大学物理复习题集

合集下载

《大学物理》复习题及答案

《大学物理》复习题及答案

《大学物理》复习题及答案一: 填空题1: 水平转台可绕通过中心的竖直轴匀速转动.角速度为ω,台上放一质量为m 的物体,它与平台之间的摩擦系数为μ,m 在距轴R处不滑动,则ω满足的条件是ω≤;2: 质量为m 的物体沿x 轴正方向运动,在坐标x 处的速度大小为kx (k 为正常数),则此时物体所受力的大小为=F ;物体从1x x =运动到2x x =所需的时间为。

3: 质点在xoy 平面内运动,任意时刻的位置矢量为j t i t r ωωcos 4sin 3+=,其中ω是正常数。

速度=v ,速率=v ,运动轨迹方程4: 在合外力34F x =+(式中F 以牛顿,x 以米计)的作用下,质量为6kg 的物体沿x 轴运动。

如果0t =时物体的状态为,0,000==v x 那么物体运动了3米时,其加速度为,速度为。

5:一质点沿半径为0.1m 米的圆周运动,其转动方程为22t +=θ。

质点在第1s 末的速度为,切向加速度为6: 一质量为kg m 2=的质点在力)()324N j t i t F ++=)(110-•=s m j v 运动,若此力作用在质点上的时间为s 2,则此力在这s 2内的冲量=I ;质点在第s 2末的动量=P7:一小艇原以速度0v 行驶,在某时刻关闭发动机,其加速度大小与速率v 成正比,但方向相反,即k kv a ,-=为正常数,则小艇从关闭发动机到静止这段时间内,它所经过的路程=∆s ,在这段时间内其速率v 与时间t 的关系为=v (设关闭发动机的时刻为计时零点)8:两个半径分别为1R 和2R 的导体球,带电量都为Q ,相距很远,今用一细长导线将它们相连,则两球上的带电量=1Q ,=2Q9:有一内外半径分别为R 及R 2金属球壳,在距离球心O 为2R处放一电量为q 的点电荷,则球心O 处的电势=O U .在离球心O 为R 3处的电场强度大小为=E ,电势=U10: 空间某一区域的电势分布为22U Ax By =+,其中,A B 为常数,则场强分布为x E =,y E =11: 两点电荷等量同号相距为a ,电量为q ,两电荷连线中点o 处场强为;电势为;将电量为0q +的点电荷由连线中点移到无穷远处电场力做功为12: 在空间有三根同样的长直导线,相互间距相等,各通以同强度同方向的电流,设除了磁相互作用外,其他影响可忽略,则三根导线将13: 一半径为R 的圆中通有电流I ,则圆心处的磁感应强度为。

大学物理试题库及答案

大学物理试题库及答案

大学物理试题库及答案一、选择题1. 光在真空中的速度是()。

A. 299,792,458 m/sB. 299,792,458 km/sC. 300,000,000 m/sD. 300,000,000 km/s答案:A2. 根据牛顿第二定律,力等于质量乘以()。

A. 加速度B. 速度C. 位移D. 时间答案:A二、填空题1. 光年是天文学中用来表示________的单位。

答案:距离2. 根据热力学第二定律,不可能从单一热源吸热使之完全变为________而不产生其他效果。

答案:功三、计算题1. 一个质量为2kg的物体在水平面上受到10N的恒定力作用,求物体的加速度。

答案:根据牛顿第二定律,F=ma,所以a=F/m=10N/2kg=5m/s²。

2. 一个物体从高度为h=10m的平台上自由落下,忽略空气阻力,求物体落地时的速度。

答案:使用公式v²=2gh,其中g=9.8m/s²,代入h=10m,得到v=√(2*9.8*10)m/s=14.14m/s。

四、简答题1. 简述电磁波的产生原理。

答案:电磁波是由变化的电场和磁场相互作用产生的,当电场变化时产生磁场,磁场变化时又产生电场,如此循环往复,形成电磁波。

2. 解释为什么在空气阻力可以忽略的情况下,所有物体在相同高度自由下落的加速度相同。

答案:根据牛顿第二定律,F=ma,对于自由下落的物体,作用力只有重力,即F=mg,所以a=F/m=g。

因此,所有物体的加速度都等于重力加速度g,与物体的质量无关。

五、实验题1. 描述如何使用弹簧秤测量物体的质量。

答案:将待测物体挂在弹簧秤的挂钩上,读取弹簧秤的读数,即为物体的重力。

根据公式m=F/g,其中F为弹簧秤读数,g为重力加速度,计算出物体的质量。

2. 描述如何使用伏安法测量电阻的阻值。

答案:将待测电阻与电源、电流表、电压表串联,闭合电路,记录电流表和电压表的读数。

根据欧姆定律,R=V/I,其中V为电压表读数,I为电流表读数,计算出电阻的阻值。

大学物理期末复习卷

大学物理期末复习卷

大学物理期末复习卷一、力学部分1. 质点运动的描述- 位置矢量:描述质点在坐标系中的位置。

- 速度:描述质点位置随时间的变化率。

- 加速度:描述质点速度随时间的变化率。

2. 牛顿运动定律- 第一定律(惯性定律):物体保持静止或匀速直线运动状态,除非外力迫使它改变这种状态。

- 第二定律(动力学基本定律):F = ma,力等于质量与加速度的乘积。

- 第三定律(作用与反作用定律):对于每一个作用力,都有一个大小相等、方向相反的反作用力。

3. 动量守恒定律和能量守恒定律- 动量守恒:在没有外力作用下,系统总动量保持不变。

- 能量守恒:在一个封闭系统中,能量不能被创造或销毁,只能从一种形式转换为另一种形式。

二、热学部分1. 温度和热量- 温度:物体冷热程度的度量。

- 热量:能量的一种形式,与物体内部分子运动有关。

2. 热力学第一定律- 能量守恒在热学中的应用,表述为系统内能的增加等于其吸收的热量与对其做功之和。

3. 热力学第二定律- 表述了热量传递的方向性,例如热量自然从高温流向低温,不可能自发地从低温流向高温。

三、电磁学部分1. 电场和磁场- 电场:电荷周围存在的一种力场。

- 磁场:运动电荷或电流产生的另一种力场。

2. 库仑定律和安培定律- 库仑定律:描述了两个点电荷之间相互作用力的定律。

- 安培定律:描述了电流产生磁场的基本规律。

3. 电磁感应和电磁波- 法拉第电磁感应定律:变化的磁场可以产生电动势。

- 麦克斯韦方程:总结了电场和磁场如何相互转化并形成电磁波。

四、现代物理部分1. 量子力学基础- 普朗克假说:能量以量子的形式发射或吸收。

- 海森堡不确定性原理:粒子的位置和动量不能同时被精确测量。

2. 相对论基础- 狭义相对论:爱因斯坦提出的时间膨胀和长度收缩概念。

- 广义相对论:引力是由物质对时空的曲率造成的理论。

通过以上复习要点,希望能够帮助同学们更好地掌握大学物理的核心概念和原理,为期末考试做好充分准备。

大学物理试题题库及答案

大学物理试题题库及答案

大学物理试题题库及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。

A. 299792458 m/sB. 300000000 m/sC. 299792458 km/sD. 300000000 km/s2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

那么,当作用力增加一倍时,物体的加速度()。

A. 增加一倍B. 减少一半C. 保持不变D. 无法确定3. 一个物体从静止开始自由下落,其下落过程中,重力做功的功率与时间的关系是()。

A. 线性增加B. 指数增加C. 先增加后减少D. 保持不变4. 根据热力学第一定律,一个封闭系统的内能变化等于系统与外界交换的热量与系统对外做的功之和。

如果一个系统既没有热量交换也没有做功,那么它的内能()。

A. 增加B. 减少C. 保持不变5. 电磁波谱中,波长最短的是()。

A. 无线电波B. 微波C. 红外线D. 伽马射线6. 根据麦克斯韦方程组,变化的磁场会产生()。

A. 电场B. 磁场C. 重力场D. 温度场7. 一个理想的弹簧振子,其振动周期与振幅无关,与()有关。

A. 弹簧的劲度系数B. 振子的质量C. 弹簧的劲度系数和振子的质量D. 振子的质量与重力加速度8. 根据量子力学,一个粒子的波函数可以描述粒子的()。

A. 位置B. 动量C. 能量D. 位置和动量的概率分布9. 根据狭义相对论,当一个物体以接近光速的速度运动时,其质量会()。

A. 增加B. 减少C. 保持不变10. 在理想气体状态方程PV=nRT中,R代表的是()。

A. 气体常数B. 温度C. 压力D. 体积二、填空题(每题2分,共20分)1. 根据库仑定律,两个点电荷之间的力与它们的电荷量乘积成正比,与它们之间距离的平方成反比,其比例系数是______。

2. 欧姆定律表明,导体中的电流与两端电压成正比,与导体的电阻成反比,其数学表达式为______。

3. 一个物体在水平面上以恒定加速度运动,其位移与时间的关系可以表示为s = __________。

大学物理复习题和答案

大学物理复习题和答案

大学物理复习题和答案# 大学物理复习题和答案一、选择题1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

如果一个物体的质量是另一个物体的两倍,而作用力是另一个物体的一半,那么两个物体的加速度是相等的。

这种说法正确吗?- A. 正确- B. 错误2. 电磁波的传播速度在真空中是恒定的,其值是多少?- A. 299792458 m/s- B. 3×10^8 m/s- C. 1.6×10^-19 m/s- D. 9.11×10^-31 kg二、填空题1. 根据能量守恒定律,一个物体的总能量等于其_________能和_________能之和。

2. 欧姆定律表达式为V = I × R,其中 V 代表电压,I 代表电流,R 代表_________。

三、简答题1. 简述牛顿第三定律的内容,并给出一个日常生活中的例子。

2. 描述麦克斯韦方程组的四个基本方程,并简述它们各自的含义。

四、计算题1. 一个质量为 5 kg 的物体在水平面上受到一个 20 N 的恒定力作用。

如果摩擦力忽略不计,求物体的加速度。

2. 一个电子在电场中受到3×10^-16 N 的电场力作用。

如果电子的初始速度为零,求电子在电场中加速 1 米所需的时间。

五、论述题1. 论述相对论中时间膨胀和长度收缩的概念,并解释它们在高速运动中的物理意义。

2. 讨论量子力学中的不确定性原理,并举例说明它在现代科技中的应用。

参考答案一、选择题1. 答案:A. 正确2. 答案:B. 3×10^8 m/s二、填空题1. 答案:动;势2. 答案:电阻三、简答题1. 牛顿第三定律的内容是:对于任何两个相互作用的物体,它们之间的作用力和反作用力总是大小相等、方向相反。

例如,当你推墙时,墙也会以相等的力推你。

2. 麦克斯韦方程组包括:高斯定律、高斯磁定律、法拉第电磁感应定律和安培定律。

它们分别描述了电荷产生电场、电流和变化的磁场产生磁场、变化的磁场产生电场以及电流和变化的电场产生磁场。

大学物理复习题库真题

大学物理复习题库真题

大学物理复习题库真题一、力学部分1、一质点沿 x 轴运动,其运动方程为 x = 3t²+ 2t + 1(SI 制),求在 t = 2s 时,质点的速度和加速度。

解题思路:首先对运动方程求导得到速度方程 v = 6t + 2,再求导得到加速度方程 a = 6。

将 t = 2s 代入速度方程,可得 v = 14 m/s,加速度恒为 6 m/s²。

2、一质量为 m 的物体在光滑水平面上,受到水平方向的恒力 F 作用,由静止开始运动,经过时间 t 移动的距离为 x,求力 F 的大小。

解题思路:根据牛顿第二定律 F = ma,以及匀加速直线运动的位移公式 x = 1/2 at²,加速度 a = 2x/t²,所以 F = 2mx/t²。

3、一个质量为 M、半径为 R 的均匀圆盘,绕通过其中心且垂直于盘面的轴以角速度ω转动,求圆盘的转动惯量和转动动能。

解题思路:圆盘的转动惯量 J = 1/2 MR²,转动动能 E =1/2 Jω² =1/4 MR²ω² 。

二、热学部分1、一定量的理想气体,在体积不变的情况下,温度从 T1 升高到T2,求气体内能的变化。

解题思路:理想气体的内能只与温度有关,对于一定量的理想气体,内能的变化ΔU =nCvΔT,其中 Cv 为定容摩尔热容,n 为物质的量。

因为体积不变,所以ΔU = nCv(T2 T1) 。

2、有一绝热容器,中间用隔板分成两部分,左边是理想气体,右边是真空。

现将隔板抽去,求气体的熵变。

解题思路:绝热自由膨胀过程是一个不可逆过程,熵增加。

因为是绝热过程,Q = 0,根据熵变的计算公式ΔS =∫dQ/T = 0 ,但这是可逆过程的熵变计算,对于不可逆的绝热自由膨胀,熵变大于零。

三、电磁学部分1、真空中有一长直载流导线,电流为 I,距离导线 r 处有一点 P,求 P 点的磁感应强度。

大学普通物理复习题(10套)带答案

大学普通物理复习题(10套)带答案

大学普通物理复习题(10套)带答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN普通物理试题1-10试题1一、填空题11. 7.在与匀强磁场B垂直的平面内,有一长为L 的铜杆OP ,以角速度ω绕端点O 作逆时针匀角速转动,如图13—11,则OP 间的电势差为=-P O U U ( 221L B ω )。

3. 3.光程差∆与相位差ϕ∆的关系是(λπϕ∆=∆2 )25. 1.单色光在水中传播时,与在真空中传播比较:频率(不变 );波长( 变小 );传播速度( 变小 )。

(选填:变大、变小、不变。

)68.17-5. 波长为λ的平行单色光斜入射向一平行放置的双缝,如图所示,已知入射角为θ缝宽为a ,双缝距离为b ,产生夫琅和费衍射,第二级衍射条纹出现的角位置是(()θλϕsin 2sin 1-±=-b。

33. 9. 单色平行光垂直照射在薄膜上.经上下两表面反射的两束光发生干涉、如图所示,若薄膜的厚度为e .且321n n n ><,1λ为入射光在1n 中的波长,则两束反射光的光程差为 ( 22112λn e n -)。

二、选择题6. 2. 如图示,在一无限长的长直载流导线旁,有一正方形单匝线圈,导线与线圈一侧平行并在同一平面内,问:下列几种情况中,它们的互感产生变化的有( B ,C ,D )(该题可有多个选择)(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动;(C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动12.16-1.折射率为n 1的媒质中,有两个相干光源.发出的光分别经r 1和r 2到达P 点.在r 2路径上有一块厚度为d ,折射率为n 2的透明媒质,如图所示,则这两条光线到达P 点所经过的光程是( C )。

(A )12r r -(B )()d n n r r 2112+- (C )()()d n n n r r 12112-+- (D )()()d n n r r 12112-+-83. 7.用白光垂直照射一平面衍射光栅、发现除中心亮纹(0=k )之外,其它各级均展开成一光谱.在同一级衍射光谱中.偏离中心亮纹较远的是( A )。

《大学物理》综合复习资料

《大学物理》综合复习资料

《大学物理(一)》综合复习资料一.选择题1.某人骑自行车以速率V 向西行驶,今有风以相同速率从北偏东300方向吹来,试问人感到风从哪个方向吹来?(A )北偏东300. (B )南偏东300. (C )北偏西300. (D )西偏南300. [ ]2.质点系的内力可以改变(A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总角动量. [ ] 3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. C )变大. ( D )无法判断. [ ]4.一质点作匀速率圆周运动时,则(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断不变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]5.关于刚体对轴的转动惯量,下列说法中正确的是(A) 只取决于刚体的质量,与质量的分布和轴的位置无关.(B )取决于刚体的质量和质量分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ]6.一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻是(A )s 4=t .(B )s 2=t .(C )s 8=t .(D )s 5=t . [ ]7.对功的概念有以下几种说法:(l )保守力作正功时,系统内相应的势能增加.(2)质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.在上述说法中:(A )(l )、(2)是正确的. (B )(2)、(3)是正确的.(C )只有(2)是正确的. (D )只有(3)是正确的. [ ]8.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )角速度从小到大,角加速度从大到小.(B )角速度从小到大,角加速度从小到大.(C )角速度从大到小,角加速度从大到小.(D )角速度从大到小,角加速度从小到大.[ ]9.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量1E 变为(A )4/1E . (B)2/1E . (C)12E . (D)14E . [ ]10.下列说法哪一条正确?(A )加速度恒定不变时,物体运动方向也不变.(B )平均速率等于平均速度的大小.(C )不管加速度如何,平均速率表达式总可以写成:2/)(21v v v +=.(D )运动物体速率不变时,速度可以变化. [ ]11.站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过固定在电梯内顶棚上得的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为(A )大小为1g ,方向向上. (B )大小为1g ,方向向下.(C )大小为g 21,方向向上. (D )大小为g 21,方向向下. [ ] 12.质量为M 光滑的圆弧形槽于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的:(A )由m 和M 组成的系统动量守恒. (B )由m 和M 组成的系统机械能守恒.(C )由m 、M 和地球组成的系统机械能守恒.(D )M 对m 的正压力恒不作功.[ ]13. 一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. (C )变大. (D )无法判断. [ ]14.一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为(A )φωsin A -.(B )φωsin A .(C )φωcos A -.(D )φωcos A . [ ]15.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量)则该质点作(A )匀速直线运动. (B )变速直线运动.(C )抛物线运动. (D )一般曲线运动. [ ]16.在高台上分别沿45º仰角方向和水平方向,以同样速率投出两颗小石子,忽略空气阻力,则它们落地时速度(A )大小不同,方向不同.(B )大小相同,方向不同.(C )大小相同,方向相同.(D )大小不同,方向相同. [ ]17.质量为m 的木块沿与水平面成θ角的固定光滑斜面下滑,当木块下降高度为h 时,重力的瞬时功率是(A )2/1)2(gh mg . (B )2/1)2(cos gh mg θ. (C )2/1)21(sin gh mg θ. (D)2/1)2(sin gh mg θ. [ ]18.一轻弹簧竖直固定于水平桌面上.如图所示,小球从距离桌面高为h 处以初速度0v 落下,撞击弹簧后跳回到高为h 处时速度仍为0v ,以小球为系统,则在这一整个过程中小球的(A )动能不守恒,动量不守恒. (B )动能守恒,动量不守恒.(C )机械能不守恒,动量守恒. (D )机械能守恒,动量守恒.[ ]二.填空题1.一质点的运动方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ,在t 由0到4s 的时间间用内质点走过的路程为 .2.一质点作半径为0.1m 圆周运动,其运动方程为:2/4/2t +π=θ,则其切向加速度为t a = .3.一质量为m 的物体,原来以速率v 向北运动,它突然受到外力打击,变为向西运动,速率仍为v ,则外力的冲量大小为 ,方向为 .4.若作用于一力学系统上外力的合力为零,则外力的合力矩.(填一定或不一定) 为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是_ .5.动量矩定理的内容是 .其数学表达式可写成 .动量矩守恒的条件是 .6.一质点沿半径为0.10m 的圆周运动,其角位移θ可用下式表示)(423SI t +=θ.(1)当t=2s 时,切向加速度t a = ;(2)当t a 的大小恰为总加速度a 大小的一半时,=θ .7.质量为M 的物体A 静止于水平面上,它与平面之间的滑动摩擦系数为μ ,另一质量为m 的小球B 以沿水平方向向右的速度v与物体A 发生完全非弹性碰撞.则碰后物体A 在水平方向滑过的距离L = .8.图中所示的装置中,略去一切摩擦力以及滑轮和绳的质量,且绳不可伸长,则质量为1m 的物体的加速度=1a .9.绕定轴转动的飞轮均匀地减速,0=t 时角速度s rad /5=ω,s t 20=时角速度08.0ωω=,则飞轮的角加速度β= ,从0=t 到s t 100=时间内飞轮所转过的角度θ= .10. 如图所示,Ox 轴沿水平方向,Oy 轴竖直向下,在0=t 时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对点O 的力矩M = ;在任意时刻t ,质点对原点O 的角动量L = .11.二质点的质量分别为1m 、2m . 当它们之间的距离由a 缩短到b 时,万有引力所做的功为 .12.动量定理的内容是 ,其数学表达式可写 .动量守恒的条件是 .13.已知质点运动方程为j t t i t t r )314()2125(32++-+=(SI ),当t =2s 时,a = .14.一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ωl =20πrad /s ,再转60转后角速度为ω2=30πrad /s ,则角加速度β= ,转过上述60转所需的时间是t = .15.质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为l 31,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为 .16.质量为m 的质点以速度v 沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是 .17.若作用于一力学系统上外力的合力为零,则外力的合力矩 (填一定或不一定)为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是 .三.计算题1.顶角为2θ的直圆锥体,底面固定在水平面上,如图所示.质量为m 的小球系在绳的一端,绳的另一端系在圆锥的顶点.绳长为l ,且不能伸长,质量不计,圆锥面是光滑的.今使小球在圆锥面上以角速度ω绕OH 轴匀速转动,求(1)锥面对小球的支持力N 和细绳的张力T ;(2)当ω增大到某一值c ω时小球将离开锥面,这时c ω及T 又各是多少?2.一弹簧振子沿x 轴作简谐振动.已知振动物体最大位移为m x =0.4m 最大恢复力为N 8.0=m F ,最大速度为m/s 8.0π=m v ,又知t =0的初位移为+0.2m ,且初速度与所选x 轴方向相反.(1)求振动能量;(2)求此振动的表达式.3.一物体与斜面间的摩擦系数μ=0.20,斜面固定,倾角45=αº.现给予物体以初速率m /s 100=v ,使它沿斜面向上滑,如图所示.求:(l )物体能够上升的最大高度h ;(2)该物体达到最高点后,沿斜面返回到原出发点时的速率v .4.一质量为A m =0.1kg 的物体A 与一轻弹簧相连放在光滑水平桌面上,弹簧的另一端固定在墙上,弹簧的倔强系数k =90N /m .现在用力推A ,从而弹簧被压缩了0x =0.1m .在弹簧的原长处放有质量B m =0.2kg 的物体B ,如图所示,由静止释放物体A 后,A 将与静止的物体B发生弹性碰撞.求碰撞后A 物体还能把弹簧压缩多大距离.5.质量为M =1.5kg 的物体,用一根长为 l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10g 的子弹以0v =500m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小m/s 300 v ,设穿透时间极短.求:(l )子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量.6.某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长的关系为F =52.8 x 十38.4x 2(SI )求:(1)将弹簧从定长1x =0.5m 拉伸到定长2x =1.00m 外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长2x = 1.00m ,再将物体有静止释放,求当弹簧回到1x =0.5m 时,物体的速率.(3)此弹簧的弹力是保守力吗?7.三个物体A 、B 、C 每个质量都是M . B 、C 靠在一起,放在光滑水平桌面上,两者间连有一段长为0.4m 的细绳,原先放松着.B 的另一侧用一跨过桌边的定滑轮的细绳与A 相连(如图).滑轮和绳子的质量及轮轴上的摩擦不计,绳子不可伸长.问:(l ) A 、 B 起动后,经多长时间C 也开始运动?(2)C 开始运动时速度的大小是多少?(取g =10m/s 2)8.有一轻弹簧,当下端挂一个质量1m =10g 的物体而平衡时,伸长量为4.9cm .用这个弹簧和质量2m =16g 的物体连成一弹簧振子.若取平衡位置为原点,向上为x 轴的正方向.将2m 从平衡位置向下拉 2cm 后,给予向上的初速度0v =5c m/s 并开始计时,试求2m 的振动周期和振动的数值表达式.参考答案一.选择题1.(C ) 2.(C ) 4.(C ) 4.(C ) 5.(C )6.(B ) 7.(C ) 8.(A ) 9.(D )10.(D )11.(B ) 12.(C ) 13.(C )14.(B )15.(B )16.(B )17.(D ) 18.(A )二.填空题l . 8m 10m2. 0.1m/s 23. mv 2 指向正西南或南偏西4504. 不一定 动量5.转动物体所受合外力矩的冲量矩等于在合外力矩作用时间内转动物体动量矩的增量. 112221ω-ω=⎰ J J dt M t t物体所受合外力矩等于零.6. 48m/s 23.15 r a d7. 22)(2)(m M g mv +μ 8. 21242m m g m + 9. -0.05rad/s 250rad10. k mbg k mbgt11. )11(21ba m Gm -- 12. 质点系所受合外力的冲量等于质点系(系统)动量的增量.i i i i t t v m v m dt F 2121 ∑∑⎰-=系统所受合外力等于零.13.)/(4s m j i +-14. 6.54 rad/s 2s 8.4 15. mvl16. mvd17. 不一定; 动量三.计算题1. 解:以r 表示小球所在处圆锥体的水平截面半径.对小球写出牛顿定律方程为r m ma N T 2cos sin ω==θ-θ0cos cos =-θ+θmg N T其中:θ=sin l r联立求解得:(1)θθω-θ=cos sin sin 2l m mg Nθω+θ=22sin cos l m mg T(2)0,=ω=ωN c θ=ωcos /l g cθ=cos /mg T2.解;(l )由题意./,,m m m m x F k x A kA F ===J x F kx E m m m 16.021212=== (2)m m m m x v A v A v //,==ωω=Hz s rad 22/,/2=πω=νπ=ω2.0cos ,00=φ==A x tπ=φ<φω-=31,0sin 0A v 振动方程为)3/2cos(4.0π+π=t y (SI )3.解:(l )根据功能原理,有 mgh mv fs -=2021 mgh mv mghctg mgh Nh fs -=αμ=ααμ=αμ=2021sin cos sin m ctg g v h 25.4)1(220=αμ+=(2)根据功能原理有221mv mgh fs -= αμ-=mghctg mgh mv 221s m ctg gh v /16.8)1(2[2/1=αμ-=4.解:释放物体A 到A 与B 碰撞前,以A 与弹簧为系统,机械能守恒: 2202121v m kx A = A 与B 碰撞过程中以A 、B 为系统,动量守恒,机械能守恒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理上册复习题集 一、力学习题1. 一质点从静止开始作直线运动,开始时加速度为a 0,此后加速度随时间均匀增加,经过时间τ后,加速度为2a 0,经过时间2τ后,加速度为3 a 0 ,…求经过时间n τ后,该质点的速度和走过的距离.2. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 - 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程.3. 在以加速度a 向上运动的电梯内,挂着一根劲度系数为k 、质量不计的弹簧.弹簧下面挂着一质量为M 的物体,物体相对于电梯的速度为零.当电梯的加速度突然变为零后,电梯内的观测者看到物体的最大速度为 ( )(A) k M a /. (B) M k a /.(C) k M a /2. (D) kM a /21.4. 一质点沿半径为R 的圆周运动,在t = 0时经过P 点,此后它的速率v 按Bt A +=v (A ,B 为正的已知常量)变化.则质点沿圆周运动一周再经过P 点时的切向加速度a t = ___________ ,法向加速度a n = _____________.5. 如图,两个用轻弹簧连着的滑块A 和B ,滑块A 的质量为m21,B 的质量为m ,弹簧的劲度系数为k ,A 、B 静止在光滑的水平面上(弹簧为原长).若滑块A 被水平方向射来的质量为m21、速度为v 的子弹射中,则在射中后,滑块A 及嵌在其中的子弹共同运动的速度v A =________________,此时刻滑块B 的速度v B =__________,在以后的运动过程中,滑块B 的最大速度v max =__________.6. 质量为0.25 kg 的质点,受力i t F = (SI)的作用,式中t 为时间.t = 0时该质点以j 2=v (SI)的速度通过坐标原点,则该质点任意时刻的位置矢量是______________.7. 质量相等的两物体A 和B ,分别固定在弹簧的两端,竖直放在光滑水平面C 上,如图所示.弹簧的质量与物体A 、B 的质量相比,可以忽略不计.若把支持面C 迅速移走,则在移开的一瞬间, A 的加速度大小a A =_______,B 的加速度的大小a B =_______.A8.质量为m的小球,用轻绳AB、BC连接,如图,其中AB水平.剪断绳AB前后的瞬间,绳BC中的张力比T :.9. 一圆锥摆摆长为l、摆锤质量为m,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T=_______________;(2) 摆锤的速率v=_______________.10. 质量为m的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.11. (1) 试求赤道正上方的地球同步卫星距地面的高度.(2) 若10年内允许这个卫星从初位置向东或向西漂移10°,求它的轨道半径的误差限度是多少?已知地球半径R=6.37×106m,地面上重力加速度g=9.8 m/s2.12. 一光滑的内表面半径为10 cm的半球形碗,以匀角速度ω绕其对称OC旋转.已知放在碗内表面上的一个小球P相对于碗静止,其位置高于碗底4 cm,则由此可推知碗旋转的角速度约为(A) 10 rad/s.(B) 13 rad/s.(C) 17 rad/s (D) 18 rad/s.[]13. 质量为m 的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将(A) 增加. (B) 减少. (C) 不变.(D) 先是增加,后又减小.压力增减的分界角为α=45°. [ ]14. 质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是(A)k mg . (B) k g2 . (C) gk . (D)gk . [ ]mm15. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变.(D) 不能确定. [ ]16. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]17. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ ]18. 有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]19. 一飞轮以角速度ω0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度ω=__________________..m0v俯视图20. 质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________. 21. 一个圆柱体质量为M ,半径为R ,可绕固定的通过其中心轴线的光滑轴转动,原来处于静止.现有一质量为m 、速度为v 的子弹,沿圆周切线方向射入圆柱体边缘.子弹嵌入圆柱体后的瞬间,圆柱体与子弹一起转动的角速度w =__________________________.(已知圆柱体绕固定轴的转动惯量J =221MR ) 22. 一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为 0.6 m .先让人体以5 rad/s 的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m .人体和转椅对轴的转动惯量为5 kg ·m 2,并视为不变.每一哑铃的质量为5 kg 可视为质点.哑铃被拉回后,人体的角速度ω =__________________________.23. 两个质量都为100 kg 的人,站在一质量为200 kg 、半径为3 m 的水平转台的直径两端.转台的固定竖直转轴通过其中心且垂直于台面.初始时,转台每5 s转一圈.当这两人以相同的快慢走到转台的中心时,转台的角速度w =__________________.(已知转台对转轴的转动惯量J =21MR 2,计算时忽略转台在转轴处的摩擦)24. 质量为M = 0.03 kg 、长为l = 0.2 m 的均匀细棒,可在水平面内绕通过棒中心并与棒垂直的光滑固定轴转动,其转动惯量为M l2 / 12.棒上套有两个可沿棒滑动的小物体,它们的质量均为m = 0.02 kg .开始时,两个小物体分别被夹子固定于棒中心的两边,到中心的距离均为r = 0.05 m ,棒以 0.5p rad/s 的角速度转动.今将夹子松开,两小物体就沿细棒向外滑去,当达到棒端时棒的角速度ω = ______________________.25. 已知一定轴转动体系,在各个时间间隔内的角速度如下: ω=ω0 0≤t ≤5 (SI) ω=ω0+3t -15 5≤t ≤8 (SI)ω=ω1-3t +24 t ≥8 (SI) 式中ω0=18 rad /s (1) 求上述方程中的ω1.(2) 根据上述规律,求该体系在什么时刻角速度为零.26. 一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).27. 一定滑轮半径为0.1 m ,相对中心轴的转动惯量为1×10-3 kg ·m 2.一变力F =0.5t (SI)沿切线方向1 s 末的角速度.28. 质量m =1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量J =221mr (r 为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m 1=1.0 kg 的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v 0=0.6 m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.29. 质量为75 kg 的人站在半径为2 m 的水平转台边缘.转台的固定转轴竖直通过台心且无摩擦.转台绕竖直轴的转动惯量为3000 kg ·m 2.开始时整个系统静止.现人以相对于地面为1 m ·s -1的速率沿转台边缘行走,求:人沿转台边缘行走一周,回到他在转台上的初始位置所用的时间.一、力学答案1. 解:设质点的加速度为 a = a 0+ t∵ t =时, a =2 a 0 ∴ = a 0 /即 a = a 0+ a 0 t /, 1分由 a = d v /d t , 得 d v = a d ttt a atd )/(d 000τ⎰⎰+=vv∴2002ta t a τ+=v 1分由 v = d s /d t , d s = v d tt t a t a t s ttsd )2(d d 2000τ+==⎰⎰⎰v302062t a t a s τ+=1分t = n时,质点的速度 ττ0)2(21a n n n +=v 1分质点走过的距离 202)3(61ττa n n s n += 1分2. 解:(1) 5.0/-==∆∆t x v m/s 1分(2) v = d x /d t = 9t - 6t 2 1分v (2) =-6 m/s 1分 (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 2分3. (A )4. B 2分 (A 2/R )+4 B 3分5. v 21 2分 0 1分 v21 2分6. jt i t 2323+ (SI)3分7. 0 2分 2 g 2分8. l/cos 2θ 3分 9. θcos /mg 1分θθcos sin gl2分10. 解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律t mK d d vv =- 3分∴⎰⎰=-=-vv v v vvd d ,d d 0tt m K t m K 1分∴mKt /0e -=v v 1分(2) 求最大深度解法一:t xd d =vt x mKt d e d /0-=v 2分tx m Kt txd e d /000-⎰⎰=v∴)e 1()/(/0m Kt K m x --=v 2分 Km x /0max v = 1分解法二:x m t x x m t m K d d )d d )(d d (d d vvv v v ===-∴v d K mdx -= 3分v v d d 000max⎰⎰-=K m x x ∴ Km x /0max v =2分11. 解: (1) 设同步卫星距地面的高度为h ,距地心的距离r R +h ,由牛顿定律 22/ωmr r GMm = ① 2分又由 mg R GMm =2/得 2gR GM =, 1分 代入①式得3/122)/(ωgR r = ② 1分 同步卫星的角速度与地球自转角速度相同,其值为51027.7-⨯=ω rad/s 1分解得 =r 71022.4⨯m , 41058.3⨯=-=R r h km 2分(2) 由题设可知卫星角速度的误差限度为10105.5-⨯=∆ω rad/s 1分由②式得 223/ωgR r = 取对数ωln 2ln ln 32-=)(gR r 取微分并令 d r =r, d 且取绝对值3r/r =2∴r=2r /(3 =213 m 2分12-16 BBACC17. (C) 参考解:挂重物时,mg -T = ma = mR β , TR =Jb由此解出J mR mgR +=2β 而用拉力时, 2mgR = J β' β'=2mgR / J故有β'>2b18. (C)19. 031ω 3分 20. 3v 0 / (2l ) 3分 21. ()R m M m 22+v3分22. 8 rad ·s 1 3分 23. 3.77 rad ·s -1 3分24. 0.2rad ·s 1 3分25. 解:体系所做的运动是匀速→匀加速→匀减速定轴转动.其中1是匀加速阶段的末角速度,也是匀减速阶段的初角速度,由此可得t =8 s 时, 1=0+9=27 rad /s 3分 当=0时,得 t =(1+24)/ 3=17s所以,体系在17s 时角速度为零. 2分26. 解:R = 0.5 m ,0 = 900 rev/min = 30 rad/s ,根据转动定律 M = -J ① 1分 这里 M = -NR ② 1分为摩擦系数,N 为正压力,221mR J =. ③ 设在时刻t 砂轮开始停转,则有:0=+=t t βωω从而得 =0 / t ④ 1分将②、③、④式代入①式,得)/(2102t mR NR ωμ-=- 1分∴ m =μR 0/ (2Nt )≈0.5 1分27. 解:根据转动定律 M =J d/ d t 1分即 d =(M / J ) d t 1分其中 M =Fr , r =0.1 m , F =0.5 t ,J =1×10-3 kg ·m 2, 分别代入上式,得d=50t d t 1分则1 s 末的角速度1=⎰1050td t =25 rad / s 2分28.m 1 m , r β0v P T a解:撤去外加力矩后受力分析如图所示. 2分m 1g -T = m 1a 1分Tr =J1分a =r1分a = m 1gr / ( m 1r + J / r )代入J =221mr , a =mm gm 2111+= 6.32 ms 2 2分 ∵ v 0-at =0 2分∴ t =v 0 / a =0.095 s 1分29. 解:由人和转台系统的角动量守恒J 1w 1 + J 2w 2 = 0 2分其中 J 1=300 kg ·m 2,w 1=v /r =0.5 rad / s , J 2=3000 kg m 2∴ w 2=-J 1w 1/J 2=-0.05 rad/s 1分 人相对于转台的角速度 w r =w 1-w 2=0.55 rad/s 1分 ∴ t =2p /r ω=11.4 s 1分二、静电场习题1. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在两球之间、距离球心为r 的P 点处电场强度的OR 1R 2Pr Q(A) E =204r Q επ,U =r Q 04επ.(B) E =204r Qεπ,U =⎪⎪⎭⎫ ⎝⎛-πr R Q 11410ε. (C) E =204r Qεπ,U =⎪⎪⎭⎫ ⎝⎛-π20114R r Q ε. (D) E =0,U =204R Qεπ. [ ]如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A) r Q Q 0214επ+.(B) 20210144R Q R Q εεπ+π.(C) 0. (D) 1014R Q επ.[ ]3.++在一个带有正电荷的均匀带电球面外,放置一个电偶极子,其电矩p的方向如图所示.当释放后,该电偶极子的运动主要是A) 沿逆时针方向旋转,直至电矩p 沿径向指向球面而停止. B) 沿顺时针方向旋转,直至电矩p 沿径向朝外而停止. C) 沿顺时针方向旋转至电矩p 沿径向朝外,同时沿电场线远离球面移动. D) 沿顺时针方向旋转至电矩p 沿径向朝外,同时逆电场线方向向着球面移动.[ ]4. 一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍.(C) 4倍. (D) 42倍. [ ]5. 一平行板电容器,板间距离为d ,两板间电势差为U 12,一个质量为m 、电荷为-e 的电子,从负极板由静止开始飞向正极板.它飞行的时间是:(A) 122eU md. (B) 122eU md .(C)122eU m d(D)m eU d212[ ]6. E图示为一具有球对称性分布的静电场的E ~r 关系曲线.请指出该静电场是由下列哪种带电体产生的.(A) 半径为R 的均匀带电球面. (B) 半径为R 的均匀带电球体. (C) 半径为R 、电荷体密度ρ=Ar (A 为常数)的非均匀带电球体.(D) 半径为R 、电荷体密度ρ=A/r (A 为常数)的非均匀带电球体.[ ]7.在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为(A) a q 04επ. (B) a q08επ.(C) a q 04επ-. (D) a q08επ-. []8.如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:(A) 06εq . (B) 012εq.(C) 024εq . (D) 048εq. [ ]9. 有一个球形的橡皮膜气球,电荷q 均匀地分布在表面上,在此气球被吹大的过程中,被气球表面掠过的点(该点与球中心距离为r ),其电场强度的大小将由 ___________________变为_________________.10.图中曲线表示一种轴对称性静电场的场强大小E 的 分布,r 表示离对称轴的距离,这是由______________ ______________________产生的电场.11. 一闭合面包围着一个电偶极子,则通过此闭合面的电场强度通量Φe =_________________.12. 一面积为S 的平面,放在场强为E 的均匀电场中,已知 E与平面间的夹角为θ(<π/2),则通过该平面的电场强度通量的数值Φe =__________________. 13. 真空中一半径为R 的均匀带电球面,总电荷为Q .今在球面上挖去很小一块面积△S (连同其上电荷),若电荷分布不改变,则挖去小块后球心处电势(设无 穷远处电势为零)为________________.14. 一半径为R 的均匀带电球面,其电荷面密度为σ.若规定无穷远处为电势零 点,则该球面上的电势U =____________________.15. 一半径为R 的绝缘实心球体,非均匀带电,电荷体密度为ρ=ρ 0 r (r 为离球心的距离,ρ0为常量).设无限远处为电势零点.则球外(r >R )各点的电势分布为U =_____ r R 0404ερ _____________.16.图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 成反比关系,该曲线可描述_无限长均匀带电直线______________的电场的E~r 关系,也可描述___正点电荷__________ 的电场的U~r 关系.(E为电场强度的大小,U 为电势)LP如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.17. 解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q+π=04ε3分方向沿x 轴,即杆的延长线方向.18. 电荷线密度为λ的 无限长 均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O半径为R 的带电细圆环,其电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度. 20. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求: (1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点). (2) 两带电直线上单位长度之间的相互吸引力.22. 实验表明,在靠近地面处有相当强的电场,电场强度E 垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E 也是垂直于地面向下的,大小约为25 N/C . (1) 假设地面上各处E 都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度; (2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85×10-12 C 2·N -1·m -2)23.x电荷面密度分别为+σ和-σ的两块 无限大 均匀带电平行平面,分别与x 轴垂直相交于x 1=a ,x 2=-a 两点.设坐标原点O 处电势为零,试求空间的电势分布表示式并画出其曲线.q 0P有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则 (A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小. (C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定. [ B ]25.A +σ2一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为:(A) σ 1 = - σ, σ 2 = + σ.(B) σ 1 = σ21-, σ 2 =σ21+.(C) σ 1 = σ21-, σ 1 = σ21-.(D) σ 1 = - σ, σ 2 = 0. [ B ]26. 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 32r U R . (B) R U 0.20r RU . (D) r U 0. [ C ]27.如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B) 02εσ.(C) 0εσh . (D) 02εσh. [ A ]28. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零.(B) 高斯面上处处D为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ C ]29. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ]30.+Q一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点 (A) 保持不动. (B) 向上运动.(C) 向下运动. (D) 是否运动不能确定. [ B ]31. 如果某带电体其电荷分布的体密度ρ 增大为原来的2倍,则其电场的能量变为原来的 (A) 2倍. (B) 1/2倍.(D) 1/4倍. [ C ]q一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为(A) 104R q επ . (B) 204R qεπ .(C) 102R q επ . (D) 20R qε2π . [ D ]33. 一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成 U ' =________________ .34.A B SSd如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置.设两板面积都是S ,板间距离是d ,忽略边缘效应.当B 板不接地时,两板间电 势差U AB =___________________ ;B 板接地时两板间电势差 ='AB U __________ .35.如图所示,将一负电荷从无穷远处移到一个不带电的导体 附近,则导体内的电场强度_不变_____________,导体的电势 ___________减小___.(填增大、不变、减小)36. 一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度σ =___)4/(21R q π-___________. 37. 空气的击穿电场强度为 2×106 V ·m -1,直径为0.10 m 的导体球在空气中时最多能带的电荷为______________.(真空介电常量ε 0 = 8.85×10-12 C 2·N -1·m -2 )38. 地球表面附近的电场强度为 100 N/C .如果把地球看作半径为6.4×105 m 的导体球,则地球表面的电荷Q =__ 4.55×105 C _________________. (2/C m N 10941290⋅⨯=πε)39. 一任意形状的带电导体,其电荷面密度分布为σ (x ,y ,z ),则在导体表面外附近任意点处的电场强度的大小E (x ,y ,z ) =______________________,其方向 ______________________.40. 地球表面附近的电场强度约为 100 N /C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面带__负___电,电荷面密度σ =__8.85×10-10 C/m 2 ________. (真空介电常量ε0 = 8.85×10-12 C 2/(N ·m 2) )41.1σda厚度为d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为σ .试求图示离左板面距离为a 的一点与离右板面距离为b 的一点之间的电势差.41. 解:选坐标如图.由高斯定理,平板内、外的场强分布为:1E = 0 (板内) )2/(0εσ±=x E (板外) 2分1、2两点间电势差⎰=-2121d xE U U xxx d b d d d a d 2d 22/2/02/)2/(0⎰⎰+-+-+-=εσεσ)(20a b -=εσ42. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)43.半径分别为R 1和R 2 (R 2 > R 1 )的两个同心导体薄球壳,分别带有电荷Q 1和Q 2,今将内球壳用细导线与远处半径为r 的导体球相联,如图所示, 导体球原来不带电,试求相联后导体球所带电荷q . 43. 解:设导体球带电q ,取无穷远处为电势零点,则导体球电势:r qU 004επ=2分 内球壳电势:10114R q Q U επ-=2024R Q επ+2分 二者等电势,即r q04επ1014R q Q επ-=2024R Q επ+2分解得)()(122112r R R Q R Q R r q ++=2分44. 一圆柱形电容器,外柱的直径为4 cm ,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为E 0= 200 KV/cm .试求该电容器可能承受的最高电压. (自然对数的底e = 2.7183)45. 两金属球的半径之比为1∶4,带等量的同号电荷.当两者的距离远大于两球半径时,有一定的电势能.若将两球接触一下再移回原处,则电势能变为原来的多少倍?46. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?二、静电场答案1-5 CBDBC 6-8 DBC9. 204r qεπ 2分0 1分 10. 半径为R 的无限长均匀带电圆柱面11 0 3分 12. ES cos(π/2 -θ) 3分13. ⎪⎭⎫⎝⎛π∆-π20414R S R Q ε 3分14. R σ / ε03分15.r R 0404ερ 3分 16. 无限长均匀带电直线 2分正点电荷 2分17. 解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q +π=04ε3分方向沿x 轴,即杆的延长线方向.18.A B∞O ∞x3E2E 1Ey解:以O 点作坐标原点,建立坐标如图所示.半无限长直线A ∞在O 点产生的场强1E,()j i R E --π=014ελ2分半无限长直线B ∞在O 点产生的场强2E,()j i R E +-π=024ελ2分半圆弧线段在O 点产生的场强3E,iR E032ελπ=2分由场强叠加原理,O 点合场强为0321=++=E E E E2分19.解:在任意角φ 处取微小电量d q =λd l ,它在O 点产生的场强为:R R l E 00204d s co 4d d εφφλελπ=π=3分它沿x 、y 轴上的二个分量为:d E x =-d E cos φ 1分 d E y =-d E sin φ 1分对各分量分别求和 ⎰ππ=20200d s co 4φφελR E x =R 004ελ2分0)d(sin sin 42000=π=⎰πφφελRE y 2分故O 点的场强为:iR i E E x 004ελ-== 1分解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为θλλλd d d π=π=l R取θ位置处的一条,它在轴线上一点产生的场强为θελελd 22d d 020R R E π=π= 3分如图所示. 它在x 、y 轴上的二个分量为: d E x =d E sin θ , d E y =-d E cos θ 2分对各分量分别积分R R E x 02002d sin 2ελθθελππ=π=⎰ 2分 0d cos 2002=π-=⎰πθθελR E y 2分场强iR j E i E E y x 02ελπ=+= 1分21. 解:(1) 一根无限长均匀带电直线在线外离直线距离r处的场强为:12E =λ / (2πε0r ) 2分根据上式及场强叠加原理得两直线间的场强为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-π=+=x a x a E E E 21212021ελ()22042x a a -π=ελ, 方向沿x 轴的负方向 3分(2) 两直线间单位长度的相互吸引力F =λE =λ2 / (2πε0a ) 2分22.2(1)解:(1) 设电荷的平均体密度为ρ,取圆柱形高斯面如图(1)(侧面垂直底面,底面∆S 平行地面)上下底面处的场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E ·S d =E 2∆S -E 1∆S =(E 2-E 1) ∆S 2分高斯面S 包围的电荷∑q i =h ∆S ρ 1分 由高斯定理(E 2-E 1) ∆S =h ∆S ρ /ε 01分∴ () E E h 1201-=ερ=4.43×10-13 C/m 3 2分(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2)1分(2)由高斯定理⎰⎰E ·Sd =∑i1qε-E ∆S =S∆σε011分∴ σ =-ε 0 E =-8.9×10-10 C/m 3 2分23. 解:由高斯定理可得场强分布为:E =-σ / ε0 (-a <x <a ) 1分 E = 0 (-∞<x <-a ,a <x <+∞= 1分由此可求电势分布:在-∞<x ≤-a 区间 ⎰⎰⎰---+==000/d d 0d a a xxx x x E U εσ0/εσa -= 2分在-a ≤x ≤a 区间-a +aO xU0000d d εσεσxx x E U x x =-==⎰⎰ 2分在a ≤x <∞区间0000d d 0d εσεσax x x E U aa xx=-+==⎰⎰⎰ 2分图2分24-28 BBCAC 29-32 BBCD33. 2U /3 3分34. )2/(0S Qd ε 2分)/(0S Qd ε 2分 35. 不变 1分 减小 2分36.)4/(21R q π- 3分 37. 5.6×10-7 C 3分 38. 4.55×105 C 3分39. σ (x ,y ,z )/ε2分与导体表面垂直朝外(σ > 0) 或 与导体表面垂直朝里(σ < 0) 1分40. 负 1分8.85×10-10 C/m 2 2分41. 解:选坐标如图.由高斯定理,平板内、外的场强分布为:1E = 0 (板内))2/(0εσ±=x E (板外) 2分1、2两点间电势差⎰=-2121d xE U U xxx d b d d d a d 2d 22/2/02/)2/(0⎰⎰+-+-+-=εσεσ)(20a b -=εσ3分42. 解:两球相距很远,可视为孤立导体,互不影响.球上电荷均匀分布.设两球半径分别为r 1和r 2,导线连接后的电荷分别为q 1和q 2,而q 1 + q 1 = 2q ,则两球电势分别是 10114r q U επ=, 20224r q U επ=2分两球相连后电势相等, 21U U =,则有21212122112r r q r r q q r q r q +=++== 2分由此得到 921111067.62-⨯=+=r r qr q C 1分92122103.132-⨯=+=r r qr q C 1分 两球电势310121100.64⨯=π==r q U U ε V 2分43. 解:设导体球带电q ,取无穷远处为电势零点,则导体球电势:r qU 004επ=2分 内球壳电势: 10114R q Q U επ-=2024R Q επ+2分二者等电势,即 r q04επ1014R q Q επ-=2024R Q επ+2分解得 )()(122112r R R Q R Q R r q ++=2分44. 解:设圆柱形电容器单位长度上带有电荷为λ,则电容器两极板之间的场强分布为 )2/(r E ελπ= 2分设电容器内外两极板半径分别为r 0,R ,则极板间电压为⎰⎰⋅π==R r Rr r r r E U d 2d ελ 0ln 2r Rελπ=2分 电介质中场强最大处在内柱面上,当这里场强达到E 0时电容器击穿,这时应有002E r ελπ=2分000lnr RE r U =适当选择r 0的值,可使U 有极大值,即令)/ln(/d d 0000=-=E r R E r U得 eR r /0= 2分显然有 202d d r U < 0, 故当 e R r /0= 时电容器可承受最高的电压e RE U /0max = = 147 kV 2分45. 解:因两球间距离比两球的半径大得多,这两个带电球可视为点电荷.设两球各带电荷Q ,若选无穷远处为电势零点,则两带电球之间的电势能为)4/(020d Q W επ= 式中d 为两球心间距离. 2分当两球接触时,电荷将在两球间重新分配.因两球半径之比为1∶4.故两球电荷之比Q 1∶Q 2 = 1∶4.Q 2 = 4 Q 1 2分但 Q Q Q Q Q Q 25411121==+=+∴5/21Q Q =,5/85/242Q Q Q =⨯= 2分当返回原处时,电势能为 002125164W d Q Q W =π=ε 2分46. 解:因为所带电荷保持不变,故电场中各点的电位移矢量D保持不变,又r r r w D D DE w εεεεε0200202112121==== 3分 因为介质均匀,∴电场总能量rW W ε/0= 2分三、稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为(A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ C ]2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A) l I π420μ. (B) l Iπ220μ.(C)l Iπ02μ. (D) 以上均不对. [ A ]3.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[ D ]4.无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ B ]5.电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O点产生的磁感强度分别用1B 、2B和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0. (C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但B 3≠ 0. [ ]6.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B 、2B及3B ,则O 点的磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B,B 3= 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ] v7.电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B 、2B、3B ,则圆心处磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ B ]。

相关文档
最新文档