求)0(1 <+=x x x y 最大值-2 3、(添系数)求)31,0()31(∈-=x x x y 最大值12 1 4、(添项)求)2(2 4 >-+=x x x y 最小值6 5、(添根号)02>≥x 求24x x y -=最大值2 6、(取倒数或除分子)求)0(1 2 >+= x x x y 最大值21 7、(换元法)求)1(132>-+= x x x x y 最大值-9 8、(换元法)求)2(522->++=x x x y 最大值4 2 二、多变量部分 1、(凑系数或消元法)已知 041>>a ,b>0且4a+b=1求ab 最大值16 1 2、(乘“1”法或拆“1”法)已知x>0,y>0,x+y=1求 y x 9 4+最小值25 3、(放缩法)已知正数a ,b 满足ab=a+b+3则求ab 范围),9[+∞ 三、均值+解不等式 1. 若正数a,b 满足ab=a+2b+6则ab 的取值范围是 ______),18[+∞_________ 2、已知x>0,y>0, x+2y+2xy=8则x+2y 的最小值__________4__________ 练习 1. 已知x>0,y>0,且 18 2=+y x 则xy 的最小值_______64_______ 2. )0(13 2 4>++=k k k y 最小值_________2_________ 3. 设0≥a ,0≥b ,12 2 2 =+b a ,则21b a +的最大值为_________ 4 2 3_________

相关文档
最新文档