高中数学圆的方程典型例题总结归纳

高中数学圆的方程典型例题总结归纳
高中数学圆的方程典型例题总结归纳

高中数学圆的方程典型例题

类型一:圆的方程

例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.

分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.

解法一:(待定系数法)

设圆的标准方程为222)()(r b y a x =-+-.

∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-.

又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2

22

24)3(16)1(r

a r

a

解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)

因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为

13

124-=--=

AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程

为:23-=-x y 即01=+-y x .

又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2

2

=

++=

=AC r . 故所求圆的方程为20)1(22=++y x .

又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=

++==254)12(2

2

∴点P 在圆外.

说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

类型二:切线方程、切点弦方程、公共弦方程

例5 已知圆42

2

=+y x O :,求过点()42,

P 与圆O 相切的切线. 解:∵点()42,

P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422

=++-k

k 解得4

3=

k

所以()424

3+-=

x y 即

01043=+-y x

因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .

说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.

本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.

类型三:弦长、弧问题

例9、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为 解:依题意得,弦心距3=

d ,故弦长222

2

=-=d

r

AB ,从而△OAB 是等边三角

形,故截得的劣弧所对的圆心角为3

π

=

∠AOB .

类型四:直线与圆的位置关系.

例13 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?

分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324

311

34332

2

<=+-?+?=

d .

如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.

又123=-=-d r .

∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.

解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的

交点.设所求直线为043=++m y x ,则14

3112

2

=++=m d ,

∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :.

设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则

34

36

34332

2

1=+-?+?=

d ,14

316

34332

2

2=+-?+?=

d .

∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.

说明:对于本题,若不留心,则易发生以下误解: 设圆心1O 到直线01143=-+y x 的距离为d ,则324

311

34332

2

<=+-?+?=d .

∴圆1O 到01143=-+y x 距离为1的点有两个.

显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 类型五:圆与圆的位置关系 例15:圆022

2

=-+x y x 和圆042

2

=++y y x 的公切线共有 条。

解:∵圆1)1(2

2

=+-y x 的圆心为)0,1(1O ,半径11=r ,圆4)2(2

2

=++y x 的圆心为)2,0(2-O ,

半径22=r ,∴1,3,5122121=-=+=r r r r O O .∵212112r r O O r r +<<-,

∴两圆相交.共有2条公切线。 类型六:圆中的对称问题

例17 自点()33,-A 发出的光线l 射到x 轴上,被x 轴反射,反射光线所在的直线与圆07442

2

=+--+y x y x C :相切

(1)求光线l 和反射光线所在的直线方程.

(2)光线自A 到切点所经过的路程.

分析、略解:观察动画演示,分析思路.根据对称关系,首先求出点A 的对称点A '的坐标为()33--,

,其次设过A '的圆C 的切线方程为 ()33-+=x k y

根据r d =,即求出圆C 的切线的斜率为 3

4=k 或4

3=

k

进一步求出反射光线所在的直线的方程为

0334=+-y x 或0343=--y x

最后根据入射光与反射光关于x 轴对称,求出入射光所在直线方程为

0334=++y x 或0343=-+y x

光路的距离为M A ',可由勾股定理求得72

2

2

=-'='CM

C

A M

A .

说明:本题亦可把圆对称到x 轴下方,再求解. 类型七:圆中的最值问题

例19 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求2

2y x d +=的最

大、最小值.

(2)已知圆1)2(2

22=++y x O :,),(y x P 为圆上任一点.求

1

2--x y 的最大、最小值,求

y x 2-的最大、最小值.

分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决. 解:(1)(法1)由圆的标准方程1)4()3(22=-+-y x .

可设圆的参数方程为??

?+=+=,

sin 4,cos 3θθy x (θ是参数).

则θθθθ2222sin sin 816cos cos 69+++++=+=y x d

)cos(1026sin 8cos 626φθθθ-+=++=(其中3

4tan =

φ).

所以361026max =+=d ,161026min =-=d .

(法2)圆上点到原点距离的最大值1d 等于圆心到原点的距离'

1d 加上半径1,圆上点到原点距离的最小值2d 等于圆心到原点的距离'

1d 减去半径1.

所以61432

21=++=d .

41432

2

2=-+=

d .

所以36max =d .16min =d .

(2) (法1)由1)2(2

2

=++y x 得圆的参数方程:??

?=+-=,

sin ,cos 2θθy x θ是参数.

3

cos 2sin 1

2--=

--θθx y .令

t =--3

cos 2sin θθ,

得t t 32cos sin -=-θθ,t t 32)sin(12-=-+φθ

1)sin(1322

≤-=+-?

φθt

t 4

3

343

3+≤

≤-?

t .

所以4

3

3max +=

t ,4

3

3min -=

t .

1

2--x y 的最大值为43

3+,最小值为

4

3

3-.

此时)cos(52sin 2cos 22φθθθ++-=-+-=-y x .

所以y x 2-的最大值为52+-,最小值为52--.

(法2)设

k x y =--1

2,则02=+--k y kx .由于),(y x P 是圆上点,当直线与圆有交点

时,如图所示,

两条切线的斜率分别是最大、最小值. 由112

22

=++--=

k

k k d ,得4

3

3±=

k .

所以

1

2--x y 的最大值为

4

3

3+,最小值为

4

3

3-.

令t y x =-2,同理两条切线在x 轴上的截距分别是最大、最小值.

由15

2=--=m

d ,得52±-=m .

所以y x 2-的最大值为52+-,最小值为52--.

类型九:圆的综合应用

例25、 已知圆062

2=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原

点,且OQ OP ⊥,求实数m 的值.

分析:设P 、Q 两点的坐标为),(11y x 、),(22y x ,则由1-=?OQ OP k k ,可得02121=+y y x x ,再利用一元二次方程根与系数的关系求解.或因为通过原点的直线的斜率为

x

y ,由直线l 与圆的方程构造以

x

y 为未知数的一元二次方程,由根与系数关系得出

OQ OP k k ?的值,从而使问题得以解决.

解法一:设点P 、Q 的坐标为),(11y x 、),(22y x .一方面,由OQ OP ⊥,得

1-=?OQ OP k k ,即

12

21

1-=?

x y x y ,也即:02121=+y y x x . ①

另一方面,),(11y x 、),(22y x 是方程组???=+-++=-+0

60

322

2m y x y x y x 的实数解,即1x 、2x 是方程02741052

=-++m x x ②

的两个根.

∴221-=+x x ,5

27

421-=

m x x . ③

又P 、Q 在直线032=-+y x 上, ∴])(39[4

1)3(2

1)3(2

121212121x x x x x x y y ++-=

-?

-=

将③代入,得5

12

21+=

m y y . ④

将③、④代入①,解得3=m ,代入方程②,检验0>?成立,

∴3=m .

解法二:由直线方程可得y x 23+=,代入圆的方程062

2=+-++m y x y x ,有

0)2(9

)6)(2(3

12

2

2

=++

-++

+y x m y x y x y x ,

整理,得0)274()3(4)12(2

2

=-+-++y m xy m x m . 由于0≠x ,故可得

012)

3(4))(

274(2

=++-+-m x

y m x

y m .

∴OP k ,OQ k 是上述方程两根.故1-=?OQ OP k k .得

127

412-=-+m m ,解得3=m .

经检验可知3=m 为所求.

说明:求解本题时,应避免去求P 、Q 两点的坐标的具体数值.除此之外,还应对求出的m 值进行必要的检验,这是因为在求解过程中并没有确保有交点P 、Q 存在.

解法一显示了一种解这类题的通法,解法二的关键在于依据直线方程构造出一个关于

x

y 的二次齐次方程,虽有规律可循,但需一定的变形技巧,同时也可看出,这种方法给人

以一种淋漓酣畅,一气呵成之感.

例26、已知对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围.

分析一:为了使不等式0≥++m y x 恒成立,即使m y x -≥+恒成立,只须使m y x -≥+m i n )(就行了.因此只要求出y x +的最小值,m 的范围就可求得.

解法一:令y x u +=, 由???=-+=+1

)1(2

2y x u y x 得:0)1(2222=++-u y u y ∵0≥?且228)1(4u u -+=?, ∴0)12(42≥++-u u . 即0)122

≤--u u ,∴2121+

≤≤-u ,

∴21min -

=u ,即21)(min -

=+y x

又0≥++m y x 恒成立即m y x -≥+恒成立. ∴m y x -≥-=+21)(min 成立,

∴12-≥

m .

分析二:设圆上一点)sin 1,(cos θθ+P [因为这时P 点坐标满足方程1)1(2

2

=-+y x ]问题转化为利用三解问题来解.

解法二:设圆1)1(2

2

=-+y x 上任一点)sin 1,(cos θθ+P )2,0[πθ∈ ∴θcos =x ,θsin 1+=y

∵0≥++m y x 恒成立 ∴0sin 1cos ≥+++m θθ 即)sin cos 1(θθ++-≥m 恒成立.

∴只须m 不小于)sin cos 1(θθ++-的最大值. 设1)4

sin(21)cos (sin -+-=-+-=π

θθθu

∴12max -=

u 即12-≥

m .

说明:在这种解法中,运用了圆上的点的参数设法.一般地,把圆2

22)()(r b y a x =-+-上的点设为)sin ,cos (θθr b r a ++()2,0[πθ∈).采用这种设法一方面可减少参数的个数,另一方面可以灵活地运用三角公式.从代数观点来看,这种做法的实质就是三角代换.

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

高中数学圆方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆. 解法一:(待定系数法) 设圆的标准方程为2 22)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-22224)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高一数学期中考试总结与反思

高一数学期中考试总结与反思 许中银 高一数学期中考试按事先约定的计划已圆满地结束了。从考试的结果看与事前想法基本吻合。考试前让学生做的一些事情从成绩上看都或多或少有了一定的效果。现将考前考后的一些东西总结。(1)考试的内容: 本次考试主要考查内容为高中数学必修1全册,必修4到1.2.1任意角的三角函数。 从卷面上看,必修1集合部分占29分,约占总分的18%。函数概念与基本初等函数I 部分140分,约占总分的88%。必修4三角函数部分14分,占总分约为8.5%。从分值分布看基本合理。(2)考试卷面题型分析。 卷面上只有填空和解答两种题型。 第I卷第1小题“设集合M={}{}R y y y y x∈ x x x 22 = , ,, = R =, ∈ N 则M∩N=”为集合交集问题,放在此处对于学习能力差的同学较难。第2题考查补集、子集问题。第3小题为计算题,根式计算问题。4,5,6,7为一般性问题应准确性还可以。第10题为偶函数定义域为[]a a2,1-,要考虑端点关于原点对称,有不少学生不太熟悉这种形式。第12题是关于恒成立问题,因为组内集体备课未强调,有的人讲,有的人没有讲,但也有很同学做对。13题为考 1,但是在考场上没有做出来的还是很多。14前讲过的原题答案为 24 题较难考虑画图后比较端点大小,没有讲过这种问题的班级做对的学

生很少。 第II卷解答题15题一般性集合问题, 16题一般性二次函数问题,考查奇偶性,图象,单调区间,值域等等。17题为三角函数问题,学生初学又没有复习深化,大多数人被扣分,对m的讨论不全。第1小题对第2小题有诱导错误嫌疑。18题因为没有将分段函数总结在一起扣分,其实扣分也不太合理。 19题,第1小题用定义证明单调性过程比较规范,第2小题有同学用特值法求出m的值但缺少验证奇函数过程。 20题,较难要求学生有较强的思维能力和表达能力。一般学生只能做第1小题和部分第2小题,第3小题较难又涉及到参数和恒成立问题,全校仅有数人能完整解答出来。 (3)考试成绩分析与反思 笔者教两个班,高一(2)班为普通班,入学成绩较低一些,高一(24)班为二类重点班,入学成绩介于高分与低分之间。从考试结果看,好的入学成绩的学生基本上考出较好成绩,差的入学成绩基本上考出一个差的成绩。无论教育制度怎么改,量化出来的分数始终是最让师生关注的,总结大会上各级领导也基本上以分数或者分差多少来评论教师的个人业绩,多少年来似乎从未改变过。每一个师生的成绩总要拿出来晒一晒,分数好一点的人暗自庆幸我终于不在“批评”之列,不管其他学校老师的书是怎么教的,不管其他班级的学生是怎么学习的,师生的目标就是过了本校的对手,这样,日子也许会好过一些。这也是多少年没有改变过的事情。因而在平时的教学中就要注

圆的方程经典题目带答案

圆的方程经典题目 1.求满足下列条件的圆的方程 (1)过点A(5,2)和B(3,-2),且圆心在直线32-=x y 上;(2)圆心在835=-y x 上,且与两坐标轴相切;(3)过ABC ?的三个顶点)5,5()2,2()5,1(C B A 、、---;(4)与y 轴相切,圆心在直线03=-y x 上,且直线 x y =截圆所得弦长为72;(5)过原点,与直线1:=x l 相切,与圆1)2()1(:2 2 =-+-y x C 相外切;(6)以C(1,1)为圆心,截直线2-=x y 所得弦长为22;(7)过直线042:=++y x l 和圆0142:2 2 =+-++y x y x C 的交点,且面积最小的圆的方程. (8)已知圆满足①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为1:3③圆心到直线02:=-y x l 的距离为52.0,求该圆的方程. (9)求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程 2、已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆(1)求实数m 的取值范围 (2)求该圆半径r 的取值范围(3)求面积最大的圆的方程(4)求圆心的轨迹方程 1. 已知圆252 2 =+y x , 求下列相应值

(1)过)4,3(-的切线方程(2)过)7,5(的切线方程、切线长;切点弦方程、切点弦长 (3)以)2,1(为中点的弦的方程 (4)过)2,1(的弦的中点轨迹方程 (5)斜率为3的弦的中点的轨迹方程 2. 已知圆 062 2 =+-++m y x y x 与直线032=-+y x 相交于Q P 、两点,O 为坐标原点,若OQ OP ⊥,求实数m 的值. 3、已知直线b x y l +=:与曲线21:x y C -=有两个公共点,求b 的取值范围 4、一束光线通过点)18,25(M 射到x 轴上,被反射到圆25)7(:2 2 =-+y x C 上.求: (1)通过圆心的反射线方程,(2)在x 轴上反射点A 的活动范围. 5、圆03422 2 =-+++y x y x 上到直线0=++m y x 的距离为2的点的个数情况 已知两圆01010:2 2 1=--+y x y x O 和04026:2 2 2=--++y x y x O (1)判断两圆的位置关系 (2)求它们的公共弦所在的方程 (3)求公共弦长 (4)求公共弦为直径的圆的方程. 题型五、最值问题 思路1:几何意义 思路2:参数方程 思路3、换元法 思路4、函数思想 1. 实数y x ,满足012462 2 =+--+y x y x (1)求 x y 的最小值 (2)求2 2y x ++32-y 的最值;(3)求y x 2-的最值(4)|143|-+y x 的最值 2. 圆25)2()1(:2 2=-+-y x C 与)(047)1()12(:R m m y m x m l ∈=--+++.(1)证明:不论m 取什么实数直线l 与圆C 恒相交(2)求直线l 被圆C 截得最短弦长及此时的直线方程 3、平面上有A (1,0),B (-1,0)两点,已知圆的方程为()()2 2 2342x y -+-=.⑴在圆上求一点1P 使△AB 1P 面积最大并求出此面积;⑵求使2 2 AP BP +取得最小值时的点P 的坐标. 4、已知P 是0843:=++y x l 上的动点,PB PA ,是圆01222 2 =+--+y x y x 的两条切线,A 、B 是切点, C 是圆心,那么四边形PACB 的面积的最小值为 5、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_________ 6、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的互相垂直的弦分别为AC 和BD ,则四边形ABCD 的面积为_________

高中数学月考总结

高中数学月考总结 一、回归课本,落实三基。 对高考试卷进行分析不难发现,高考试题中有相当一部分试题是对基本知识、基本技能、基本方法的考查,考题往往是对课本原题的变形、改造及综合。所以在第一阶段的复习中,同学们要认真理解数学概念、强化记忆数学公式,注重通性通法,淡化特殊技巧。要把重点放在掌握知识及解题方法上,选择一些针对性强的经典题目强化训练,使基础知识系统化,基本技能、基本方法熟练化。 二、注重综合,强化能力。 考试命题中心提出:应更多地在知识网络的交汇点上设计试题,在综合中考查能力。高中数学的主干知识在高考命题中的主要综合有:“函数、方程、导数与不等式的综合”、“函数与数列的综合”、“三角、向量的综合”、“解析几何与向量的综合”、“排列组合、概率与随机变量的综合”等。数学思想方法是知识综合的统帅和纽带,是综合能力的中心。数学思想总结提炼为:函数与方程思想、数形结合思想、分类讨论思想、化归思想、猜证结合思想。因此,在总复习中,要善于学习老师关于数学思想方法的评讲,自觉地、尽早地领悟数学思想方法,以综合能力为重点和难点,强化训练,使解题策略与方法明确化和系统化。 三、及时总结,查漏补缺。 做题的目的是培养能力,是寻找自己的弱点和不足的有效途径。对同学最有价值的试题往往不是我们会做的试题,而恰恰是我们做错的试题。要及时纠正错误,总结经验以免再犯,并将自己在平时练习中容易出错的地方辑录成册,以便在高考前提醒自己。在做试题时,如果发现自己的知识系统中有明显的漏洞,就要及时弥补,绝不可掉以轻心。 四、做到“三明”、“三最”。

“问明”:打破砂锅问到底,只要不懂,坚决搞懂; “看明”:数学答案会使用,各步推理,一律弄清; “写明”:独立解题勤练习,能做会做,表达无错。 数学解题追求的最高境界是:“三最”,即推理最高,方法最好、表述最简! 高三数学总复习阶段是一个艰苦漫长的过程,需要同学们坚定信心,持之以恒,坚忍不拔。愿你们能不断完善自己,取得最后的成功。

高一数学圆的方程经典例题

典型例题一 例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 343322 1=+-?+?=d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?=d . ∴圆1O 到01143=-+y x 距离为1的点有两个. 显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 典型例题三 例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 124-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为: 23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

高中数学期末考试总结

高中数学期末考试总结 时间如同白驹过隙,弹指一瞬之间,整个高一生活已经悄悄地离我们而去了,紧张的期末考试也暂时告一段落,现在,我要针对这次考试做出如下总结。 言归正传,这次期末考试算是我这学期准备的最充分的、最重视的一次了,虽然各科的成绩都还不知道呢,但我认为考的并不理想。 其实上了高中,我才发现自己压根儿根本就没有属于自己的“所谓的”优势学科,每科都基本在十几名左右,语文学科曾经还有考过倒数前十的悲惨历史。那么就请先允许我天真地把数理化当作“优势学科”好了。 我自己对物理这次考得其实并不满意。这是因为前几次考试中所暴露出啦的问题仍然存在——面对一道貌似简单的解答题,总是因为着急而不好好读题,从而白痴地导致计算的多次错误,我通常会在这道题上会浪费很多时间进行计算过程的检查、重新理解原题以及重新选择合适的方法解题。因此,我总结了一下不光是在物理这一学科上,而是要在整个理科上面要加强的三点是“读题认真而仔细,做题不慌而不忙,计算慢而求稳”。再有,第二点就是在做选择题是,由于多选题与单选题是混合在一起的(这次例外),所以我老是不敢多选,害怕因为自己的错选而导致扣更多的分数。虽然这是一个在考场上的策略,但这还是说明了我对概念的不熟,因此我以后要在课上更加专注于对概念的强行记忆。第三点就是选择及填空题的做题时间慢的问题,都是不好好读题导致的,所以我应该在提高自己的做题速度的同时加强自己的准确率,保证做一道对一道 数学虽然还不知道确切的成绩,但我并不满意,但还是肖老师的那句话,“这次考试比较简单……”我对自己的“长项”毕竟有自知之明,我必然不是最聪明的,但确实是在用心地、努力地学习数学——这一个我认为非常难的科目。不过至于在考试中是否能够取得优异的成绩,我觉得并不是最重要的,我觉得这个成绩作为一个学期结束后的回报,应该是和自己的付出是成正比的。 就自己个人感觉而言,化学这次考得也似乎比较不错。但一些老师上课讲过的概念性的内容,我却好似第一次听到,完全没有印象,因此提高课堂效率是下一步一定要做的,这一点同样适用于上面提及的物理学科。化学学科我同样可以问心无愧地告诉自己说:“下了很多功夫”,虽然不像英语数学那样经常做课外题,但却是认认真真地对待老师所留的每一项作业,认真就着答案核对每一道题,把每个不懂的知识点,每道模糊不清的题都想尽办法弄明白。但我发现我的记忆是个老大难的问题,大脑经常自动地超某个知识文件夹摁下“Delete”键,而且倒霉的是考试恰恰就考那些被无情地“删除”的知识。这个知识今天明白了,可能过几天学了新知识,就和新知识混淆了,而且容易忘。所以复习是必不可少的,我在接下来的学习中要加强自己的复习,在学好新知识的同时,要巩固,记熟旧知识。着同样适用于每一个学科。 英语这次出地简单了,大部分考题都出自原书,所以我就根据课文,回归了基础,几天的复习时间我认真背诵了所有的课文,对我考试帮助很大,我要继续保持对英语的信心,毕竟英语,我认为,是目前高中课程中最有实用价值的科目了。

高中理科椭圆的典型例题

典型例题一 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+ y x ; (2)当()02, A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+ y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 典型例题二 例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 解:3 1 222??=c a c ∴223a c =, ∴3 331-= e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可. 典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点, OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 解:由题意,设椭圆方程为1222 =+y a x ,

由?????=+=-+1012 22y a x y x ,得()0212 22=-+x a x a , ∴222112a a x x x M +=+=,211 1a x y M M +=-=, 41 12=== a x y k M M OM ,∴42=a , ∴14 22 =+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题. 典型例题四 例4椭圆19252 2=+y x 上不同三点()11y x A ,,?? ? ??594,B ,()22y x C ,与焦点()04,F 的距离成等差数列. (1)求证821=+x x ; (2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知: a c x c a AF = -12 ,∴115 4 5x ex a AF -=-=. 同理2545x CF -=.∵BF CF AF 2=+,且5 9 =BF , ∴51854554521=??? ??-+??? ? ? -x x ,即821=+x x . (2)因为线段AC 的中点为??? ??+2421y y ,,所以它的垂直平分线方程为 ()422 12 121---= +- x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得() 212 2 21024x x y y x --=-

高中数学考试反思1000字

数学考试反思1000字 范文一:学生反思 在刚刚结束的期中考试里,我犯了很多不该犯的错误。 我知道老师对于我有着很大的期望,可是我还是没有考好。对于这点我感到十分抱歉。但是既然犯了错误就要改正,所以,通过考试我也想了很多以后一定要学习的东西。 首先我要改掉考试不细心读题目的坏习惯。有时候我往往看着题目前面就顺手把后面的问题写上了,但是却错了很多。这也许也和答题技巧有关系。总之,通过以后的练习,我一定要在考试的过程之中认真审题,自习读题,把题目看准、看好。时间允许的时候要多检查几遍,绝对不允许自己再犯类似于这样的无谓的错误。 其次,我还要加强英语的习题强化。通过考试,我终于明白山外有山,人外有人。平日大家都聚在一起做一样的题目,感觉不出来有什么明显的差异。可是一当考试,才发现原来那么多考试题目是我从来看都没看过的(你就先编着吧)。只怪自己买的练习题做的少。不能允许自己再继续这样下去,所以,我一定要加倍努力,从这次考试之中汲取教训,增加力量,为下一次考试做好准备,打好基础。 考试技巧贵在练习。生活之中,我还要多多加强自己的练习和复习,考试之前制定周详的复习计划,不再手忙脚乱,没有方向。平日生活学习中学会积累,积累英语好词好句,积累英语难的题目,积累英语语法项目。对做完形填空等练习题也是提高英语的好方法。 期中考试毕竟不是期末考试,我还是有机会的。下一次考试,我要更努力,争取不让老师、家长和同学们失望。不让自己失望。 对于老师,我希望老师不要对我失去信心,虽然我这次考得并不理想,但是我相信自己的实力。下一次考试,我一定会努力的! 终究不如自己写的好,自己写才能真真与老师共同交流,找出自己的不足此次考试总体来说可以用三个词来形容闻者伤心,见者流泪,惨不忍睹!试卷发下来的那一刹那间,我屏住了呼吸。面前两个鲜红显眼的数字令我目瞪口呆。上帝啊,我的语文成绩有了历史性的突破!离及格只差那短短的一步之遥了。这个成绩是空前的,可不知道是不是绝后的。 所谓种瓜得瓜,种豆得豆。我这是自食其。哎,早知今日,何必当初啊?古人云:风萧萧兮,易水寒。今我叹:考试结束兮,我玩完!亡羊补牢,无济于事啊。想不到自认优秀的我如今也会落到这般田地。说到原因嘛,是多方面的。其一也是首要的当然是自己不知道努力,没有持之以恒的刻苦精神。有的只是那三分钟的热度。这种种恶习是 酿成失败的主要原料。当然,古往今来,凡成大事,离不开天时、地利、人和三者融汇.幸运女神这次从我身旁俏然而逝,没有得到她的青睐,又怎能不落到失败的深渊呢?能爬多高,就能跌多深,我算体会到了。 拿起试卷一看,触目惊心!那一个个错叉好似一把把尖锐无比的刺刀,扎的我快要窒息了。该对的没对,该会的不会。今晚即将上演家庭不定项式乒乓比赛,男子单打,女子单打或男女混合双打。啊,吾命休矣! 小小的考试透露出我内心的那一份自满,那一份狂傲。让我知道自己在众人之中是多么渺小,多么不堪一击!这也算是对我一个小小的惩戒吧,为我敲响了警钟,也提前给我打上了预防针。一次失败算不了什么,失败也许是成功的前兆。一次成功也证明不了什么,它终究要成为历史。我们不可能未卜先知,只能凭着自己的那一份付出,去期待丰硕的收获! 努力吧,剩下的时间不多了...... 范文二:>学生反思< 时间过得很快很快,从来不停下脚步等待。命运掌握在我们的手中,有我们自己刻画一个人一生的姿态。 花儿总有凋谢的时候,人也如此,要珍惜年少时的时光。我并没有常常珍惜生活中的点

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学必修三所有知识点总结和常考题型练习精选

高中数学 必修3知识点 第一章 算法初步 一,算法与程序框图 1,算法的概念:按一定规则解决某一类问题的明确和有限的步骤。 2,算法的三个基本特征:明确性,有限性,有序性。 (1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。 (2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。 (3)循环结构:直到型循环结构,当型循环结构。一个完整的循环结构,应该包括三个内容:1)循环体;2)循环判断语句;3)与循环判断语句相关的变量。 二,基本算法语句(一定要注意各种算法语句的正确格式) 1,输入语句 2,输出语句 3,赋值语句 注意:“=”的含义是赋值,将右边的值赋予左边的变量 4,条件语句 5,循环语句: 直到型 当型 注意:提示内容用双引号标明,并 与变量用分号隔开。

三,算法案例 1,辗转相除法: 例:求2146与1813的最大公约数 2146=1813×1+333 1813=333×5+148 333=148×2+37 148=37×4+0 ..............余数为0时计算终止。 为最大公约数 2,更相减损术:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。 3,秦九韶算法:将1110()n n n n f x a x a x a x a --=++ ++改写成 1210()(()))n n n f x a x a x a x a x a --=+++ ++ 再由内及外逐层计算。 4,进位制:注意K 进制与十进制的互化。 1)例:将三进制数(3)10212化为十进制数 10212(3)=2+1×3+2×32+0×33+1×34=104 2)例:将十进制数104化为三进制数 104=3×34+2 ....... 最先出现的余数是三进制数的最右一位 34=3×11+1 11=3×3+2 3=3×1+0 1=3×0+1 ............ 商数为0时计算终止 104=(3)10212 第二章 统计 一,随机抽样 1,简单随机抽样:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本,如果每次抽取时总体内的各个个体被抽取到的机会都相等,就把这种抽样方法叫做简单随机抽样。(关键词)逐个,不放回,机会相等 2,随机数表法的步骤: 1)编号; 2)确定起始数字;3)按一定规则读数(所读数不能大于最大编号,不能重复)。 3,系统抽样的步骤: 1)编号; 2)分段(若样本容量为n ,则分为n 段);分段间隔N k n = ,若N n 不是整数,则剔除余数,再重新分段; 3)在第一段用简单随机抽样确定第一个个体编号; 4)按照 一定的规则在后面每段内各取一个编号,组成整个样本。 4,分层抽样的步骤: 1)确定抽样比; 2)根据个体差异分层,确定每层的抽样个体数(抽样比乘以各层的个体数,如果不是整数,则通过四舍五入取近似值);3)在每一层内抽取样本(个体数少就用简单随机抽样,个体数多则用系统抽样),组成整个样本。 5,三种抽样方法的异同点 直到型和当型循环可以相互演变,循环体相同,条件恰好互补。

最新高中学生数学考试总结

高中学生数学考试总结 高中数学考试过后,通过考试反思,能够有效帮助学生找到问题所在,XX收集了高中学生数学考试总结,欢迎 阅读。 高中学生数学考试总结【一】叮铃铃,叮铃铃……我像往常一样进入了教室,今天数学考试!许多人都紧张起来,然而我却无动于衷(因为我数学考试前从来不复习,考 的成绩也不差)。 考卷发了下来,我漫不经心地看着试题。让我没想到的是,这次的试题出奇的难。而且只有一节课的时间来做。我的心一紧。糟糕!这时,一股难闻的油墨味更加扰乱了我的心情,使我更加糊涂了。不过还好,几经波折,总算也做出了几道题。但好事并未持续多久,不一会,我便遇|||到了难题,虽然如果我静下心来做,肯定能做出来,况且试题也不是很多,但是,由于这次考试题目平均难度普遍偏高,时间又很短,我只能选择暂且跳过它,做其他题目。可是,尽管我用尽全力,还是在在做倒数第三题时下课了。老师给我们延长了考试时间,可是倒数第二题太难了,我只能做想多比较简单的作图题,做完后,上课铃声准时打响。许多人也 只得被迫交上了考卷。 又到了报成绩的时刻了,往常的这时,我总会兴高采烈,但是这次听说一半以上的人都不及格,我也紧张了起来。结果,正如我预想的那样,我是71分。绝望、悲伤涌上了我 的心头。 这次考试告诉了我,不能再骄傲了,数学已经不再是以前的基本学科了,我们基本知识都学完了后,现在是真正的几何知识。我一定要加倍努力,快速掌握它!世上无难事,只怕有心人。我相信经过不懈的努力,我的成绩一定能够更 上一层楼! 高中学生数学考试总结【二】考试后,同学们最为关心的莫过于各门功课的分数了。其实分数只不过是对你这一阶段努力的一个评价,考完后不是盯着它,关键是要弄清

高中数学圆的方程典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。

解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则 ,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心 必在公共弦所在直线上。即,则代回圆系方程得所求圆方程 例3:求证:m为任意实数时,直线(m-1)x+(2m-1)y=m-5恒过一定点P,并求P点坐标。分析:不论m为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。

解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即 ?? ?-==???=-+=-+4y 9 x 05y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =-2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 ∵m ∈R ,∴ 得

高中数学考试总结

高中数学考试总结 高中数学考试总结1 期中考试考完了,还没等成绩出来,我已经预料到了这次考试的惨败,我认为让这次考试惨败和这几点有关: 1、考试前没有好好复习 2、考试时心理状态不佳,非常紧张 3、考试时精神状态异常不好,没精打采,根本没有心思考试,只想赶快把题做完,结束考试 4、在考试的时候有部分题目不会做,放在了后面来做,结果后面没有了时间,也忘记了还有这些剩余的题目成绩次日就下来了,结果非常令人惊讶,简直不可思议,卷子错误连篇,叉叉随处可见,上次期末222名,这次中期考试竟然409名,直线下降187名,接近翻番,如果在后半期还是这样的状态,留在宏志班是没有希望、完全不可能的,因为在我后面还有许许多多的人想到宏志班来,而我在后退,他们在前进,所以我在后半期一定要努力,做到这几点: 1、每天所有的课余时间均拿来学习、做作业、看书,上厕所除外。 2、提高每次作业质量,包括语文、数学、英语等其它科目,尽自己的力量完成会做的题目。 3、做作业认真审题,遇到选择题、填空题不乱写乱填,坚决做到先审题再思考最后再答题,不盲目的猜。

4、回家在没有必要的情况下,不使用电脑,在有关学习的情况下才使用电脑 5、上课不和同桌及其周围的人讲话,在上课时不理睬与课堂无关的谈论、事件 6、上课尽量精力集中,不发呆、坐飞机 7、不在上课的时候睡觉,特别是数学课的时候 8、不在上课时做与本堂课无关的事情,例如在数学课上做其它科目的作业之类 9、改变我自暴自弃、破管子破摔的观念 这9点,我一定要在这在校的四十多天中坚持下去,争取考到前200名,留到这个集体,时间已经不多了,难道在这剩余的四十多天中,我都不能坚持么? 高中数学考试总结2 许多老师在月考或期中、期末考试之后都会发出这样的感慨:试卷上有些题目都已讲了好多遍,为什么仍有这么多的学生做不出来、考不好!接下来就会说为什么自己教的学生会有这么笨,讲了这么多遍都记不住。于是乎在讲评试卷时或在家长会上就不停地强调有多少多少题目是自己讲过好多次的。把考得不好的责任都推给学生。如果只是个别学生出现了这种情况,那可能是学生的问题;如果是群体出现了这样的问题,那教师就得反省自己了,是自己没有讲清楚,还是教学方法、教学常规上存在薄

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例 典型例题一 例1 椭圆的一个顶点为()02,A , 其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+ y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+ y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 典型例题二 例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 解:3 1 222??=c a c ∴223a c =, ∴3 331- = e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可. 典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点, M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 解:由题意,设椭圆方程为1222 =+y a x , 由?????=+=-+1012 22y a x y x ,得()021222=-+x a x a , ∴22 2112a a x x x M +=+=,2111a x y M M +=-=,

4 1 12=== a x y k M M OM ,∴42=a , ∴14 22 =+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题. 典型例题四 例4椭圆19252 2=+y x 上不同三点()11y x A ,,?? ? ??594,B ,()22y x C ,与焦点()04,F 的 距离成等差数列. (1)求证821=+x x ; (2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知: a c x c a AF =-12 , ∴ 115 4 5x ex a AF -=-=. 同理 25 4 5x CF - =. ∵ BF CF AF 2=+,且5 9= BF , ∴ 51854554521=??? ??-+??? ? ? -x x , 即 821=+x x . (2)因为线段AC 的中点为??? ? ?+2421y y ,,所以它的垂直平分线方程为 ()422 12 121---= +- x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 () 2122 21024x x y y x --=-

相关文档
最新文档