平面几何1 重要定理
平面几何基本定理

.一.平面几何1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥高线长:C b B c A abcc p b p a p p a h a sin sin sin ))()((2===---=5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理)角平分线长:2cos 2)(2Ac b bc a p bcp c b t a +=-+=(其中p 为周长一半)6. 正弦定理:R CcB b A a 2sin sin sin ===,(其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a ccos 2222-+=8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC.于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKHCA FP BC DE AB KH CA FP BC DE (4)设G 为△ABC 的重心,则222222333GC AB GB CA GA BC +=+=+)(31222222CA BC AB GC GB GA ++=++22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C cy B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等),(cb a cy by ayc b a cx bx ax I CB AC B A ++++++++内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然 (2)设I为△ABC的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC于D ,交△ABC 外接圆于点K ,则acb KD IK KI AK ID AI +=== (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (B A By AyC B A Cx Bx Ax O BA CB A +++++++外心性质:(1)外心到三角形各顶点距离相等(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子) (2))(21C A I I I C B A ∠+∠=∠ (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论)(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式C B A R Rabc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC 边上的.高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=29. 三角形中内切圆,旁切圆和外接圆半径的相互关系;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4CB A R rC B A R r C B A R r C B A R r c b a ====.1111;2tan2tan ,2tan 2tan ,2tan 2tan rr r r B A r r C A r r C B r r c b a c b a =++===30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RBARQA CQ PC BP .(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CYYA=1 34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D 、E ,又设BE 和CD 交于S ,则AS 一定过边BC 的中点M35. 塞瓦定理的逆定理:(略)36. 塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点37. 塞瓦定理的逆定理的应用定理2:设△ABC 的内切圆和边BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT 交于一点.38. 西摩松(Simson )定理:从△ABC 的外接圆上任意一点P向三边BC 、CA 、AB 或其延长线作垂线,设其垂足分别是D 、E 、R ,则D 、E 、R 共线,(这条直线叫西摩松线Simson line )39. 西摩松定理的逆定理:(略)40. 关于西摩松线的定理1:△ABC 的外接圆的两个端点P 、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上 41. 关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点42. 史坦纳定理:设△ABC 的垂心为H ,其外接圆的任意点P ,这时关于△ABC 的点P 的西摩松线通过线段PH 的中心. 43. 史坦纳定理的应用定理:△ABC 的外接圆上的一点P 的关于边BC 、CA 、AB 的对称点和△ABC 的垂心H 同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC 的镜象线.44. 牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45. 牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线. 46. 笛沙格定理1:平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 47. 笛沙格定理2:相异平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 48. 波朗杰、腾下定理:设△ABC 的外接圆上的三点为P 、Q 、R ,则P 、Q 、R 关于△ABC 交于一点的充要条件是:弧AP +弧BQ +弧CR =0(mod2π) .49. 波朗杰、腾下定理推论1:设P 、Q 、R 为△ABC 的外接圆上的三点,若P 、Q 、R 关于△ABC 的西摩松线交于一点,则A 、B 、C 三点关于△PQR 的的西摩松线交于与前相同的一点.50. 波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A 、B 、C 、P 、Q 、R 六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点. 51. 波朗杰、腾下定理推论3:考查△ABC 的外接圆上的一点P的关于△ABC 的西摩松线,如设QR 为垂直于这条西摩松线该外接圆的弦,则三点P 、Q 、R 的关于△ABC 的西摩松线交于一点.52. 波朗杰、腾下定理推论4:从△ABC 的顶点向边BC 、CA 、AB 引垂线,设垂足分别是D 、E 、F ,且设边BC 、CA 、AB的中点分别是L 、M 、N ,则D 、E 、F 、L 、M 、N 六点在同一个圆上,这时L 、M 、N 点关于关于△ABC 的西摩松线交于一点53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线. 54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,.如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心 59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点 60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线. 62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切. 65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线. 68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF -=∆∆.二.集合1.元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B==3.包含关系A B A A B B=⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个. 5.集合A 中有M 个元素,集合B 中有N 个元素,则可以构造M*N 个从集合A 到集合B 的映射;6.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.三.二次函数,二次方程1·二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠;(3)零点式12()()()(0)f x a x x x x a =--≠. 2·解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 3·方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条.件.特别地, 方程)0(02≠=++a c bx ax有且只有一个实根在),(21k k ,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 4·闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p abx ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a =-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.5·一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q pm ⎧-≥⎪⎨->⎪⎩; (2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q pm ⎧-≥⎪⎨-<⎪⎩ . 6·定区间上含参数的二次不等式恒成立的条件依据 (1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3))(24>++=c bx ax x f 恒成立的充要条件是00a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.四.简易逻辑1·真值表234·充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要.条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.五.函数1· 函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.2·如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.3·奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;在对称区间上,奇函数的单调性相同,欧函数相反;,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数,如果一个奇函数的定义域包括0,则必有f(0)=0;4若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+. 5· 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 6·若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.7 多项式函数110()n n n n P x a x a xa --=+++的奇偶性 多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 8函数()y f x =的图象的对称性 (1)函数()y f x =的图象关于直线x a=对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.9两个函数图象的对称性 (1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.10 若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.11 互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.12若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数.13 几个常见的函数方程 (1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠. (3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,0()(0)1,lim 1x g x f x→==.14 几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;.(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.六 指数与对数1·分数指数幂(1)m na=(0,,am n N *>∈,且1n >).(2)1mnm naa-=(0,,a m n N *>∈,且1n >).2·根式的性质(1)n a =.(2)当na =;当n 为,0||,0a a a a a ≥⎧==⎨-<⎩. 3·有理指数幂的运算性质(1) (0,,)r s r s a a a a r s Q +⋅=>∈.(2)()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)rr r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用. 4·指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.5·对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠,0N >).推论log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >).6·对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N=+;(2)log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈. 7·设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.8·对数换底不等式及其推广若0a>,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则(1)log ()log m p m n p n++<.(2)2log log log 2a a a m nm n +<. 9·平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).七 数列1·等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 2·等比数列的通项公式1*11()n nna a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.3·等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩..八 三角函数1·常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<. (2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.2·同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.3·正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).5·半角正余切公式:sin sin tan ,cot 21cos 1cos αααααα==+- 6·二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 7·最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈cos (||1)(2arccos ,2arccos ),x a a x k a k a k Zππ>≤⇔∈-+∈cos (||1)(2arccos ,22arccos ),x a a x k a k a k Zπππ<≤⇔∈++-∈tan ()(arctan ,),2x a a R x k a k k Zπππ>∈⇒∈++∈tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈角的变形:2()()2()()()ααβαββαβαβααββ=-++=+--=+-8·三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-9·三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.10·正弦定理 2sin sin sin a b cR A B C===.11余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.12·面积定理(1)111222a b c Sah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222Sab C bc A ca B ===. (3)OABS ∆=.13·在三角形中有下列恒等式:①sin()sin A B C +=② tan tan tan tan .tan .tan A B C A B C ++=.14·简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.15·三角形内角和定理在△ABC 中,有()A B CC A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+八 向量1·实数与向量的积的运算律设λ、μ为实数,那么 (1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa;(3)第二分配律:λ(a +b )=λa +λb .2·向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2)(λa )·b=λ(a ·b )=λa ·b =a ·(λb );(3)(a +b )·c= a ·c +b ·c.3·平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2. 不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 4·向量平行的坐标表示 设a =11(,)x y ,b =22(,)x y ,且b≠0,则a b(b ≠0)12210x y x y ⇔-=.5·a 与b 的数量积(或内积)a ·b =|a ||b |cos θ.6·a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.7·平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A11(,)x y ,B22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.8·两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).9·平面两点间的距离公式,A Bd =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).10·向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则A ||b ⇔b =λa12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.11·线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 12·三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.13·点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)Px y ,且'PP 的坐标为(,)h k .14·“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-. (4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .15·三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==.(2)O 为ABC ∆的重心0OA OB OC ⇔++=. (3)O 为ABC ∆的垂心.OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOAbOB cOC ⇔=+.九 不等式1·常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).ab c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-.2·极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大.3·一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2axbx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.4·含有绝对值的不等式当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (2)2()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.5·指数不等式与对数不等式(1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩十 直线方程1·斜率公式①2121y y kx x -=-(111(,)P x y 、222(,)P x y ).② k=tan α(α为直线倾斜角)2·直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).5·两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②两直线垂直的充要条件是12120A A B B +=;即:12l l ⊥⇔12120A A B B +=.6·夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 7·1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.8·四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.9·点到直线的距离d =(点00(,)P x y ,直线l:0Ax By C ++=).10·0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,若A>0,则在坐标平面内从左至右的区域依次表示Ax By C ++<,0Ax By C ++>,若A<0,则在坐标平面内从左至右的区域依次表示 0Ax By C ++>,0Ax By C ++<,可记为“x 为正开口对,X 为负背靠背“。
数学奥赛平面几何

《竞赛数学解题研究》之平面几何专题一、平面几何中的一些重要定理:1、梅涅劳斯定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。
2、塞瓦定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则AF 、BE 、CD 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。
3、托勒密定理:四边形ABCD 内接于圆的充要条件是CD BC CD AB BD AC ⋅+⋅=⋅4、西摩松定理:设P 是ABC ∆外接圆上任一点,过P 向ABC ∆的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。
5、斯德瓦特定理:设P 是ABC ∆的边BC 边上的任一点,则BC PC BP AP BC AB PC AC BP ⋅⋅+⋅=⋅+⋅2226、共角定理:设ABC ∆和C B A '''∆中有一个角相等或互补(不妨设A=A ')则 C A B A ACAB S S C B A ABC ''⋅''⋅='''∆∆7、共边定理:设ABC ∆和C B A '''∆中有一个边相等,则CA B A ACAB S S C B A ABC ''⋅''⋅='''∆∆举例说明:1、设M 、N 分别是正六边形ABCDEF 的对角线AC 、CE 上的点,且AM:AC=CN:CE=k,如果BMN 三点共线,试求k 。
(IMO23,1982)2、在四边形ABCD 中,ABD ∆、BCD ∆、ABC ∆的面积之比为3:4:1,点M 、N 分别 是AC 、CD 上的点,且AM:AC=CN:CD, 并且BMN 三点共线,求证:M 、N 分别是AC 、 CD 的中点。
初中中平面几何重要定理汇总

8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL
9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上。
29、塞瓦定理的逆定理:在△ABC的边BC,CA,AB上分别取点D,E,F,如果(AF:FB)(BD:DC)(CE:EA)=1那么直线AD,BE,CF相交于同一点。
30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD
24、梅涅劳斯定理的逆定理:(略)
25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。
26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接ቤተ መጻሕፍቲ ባይዱ的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线
平面几何的著名定理

平面几何的著名定理一、毕达格拉斯定理(即勾股定理)在任何一个直角三角形中,两条直角边的长的平方和等于斜边长的平方,这就叫做勾股定理。
即勾的平方加股的平方等于弦的平方二、帕普斯定理帕普斯(Pappus)定理:如图,直线l1上依次有点A,B,C,直线l2上依次有点D,E,F,设AE,BD 交于P,AF,DC交于Q,BF,EC交于R,则P,Q,R共线。
三、影射定理(与相似三角形和比例有关)直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)^2;=BD·DC,(2)(AB)^2;=BD·BC ,(3)(AC)^2;=CD·BC 。
等积式 (4)ABXAC=BCXAD(可用面积来证明)四、梅涅劳斯定理梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。
证明一过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , CE/EA=DC/AG。
三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1证明二过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1它的逆定理也成立:若有三点F、D、E分别在△ABC的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。
平面几何的17个著名定理

平面几何的17个著名定理1«欧拉(Enter)线…同一三角形的垂心*重心、外心三点共线,这条直线稀为三角形的欧拉线, 且外4与重心的距离等于垂心与重心距离的一半审氛九点圆匕*任意三角形三边的中点,三高的垂足及三顶歳与垂心问线段的中点,共九个点共圆,这个風秫为三角形的九点圆;其圆心为三角形夕皿与垂心所连线段的中勲其半径等于三角形外接圆半径的一半• *3.费尔马点…己知 P 为锐SAABC 内一点,当ZAPB = ZBPC= ZCPA= 120° 时,PA +PB + PC 的值最小,这个点P 称为AABC 的费尔马点。
心CP = 2.45 厘米AP = 1.64 厘米4、海伦(Heron)公式::卩在ZXABC 中,边BC 、CA. AB 的长分别为a 、b 、c,若 严丄(a+b+c), “2则/XABC 的面积 S = Jp(p_a)(p_b)(p_c),A7 p (p-AB>(p-BC)-(p-CA) = 8.96 殛米2BC AD = 8.96 J#米25、SK (Ceva)在AABC 中,过AABC 的顶点作相交于一点P 的直线,分别交边BC 、CA 、AB 与点D 、E 、F,则竺.—= 1;其逆亦真aDC EA FBBD = 2.78 MX DC = 1.95 厘米 CE = 1.64 厘米EA = 2.23 厘米 AF =2.31 厘米FB = 2.42 厘米 6、密格尔(Kfeuel)点=♦若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是AABF 、AAED . ABCE . ADCF ,贝I J 这四个三角形的外接圆共(韵借)备)"点,这个点称为密格尔点°卩A B DP (托动)7、葛尔刚(仙輙峻)点2A ABC 的内切圆分别切边AB 、BC 、C 為于点D 、E 、F,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点。
初中平面几何知识的60个定理

初中平面几何知识的60个定理1、勾股定理、勾股定理((毕达哥拉斯定理毕达哥拉斯定理) )小学都应该掌握的重要定理小学都应该掌握的重要定理 2、射影定理、射影定理((欧几里得定理欧几里得定理) )重要重要3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分的两部分重要重要4、四边形两边中心的连线的两条对角线中心的连线交于一点、四边形两边中心的连线的两条对角线中心的连线交于一点学习中位线时的一个常见问题,中考不需要,初中竞赛需要学习中位线时的一个常见问题,中考不需要,初中竞赛需要5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
完全没有意义,学习解析几何后显然的结论,不用知道完全没有意义,学习解析几何后显然的结论,不用知道6、三角形各边的垂直一平分线交于一点。
、三角形各边的垂直一平分线交于一点。
重要重要7、从三角形的各顶点向其对边所作的三条垂线交于一点、从三角形的各顶点向其对边所作的三条垂线交于一点重要重要8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 中考不需要,竞赛中很显然的结论中考不需要,竞赛中很显然的结论9、三角形的外心,垂心,重心在同一条直线上。
、三角形的外心,垂心,重心在同一条直线上。
高中竞赛中非常重要的定理,称为欧拉线高中竞赛中非常重要的定理,称为欧拉线1010、、(九点圆或欧拉圆或费尔巴赫圆九点圆或欧拉圆或费尔巴赫圆))三角形中,三角形中,三边中心、三边中心、三边中心、从各顶点向其对边所引垂线的垂从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,高中竞赛中的常用定理高中竞赛中的常用定理1111、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线((欧拉线欧拉线))上 高中竞赛中会用,不常用高中竞赛中会用,不常用1212、库立奇、库立奇、库立奇**大上定理:大上定理:((圆内接四边形的九点圆圆内接四边形的九点圆) ) ) 圆周上有四点,过其中任三点作三角形,圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
平面几何著名定理

1、欧拉( Euler)线: 同一三角形的垂心、重心、外பைடு நூலகம்三点共线,这条直线称为三角形的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半
2、九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个 点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中 点,其半径等于三角形外接圆半径的一半。
17、布拉美古塔(Brahmagupta)定理: 在圆内接四边形 ABCD 中,AC⊥BD,自对角线的交点 P 向一边作垂线,其 延长线必平分对边
D G
I2 A(托动) H2 P
BF = 1.69 厘米 CF = 1.69 厘米 GD = 1.83 厘米 GC = 1.83 厘米 C(托动)
F
B(托动)
9、黄金分割: 把一条线段(AB)分成两条线段 ,使其中较大的线段(AC)是原线段 (AB)与较小 线段(BC)的比例中项,这样的分割称为黄金分割
11、笛沙格( Desargues)定理: 已知在△ ABC 与△A'B'C'中,AA'、BB'、CC'三线相交于点 O,BC 与 B'C'、 CA 与 C'A'、AB 与 A'B'分别相交于点 X、 Y、 Z,则 X、 Y、 Z 三点共线;其逆 亦真。
C( 托 动)
13、帕斯卡(Paskal)定理: 已知圆内接六边形 ABCDEF 的边 AB、DE 延长线交于点 G,边 BC、EF 延 长线交于点 H,边 CD、FA 延长线交于点 K,则 H、G、 K 三点共线
14、托勒密(Ptolemy)定理: 在圆内接四边形中,AB·CD+AD·BC=AC·BD
平面几何五大定理及其证明

平面几何定理及其证明一、梅涅劳斯定理1.梅涅劳斯定理及其证明G定理:一条直线与ABC的三边AB、BC、CA所在直线分别交于点D、E、F,且D、E、F均不是ABC的顶点,则有.证明:如图,过点C作AB的平行线,交EF于点G.因为CG // AB,所以————(1)因为CG // AB,所以————(2)由(1)÷(2)可得,即得.2.梅涅劳斯定理的逆定理及其证明定理:在ABC的边AB、BC上各有一点D、E,在边AC的延长线上有一点F,若,那么,D、E、F三点共线.证明:设直线EF交AB于点D/,则据梅涅劳斯定理有.因为,所以有.由于点D、D/都在线段AB上,所以点D与D/重合.即得D、E、F三点共线.二、塞瓦定理3.塞瓦定理及其证明定理:在ABC内一点P,该点与ABC的三个顶点相连所在的三条直线分别交ABC三边AB、BC、CA于点D、E、F,且D、E、F三点均不是ABC的顶点,则有.证明:运用面积比可得.根据等比定理有,所以.同理可得,.三式相乘得.4.塞瓦定理的逆定理及其证明定理:在ABC三边AB、BC、CA上各有一点D、E、F,且D、E、F均不是ABC的顶点,若,那么直线CD、AE、BF三线共点.证明:设直线AE与直线BF交于点P,直线CP交AB于点D/,则据塞瓦定理有.因为,所以有.由于点D、D/都在线段AB上,所以点D与D/重合.即得D、E、F三点共线.三、西姆松定理5.西姆松定理及其证明定理:从ABC外接圆上任意一点P向BC、CA、AB或其延长线引垂线,垂足分别为D、E、F,则D、E、F三点共线.证明:如图示,连接PC,连接 EF 交BC于点D/,连接PD/.因为PE AE,PF AF,所以A、F、P、E四点共圆,可得FAE =FEP.因为A、B、P、C四点共圆,所以BAC =BCP,即FAE =BCP.所以,FEP =BCP,即D/EP =D/CP,可得C、D/、P、E四点共圆.所以,CD/P +CEP = 1800。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何1 重要定理平面几何在其漫长的发展过程中,得出了大量的定理,积累了大量的题目,其中很多题目都是大数学家的大手笔,这些题目本身就是典范,这些题目的解决方法则更是我们学习平面几何的圭臬.通过学习这些题目,大家可以体会到数学的美.而且这些题目往往也是数学竞赛命题的背景题,在很多竞赛题中都可以找到他们的身影.本讲及下讲拟介绍几个平几名题及其应用.定理1 (Ptolemy 定理)圆内接四边形对角线之积等于两组对边乘积之和;(逆命题成立) 分析 如图,即证AC ·BD=AB ·CD+AD ·BC .可设法把 AC ·BD 拆成两部分,如把AC 写成AE+EC ,这样,AC ·BD 就拆成了两部分:AE ·BD 及EC ·BD ,于是只要证明AE ·BD=AD ·BC 及EC ·BD=AB ·CD 即可.证明 在AC 上取点E ,使∠ADE=∠BDC , 由∠DAE=∠DBC ,得⊿AED ∽⊿BCD .∴ AE ∶BC=AD ∶BD ,即AE ·BD=AD ·BC . ⑴ 又∠ADB=∠EDC ,∠ABD=∠ECD ,得⊿ABD ∽⊿ECD .∴ AB ∶ED=BD ∶CD ,即EC ·BD=AB ·CD . ⑵ ⑴+⑵,得 AC ·BD=AB ·CD+AD ·BC .说明 本定理的证明给证明ab=cd+ef 的问题提供了一个典范.用类似的证法,可以得到Ptolemy 定理的推广(广义Ptolemy 定理):对于一般的四边形ABCD ,有AB ·CD+AD·BC≥AC ·BD.当且仅当ABCD 是圆内接四边形时等号成立.例1 (1987年第二十一届全苏)设A 1A 2A 3…A 7是圆内接正七边形,求证: 1A 1A 2=1A 1A 3+1A 1A 4. 证明 连A 1A 5,A 3A 5,并设A 1A 2=a ,A 1A 3=b ,A 1A 4=c . 本题即证1a =1b +1c.在圆内接四边形A 1A 3A 4A 5中,有A 3A 4=A 4A 5=a ,A 1A 3=A 3A 5=b ,A 1A 4=A 1A 5=c .于是有ab+ac=bc ,同除以abc ,即得1a =1b +1c,故证. 例2.(美国纽约,1975)证明:从圆周上一点到圆内接正方形的四个顶点的距离不可能都是有理数. 分析:假定其中几个是有理数,证明至少一个是无理数.证明:设⊙O 的直径为2R ,不妨设P 在⌒AD 上,则∠APB=45︒,设∠PBA=α,则∠PAB=135︒-α.若PA=2Rsin α及PC=2Rsin(90︒-α)=2Rcos α为有理数, 则 PB=2Rsin ∠PAB=2Rsin(135︒-α)=2R(22cos α+22sin α)=2R(sin α+cos α)即为无理数. 或用Ptolemy 定理:PB·AC=PA·BC+PC·AB.⇒2PB=PA+PC .故PA 、PB 、PC 不能同时为有理数.例3.⑴ 求证:锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和. ⑵ 若∆ABC 为直角三角形或钝角三角形,上面的结论成立吗?A BC DE 16例1A证明:如图,∆ABC 内接于⊙O ,设⊙O 的半径=R ,∆ABC 的边长分别为a ,b ,c .三边的中点分别为X 、Y 、Z .由A 、X 、O 、Z 四点共圆,据Ptolemy 定理,有OA·XZ=OX·AZ+OZ·A X ,⇒R·12a=OX·12b+OZ·12c .即R·a=OX·b+OZ·c, ①同理,R·b=OX·a+OY·c, ②R·c=OY·b+OZ·a, ③三式相加,得R(a+b+c)=OX(a+b)+OY(b+c)+OZ(c+a). ④但 r(a+b+c)=OX ·a+OY·b+OZ·c.(都等于三角形面积的2倍) ⑤ ④式与⑤式两边分别相加,得R(a+b+c)+r(a+b+c)= OX(a+b)+OY(b+c)+OZ(c+a)+OX·c+OY·a+OZ·b.故, R+r=OX+OY+OZ .⑵ 当∆ABC 为直角三角形(∠C 为直角),则O 在边AB 上,OX=0,上述结论仍成立. 当∆ABC 为钝角三角形 (∠C 为直角或钝角)时,则有 R+r=-OX+OY+OZ . 证明同上.定理2 设P 、Q 、A 、B 为任意四点,则PA 2-PB 2=QA 2-QB 2⇔PQ ⊥AB .证明 先证PA 2-PB 2=QA 2-QB 2⇒PQ ⊥AB .作PH ⊥AB 于H ,则 PA 2-PB 2=( PH 2+AH 2)-(PH 2+BH 2)=AH 2-BH 2=(AH+BH)(AH-BH)=AB(AB-2BH). 同理,作QH ’⊥AB 于H ’,则 QA 2-QB 2=AB(AB-2AH’)∴H=H ’,即点H 与点H ’重合.PQ ⊥AB ⇒PA 2-PB 2=QA 2-QB 2显然成立.说明 本题在证明两线垂直时具有强大的作用.点到圆的幂:设P 为⊙O 所在平面上任意一点,PO=d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.例5.以O 为圆心的圆通过⊿ABC 的两个顶点A 、C ,且与AB 、BC 两边分别相交于K 、N 两点,⊿ABC 和⊿KBN 的两外接圆交于B 、M 两点.证明:∠OMB 为直角.(1985年第26届国际数学竞赛)A B PQHH '分析 对于与圆有关的问题,常可利用圆幂定理,若能找到BM 上一点,使该点与点B对于圆O 等幂即可. 证明:由BM 、KN 、AC 三线共点P ,知PM ·PB=PN ·PK=PO 2-r 2. ⑴ 由∠PMN=∠BKN=∠CAN ,得P 、M 、N 、C 共圆,故 BM ·BP=BN ·BC=BO 2-r 2. ⑵ ⑴-⑵得, PM ·PB-BM ·BP= PO 2 - BO 2, 即 (PM-BM)(PM+BM)= PO 2 - BO 2,就是PM 2 -BM 2= PO 2 - BO 2,于是OM ⊥PB .定理3 (Ceva 定理)设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CYYA=1. 分析 此三个比值都可以表达为三角形面积的比,从而可用面积来证明. 证明:设S ⊿APB =S 1,S ⊿BPC =S 2,S ⊿CPA =S 3. 则AZ ZB =S 3S 2,BX XC =S 1S 3,CY YA =S 2S 1, 三式相乘,即得证.说明 用同一法可证其逆正确.本题也可过点A 作MN ∥BC 延长BY 、CZ 与MN 分别交于M 、N ,再用比例来证明,例6.以△ABC 的三边为边向形外作正方形ABDE 、BCFG 、ACHK ,设L 、M 、N 分别为DE 、FG 、HK 的中点.求证:AM 、BN 、CL 交于一点.分析 设AM 、BN 、CL 分别交BC 、CA 、AB 于P 、Q 、R .利用面积比设法证明BP PC ·CQ QA ·ARRB=1.证明 设AM 、BN 、CL 分别交BC 、CA 、AB 于P 、Q 、R .易知,∠CBM =∠BCM =∠QCN =∠QAN =∠LAR =∠LBR =θ. BP PC =S ∆ABM S ∆ACM =AB·BMsin (B+θ)AC·CMsin (A+θ)=ABsin(B+θ)ACsin(C+θ). CQ QA =BCsin(C+θ)ABsin(A+θ),AR RB =ACsin(A+θ)BCsin(B+θ), 三式相乘即得BP PC ·CQ QA ·ARRB=1,由Ceva 定理的逆定理知AM 、BN 、CL 交于一点.例7.如图,在△ABC 中,∠ABC 和∠ACB 均是锐角,D 是BC 边上的内点,且AD 平分∠BAC ,过点D 分别向两条直线AB 、AC 作垂线DP 、DQ ,其垂足是P 、Q ,两条直线CP 与BQ 相交与点K .求证:AK ⊥BC ;证明:⑴ 作高AH .则由∆BDP ∽∆BAH ,⇒BH PB =BA BD ,由∆CDQ ∽∆CAH ,⇒CQ HC =DCCA .由AD 平分∠BAC ,⇒DC BD =ACAB ,由DP ⊥AB ,DQ ⊥AC ,⇒AP=AQ .∴ AP PB ·BH HC ·CQ QA =AP QA ·BH PB ·CQ HC =BA BD ·DC CA =DC BD ·BACA =1,据Ceva 定理,AH 、BQ 、CP 交于一点,故AH 过CP 、BQ 的交点K ,∴ AK 与AH 重合,即AK ⊥BC .ABCPXYZHK Q PC BARQPN MLKHGFC EDBA例8.在四边形ABCD 中,对角线AC 平分∠BAD ,在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G .求证:∠GAC=∠EAC .(1999年全国高中数学联赛)分析 由于BE 、CA 、DG 交于一点,故可对此图形用Ceva 定理,再构造全等三角形证明两角相等.证明 连结BD 交AC 于H ,对⊿BCD 用Ceva 定理,可得CG GB ·BH HD ·DEEC =1.因为AH 是∠BAD 的角平分线,由角平分线定理,可得BH HD =ABAD,故CG GB ·AB AD ·DEEC=1. 过点C 作AB 的平行线交AG 延长线于I ,过点C 作AD 的平行线交AE 的延长线于J ,则 CG GB =CI AB ,DE EC =ADCJ,所以,CI AB ·AB AD ·ADCJ=1. 从而,CI=CJ .又因CI ∥AB ,CJ ∥AD ,故∠ACI=π-∠BAC=π-∠DAC=∠ACJ , 因此,⊿ACI ≌⊿ACJ ,从而∠IAC=∠JAC ,即∠GAC=∠EAC .定理4 (Menelaus 定理)设X 、Y 、Z 分别在△ABC 的BC 、CA 、AB 所在直线上,则X 、Y 、Z 共线的充要条件是AZ ZB ·BX XC ·CYYA=1. 证明:作CM ∥BA ,交XY 于N , 则AZ CN =CY YA ,CN ZB =XC BX. 于是AZ ZB ·BX XC ·CY YA =AZ CN ·CN ZB ·BX XC ·CYYA =1.本定理也可用面积来证明:如图,连AX ,BY , 记S ∆AYB =S 1,S ∆BYC =S 2,S ∆CYX =S 3,S ∆XYA =S 4.则 AZ ZB =S 4S 2+S 3;BX XC =S 2+S 3S 3;CY YA =S 3S 4,三式相乘即得证. 说明 用同一法可证其逆正确.Ceva 定理与Menelaus 定理是一对“对偶定理”.例9.(南斯拉夫,1983)在矩形ABCD 的外接圆弧AB 上取一个不同于顶点A 、B 的点M ,点P 、Q 、R 、S 是M 分别在直线AD 、AB 、BC 与CD 上的投影.证明,直线PQ 和RS 是互相垂直的,并且它们与矩形的某条对角线交于同一点.证明:设PR 与圆的另一交点为L .则→PQ ·→RS =(→PM +→PA )·(→RM +→MS )=→PM ·→RM +→PM ·→MS +→PA ·→RM +→PA ·→MS=-→PM ·→PL +→PA ·→PD =0.故PQ ⊥RS .ABC DEFGHIJZY XC BANZ Y XCBAS 1S 2 S 3S 4 题11 T,NSR Q PM A B CDL设PQ 交对角线BD 于T ,则由Menelaus 定理,(PQ 交∆ABD)得DP PA ·AQ QB ·BT TD =1;即BT TD =PA DP ·QB AQ; 设RS 交对角线BD 于N ,由Menelaus 定理,(RS 交∆BCD)得BN ND ·DS SC ·CR RB =1;即BN ND =SC DS ·RB CR; 显然,PA DP =RB CR ,QB AQ =SC DS .于是BT TD =BNND,故T 与N 重合.得证.例10.(评委会,土耳其,1995)设∆ABC 的内切圆分别切三边BC 、CA 、AB 于D 、E 、F ,X 是∆ABC 内的一点,∆XBC 的内切圆也在点D 处与BC 相切,并与CX 、XB 分别切于点Y 、Z ,证明,EFZY 是圆内接四边形.分析:圆幂定理的逆定理与Menelaus 定理. 证明:延长FE 、BC 交于Q .AF FB ·BD DC ·CE EA =1,XZ ZB ·BD DC ·CY YA =1,⇒AF FB ·CE EA =XZ ZB ·CY YA . 由Menelaus 定理,有AF FB · BQ QC · CEEA=1. 于是得XZ ZB ·BQ QC ·CYYA=1.即Z 、Y 、Q 三点共线.但由切割线定理知,QE ·QF=QD 2=QY ·QZ .故由圆幂定理的逆定理知E 、F 、Z 、Y 四点共圆.即EFZY 是圆内接四边形.定理5 (蝴蝶定理)AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP=QM .分析 圆是关于直径对称的,当作出点F 关于OM 的对称点F'后,只要设法证明⊿FMP≌⊿F'MQ 即可. 证明:作点F 关于OM 的对称点F ’,连FF ’,F’M,F’Q,F’D.则 MF=MF ’,∠4=∠FMP=∠6. 圆内接四边形F ’FED 中,∠5+∠6=180︒,从而∠4+∠5=180︒, 于是M 、F ’、D 、Q 四点共圆,∴ ∠2=∠3,但∠3=∠1,从而∠1=∠2, 于是⊿MFP ≌⊿MF ’Q.∴ MP=MQ .说明 本定理有很多种证明方法,而且有多种推广.例11.在筝形ABCD 中,AB=AD ,BC=CD ,经AC 、BD 交点O 作二直线分别交AD 、BC 、AB 、CD 于点E 、F 、G 、H ,GF 、EH 分别交BD 于点I 、J ,求证:IO=OJ .(1990年冬令营选拔赛题)分析 通常的解法是建立以O 为原点的直角坐标系,用解析几何方法来解,下面提供的解法则利用了面积计算.证明:如图,由S ⊿AOB =S ⊿AOG +S ⊿GOB 得 12(at 1cos α+bt 1sin α)=12ab . ∴ t 1=ab acos α+bsin α.即1t 1=cos αb +sin αa;同理得,1t 2=cos βb +sin βc ;1t 3=cos αb +sin αc ;1t 4=cos βb +sin βa.A BCDEFGHOI J αβab ct t t t 1234A BC D E F MF'123456O PQ 例12QP I ZY X F EABC D再由S ⊿GOF =S ⊿GOI +S ⊿IOF ,又可得sin(α+β)IO =sin αt 2+sin βt 1; 同理,得sin(α+β)OJ =sin αt 4+sin βt 3.∴ IO=OJ ⇔(1t 4-1t 2)sin α=(1t 1-1t 3)sin β.以1t 4、1t 2的值代入左边得,(1t 4-1t 2)sin α=(1a -1c)sin αsin β,同样得右边.可证. 定理6 张角定理:从一点出发三条线段长分别为a 、b 、t 、(t 在a 、b 之间),则sin(α+β)t =sin αb +sin βa. 例12.(评委会,爱尔兰,1990)设l 是经过点C 且平行于∆ABC 的边AB 的直线,∠A 的平分线交BC 于D ,交l 于E ,∠B 的平分线交AC 于F ,交l 于G ,已知,GF=DE ,证明:AC=BC .分析:设∠A=2α,∠B=2β,即证α=β. 证明:设α>β,则BC>AC ,利用张角定理可得, sinA t a =sin αc +sin αb ,⇒2cos αt a =1c +1b,⇒t a =2bccos αb+c.再作高CH ,则AE=CHcsc α=bsin2αcsc α=2bcos α.⇒DE=AE -t a =2bcos α-2bccos αb+c =2b 2cos αb+c .同理,GF=2a 2cos βa+c.由α>β,a>b ,知cos β<cos α.1+c a <1+c b ,⇒ GF=2a 2cos βa+c =2acos β1+c a >2bcos α1+c b =2b 2cos αb+c=DE .矛盾.又证:设BC>AC ,即a>b ,故α>β,由张角定理得,sinA t a =sin αc +sin αb ,⇒2cos αt a =1c +1b .同理2cos βt b =1c +1a,由于a>b ,故cos αt a >cos βt b ,⇒t b t a >cos βcos α >1,即t b >t a .就是BF>AD . ⑴∴ BG=BF+FG>AD+DE=AE .即是BG>AE .∴ GF BF = CF AF ⇒GF=BG ·CF AF+FC =BG 1+AF CF =BG 1+AB BC >AE 1+AB AC =AE 1+BD DC =AE ·DCBC=DE .矛盾.故BC=AC .或 BF GF =AF CF =AB CB <AB CA =BD DC =ADDE,注意到GF=DE ,故BF<AD .与⑴矛盾.故证.定理7 (Simson line) P 是ΔABC 的外接圆⊙O 上的任意一点,PX ⊥AB ,PY ⊥BC ,PZ ⊥CA ,垂足为X 、Y 、Z ,求证: X 、Y 、Z 三点共线.分析 如果连ZX 、ZY ,能证得∠1=∠3,则由∠AZB=180︒得∠YZX=180︒,即可证此三点共线. 证明 ∠PXB=∠PZB=90︒⇒P 、Z 、X 、B 四点共圆⇒∠1=∠2.∠PZA=∠PYA=90︒⇒P 、Z 、A 、Y 四点共圆⇒∠3=∠4.但∠2+∠5=90︒,∠4+∠6=90︒,而由P 、A 、C 、B 四点共圆,得∠5=∠6.故∠2=∠4,从而∠1=∠3.故X 、Y 、Z 共线. 说明 本题的证法也是证三点共线的重要方法.本题的逆命题成立,该逆命题AB C P XYZ 1234562α2βαβαβFEDC BA Gabtβα的证明曾是江苏省高中数学竞赛的试题.例13.设H 为ΔABC 的垂心,P 为ΔABC 的外接圆上一点,则从点P 引出的三角形的西姆松线平分PH . 分析:考虑能否用中位线性质证明本题:找到一条平行于Simson 线的线段,从PX ∥AH 入手.连PE ,得∠1=∠2,但∠2=∠3,再由四点共圆得∠3=∠4,于是得∠6=∠7.可证平行. 证明 连AH 并延长交⊙O 于点E ,则DE=DH ,连PE 交BC 于点F ,交XY 于点K ,连FH 、PB . ∵ PX ∥AE ,∴ ∠1=∠2,又∠2=∠3, ∵ P 、Z 、X 、B 四点共圆, ∴∠3=∠4,∴ ∠1=∠4. ∴ K 为PF 中点.∵ DE=DH ,BD ⊥EH ,∴ ∠2=∠5. ∴ FH ∥XY . ∴ XY 平分PH . 又证:延长高CF ,交圆于N ,则F 是HN 的中点,若K 为PH 中点,则应有FK ∥PN .再证明K 在ZX 上.即证明∠KZF=∠XZB . 设过P 作三边的垂线交BC 、CA 、AB 于点X 、Y 、Z .连KZ 、KF 、ZX ,延长CF 交⊙O 于点N ,连PN . 由PZ ⊥AB ,CF ⊥AB ,K 为PH 中点知,KZ=KF . ∴ ∠KZF=∠KFZ . 易证HF=FN ,故KF ∥PN .∴ ∠PNC=∠KFH . 但∠PNC+∠PBC=180︒,∴ ∠KFZ+∠ZFH+∠PBC=180︒. 即∠KFZ+∠PBC=90︒.又PX ⊥BC ,PZ ⊥BZ ⇒P 、Z 、X 、B 共圆. ∴ ∠XZB=∠XPB ,而∠XPB+∠PBC=90︒.∴ ∠KZF=∠KFZ=∠XZB .∴ ZK 与ZX 共线.即点K 在⊿ABC 的与点P 对应的Simson line 上.)定理8(Euler line )三角形的外心、重心、垂心三点共线,且外心与重心的距离等于重心与垂心距离的一半.分析 若定理成立,则由AG=2GM ,知应有AH=2OM ,故应从证明AH=2OM 入手.证明:如图,作直径BK ,取BC 中点M ,连OM 、CK 、AK ,则∠KCB=∠KAB=90︒,从而KC ∥AH ,KA ∥CH ,⇒□CKAH ,⇒AH=CK=2MO .由OM ∥AH ,且AH=2OM ,设中线AM 与OH 交于点G ,则⊿GOM ∽⊿GHA ,故得MG ∶GA=1∶2,从而G 为⊿ABC 的重心.且GH=2GO . 说明 若延长AD 交外接圆于N ,则有DH=DN .这一结论也常有用. 例14.设A 1A 2A 3A 4为⊙O 的内接四边形,H 1、H 2、H 3、H 4依次为⊿A 2A 3A 4、⊿A 3A 4A 1、⊿A 4A 1A 2、⊿A 1A 2A 3的垂心.求证:H 1、H 2、H 3、H 4四点在同一个圆上,并定出该圆的圆心位置.(1992年全国高中数学联赛)分析 H 1、H 2都是同一圆的两个内接三角形的垂心,且这两个三角形有公共的底边.故可利用上题证明中的AH=2OM 来证明. 证明 连A 2H 1,A 1H 2,取A 3A 4的中点M ,连OM ,由上证知A 2H 1∥OM ,A 2H 1=2OM ,A 1H 2∥OM , A 1H 2=2OM ,从而H 1H 2A 1A 2是平行四边形,故H 1H 2∥A 1A 2 ,H 1H 2=A 1A 2. 同理可知,H 2H 3∥A 2A 3,H 2H 3=A 2A 3;H 3H 4∥A 3A 4,H 3H 4=A 3A 4; H 4H 1∥A 4A 1,H 4H 1=A 4A 1. 故 四边形A 1A 2A 3A 4≌四边形H 1H 2H 3H 4.AB C MD OHG FKA A A A H H H H OM12341234M O 11AB C X YZP KD HE M 12345F 67由四边形A 1A 2A 3A 4有外接圆知,四边形H 1H 2H 3H 4也有外接圆.取H 3H 4∥的中点M 1,作M 1O 1⊥H 3H 4,且M 1O 1=MO ,则点O 1即为四边形H 1H 2H 3H 4的外接圆圆心.又证:以O 为坐标原点,⊙O 的半径为长度单位建立直角坐标系,设OA 1、OA 2、OA 3、OA 4与OX 正方向所成的角分别为α、β、γ、δ,则点A 1、A 2、A 3、A 4的坐标依次是(cos α,sin α)、(cos β,sin β)、(cos γ,sin γ)、(cos δ,sin δ).显然,⊿A 2A 3A 4、⊿A 3A 4A 1、⊿A 4A 1A 2、⊿A 1A 2A 3的外心都是点O ,而它们的重心依次是:(13(cos β+cos γ+cos δ),13(sin β+sin γ+sin δ))、(13(cos γ+cos δ+cosα),13(sinα+sin δ+sinγ))、 (13(cos δ+cosα+cosβ),13(sin δ+sinα+sinβ))、(13(cosα+cosβ+cosγ),13(sinα+sinβ+sinγ)). 从而,⊿A 2A 3A 4、⊿A 3A 4A 1、⊿A 4A 1A 2、⊿A 1A 2A 3的垂心依次是H 1(cos β+cos γ+cos δ, sin β+sin γ+sin δ)、H 2 (cos γ+cos δ+cos α,sin α+sin δ+sin γ)、 H 3 (cos δ+cos α+cos β,sin δ+sin α+sin β)、H 4 (cos α+cos β+cos γ,sin α+sin β+sin γ). 而H 1、H 2、H 3、H 4点与点O 1(cos α+cos β+cos γ+cos δ,sin α+sin β+sin γ+sin δ)的距离都等于1,即H 1、H 2、H 3、H 4四点在以O 1为圆心,1为半径的圆上.证毕.定理9 (Nine point round)三角形的三条高的垂足、三条边的中点以及三个顶点与垂心连线的中点,共计九点共圆.分析 要证九个点共圆,可先过其中三点作一圆,再证其余的点在此圆上.为此可考虑在三种点中各选一点作圆,再在其余三类共六个点中每类取一个点证明其在圆上,即可证明.证明:取BC 的中点M ,高AD 的垂足D ,AH 中点P ,过此三点作圆,该圆的直径即为MP .由中位线定理知,MN ∥AB ,NP ∥CH ,但CH ⊥AB ,故∠PNM=90︒,于是,点N 在⊙MDP 上,同理,AB 中点在⊙MDP 上. 再由QM ∥CH ,QP ∥AB ,又得∠PQM=90︒,故点Q 在⊙MDP 上,同理,CH 中点在⊙MDP 上.由FP 为Rt .⊿AFH 的斜边中线,故∠PFH=∠PHF=∠CHD ,又FM 为Rt .⊿BCF 的斜边中线,得∠MFC=∠MCF ,但∠CHD+∠DCH=90︒,故∠PFM=90︒.又得点F 在⊙MDP 上,同理,高BH 的垂足在⊙MDP 上.即证.说明 证明多点共圆的通法,就是先过三点作圆,再证明其余的点在此圆上. 九点圆的圆心在三角形的Euler 线上.九点圆的直径等于三角形外接圆的半径.由OM ∥AP ,OM=AP ,知PM 与OH 互相平分,即九点圆圆心在OH 上.且九点圆直径MP=OA=⊿ABC 的外接圆半径.定理10(三角形的内心的一个重要性质)设I 、I a 分别为⊿ABC 的内心及∠A 内的旁心,而∠A 平分线与⊿ABC 的外接圆交于点P ,则PB=PC=PI=PI a .例15.设ABCD 为圆内接四边形,ΔABC 、ΔABD 、ΔACD 、ΔBCD 的内心依次为I 1、I 2、I 3、I 4,则I 1I 2I 3I 4为矩形.(1986年国家冬令营选拔赛题)分析 只须证明该四边形的一个角为直角即可.为此可计算∠1、∠2、∠XI 2Y .证明 如图,BI 2延长线与⊙O 的交点X 为⌒AD 中点.且XI 2=XI 3=XA=XD , 于是∠1=12(180︒-∠X)=90︒-14⌒BC ,同理,∠2=90︒-14⌒CD .∠XI 2Y=12(⌒XY +⌒BD )F HD M C B A PQ N10.22ABCD I I I I 123412XYZU= 14(⌒AB +⌒AD )+12(⌒BC +⌒CD ), 故∠1+∠2+∠XI 2Y=90︒+90︒+14(⌒AB +⌒BC +⌒CD +⌒DA )=270︒.从而∠I 1I 2I 3=90︒.同理可证其余.说明 亦可证XZ ⊥YU ,又XZ 平分∠I 2XI 3及XI 2=XI 3⇒I 2I 3⊥XZ ,从而I 2I 3∥YU ,于是得证.定理11 (Euler 定理)设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .(1992年江苏省数学竞赛)分析 改写此式,得:d 2-R 2=2Rr ,左边为圆幂定理的表达式,故可改为过I 的任一直线与圆交得两段的积,右边则为⊙O 的直径与内切圆半径的积,故应添出此二者,并构造相似三角形来证明.证明:如图,O 、I 分别为⊿ABC 的外心与内心.连AI 并延长交⊙O 于点D ,由AI 平分∠BAC ,故D 为弧BC 的中点.连DO 并延长交⊙O 于E ,则DE 为与BC垂直的⊙O 的直径.由圆幂定理知,R 2-d 2=(R+d)(R-d)=IA ·ID .(作直线OI 与⊙O 交于两点,即可用证明) 但DB=DI (可连BI ,证明∠DBI=∠DIB 得),故只要证2Rr=IA ·DB ,即证2R ∶DB=IA ∶r 即可.而这个比例式可由⊿AFI ∽⊿EBD 证得.故得R 2-d 2=2Rr ,即证.例16.(1989IMO)锐角∆ABC 的内角平分线分别交外接圆于点A 1、B 1、C 1,直线AA 1与∠ABC 的外角平分线相交于点A 0,类似的定义B 0,C 0,证明:⑴ S A 0B 0C 0=2S A 1CB 1AC 1B ;⑵ S A 0B 0C 0≥4S ABC .分析:⑴利用A 1I=A 1A 0,把三角形A 0B 0C 0拆成以I 为公共顶点的六个小三角形,分别与六边形A 1CB 1AC 1B 中的某一部分的2倍相等. ⑵ 若连OA 、OB 、OC 把六边形A 1CB 1AC 1B 分成三个四边形,再计算其面积和,最后归结为证明R ≥2r .也可以这样想:由⑴知即证S A 1CB 1AC 1B ≥2 S ABC ,而IA 1、IB 1、IC 1把六边开分成三个筝形,于是六边形的面积等于∆A 1B 1C 1面积的2倍.故只要证明S A 1B 1C 1≥S ABC .证明:⑴ 设∆ABC 的内心为I ,则A 1A 0=A 1I ,则S A 0BI =2S A 1BI ;同理可得其余6个等式.相加⑴即得证. ⑵ 连OA 、OB 、OC 把六边形A 1CB 1AC 1B 分成三个四边形,由OC 1⊥AB ,OA 1⊥BC ,OB 1⊥CA ,得∴ S A 1CB 1AC 1B =S OAC 1B + S OB 1A 1C + S OCB 1A =12AB·R+12BC ·R+12C A·R =Rp .但由Euler 定理,R 2-2Rr=R(R -2r)=d 2≥0,知R ≥2r ,故Rp ≥2rp=2S ∆ABC .故得证.⑵ 证明:记A=2α,B=2β,C=2γ.0<α,β,γ<π2.则S ABC =2R 2sin2αsin2βsin2γ,S A 1B 1C 1=2R 2sin(α+β)sin(β+γ)sin(γ+α).又sin(α+β)=sin αcos β+cos αsin β≥2sin αcos β cos αsin β =sin2αsin2β ,同理,sin(β+γ)≥sin2βsin2γ ,sin(γ+α)≥sin2γsin2α ,于是S A 1B 1C 1≥S ABC 得证. 又证:连OA 、OB 、OC 把六边形A 1CB 1AC 1B 分成三个四边形, 由OC 1⊥AB ,OA 1⊥BC ,OB 1⊥CA ,得∴ S A 1CB 1AC 1B =S OAC 1B + S OB 1A 1C + S OCB 1A =12AB·R+12BC ·R+12C A·R =Rp .但由Euler 定理,R 2-2Rr=R(R -2r)=d 2≥0,知R ≥2r ,故Rp ≥2rp=2S ∆ABC .故得证.AB CD OIE F 例C 0又证:α+β+γ=π,故sin(α+β)=cos γ,sin(β+γ)=cos α,sin(γ+α)=cos β. 于是,sin(α+β)sin(β+γ)sin(γ+α)=cos αcos βcos γ,故sin(α+β)sin(β+γ)sin(γ+α)≥sin2αsin2βsin2γ,⇔ cos αcos βcos γ≥8sin αsin βsin γcos αcos βcos γ, 由0<α、β、γ<π2,故cos αcos βcos γ≥8sin αsin βsin γcos αcos βcos γ,⇔sin αsin βsin γ≤18.而最后一式可证.定理12 (Fermat point)分别以ΔABC 的三边AB ,BC ,CA 为边向形外作正三角形ABD ,BCE ,CAH ,则此三个三角形的外接圆交于一点.此点即为三角形的Fermat point .分析 证三圆共点,可先取二圆的交点,再证第三圆过此点.证明:如图,设⊙ABD 与⊙ACH 交于(异于点A 的)点F ,则由A 、F 、B 、D 共圆得∠AFB=120︒,同理∠AFC=120︒,于是∠BFC=120︒,故得B 、E 、C 、F 四点共圆.即证. 由此得以下推论:1︒ A 、F 、E 三点共线;因∠BFE=∠BCE=60︒,故∠AFB+∠BFE=180︒,于是A 、F 、E 三点共线.同理,C 、F 、D 三点共线;B 、F 、H 三点共线. 2︒ AE 、BH 、CD 三线共点. 3︒ AE=BH=CD=FA+FB+FC .由于,F 在正三角形BCE 的外接圆的弧BC 上,故由Ptolemy 定理,有FE=FB+FC .于是AE=AF+FB+FC .同理可证BH=CD=FA+FB+FC .也可用下法证明:在FE 上取点N ,使FN=FB ,连BN ,由⊿FBN 为正三角形,可证得⊿BNE ≌⊿BFC .于是得,NE=FC .故AE=FA+FN+NE=FA+FB+FC .例17.(Steiner 问题)在三个角都小于120°的ΔABC 所在平面上求一点P ,使PA+PB+PC 取得最小值. 证明:设P 为平面上任意一点,作等边三角形PBM (如图)连ME , 则由BP=BM ,BC=BE ,∠PBC=∠MBE=60︒-∠MBC . 得⊿BPC ≌⊿BME ,于是ME=PC ,故得折线APME=PA+PB+PC ≥AE=FA+FB+FC . 即三角形的Fermat point 就是所求的点.说明:本题也可用Ptolemy 的推广来证明:由PB·CE+PC·BE≥PE·BC,可得,PB+PC≥PE.于是PA+PB+PC≥PA+PE≥AE.定理13 到三角形三顶点距离之和最小的点——费马点. 例18.凸六边形ABCDEF ,AB=BC=CD ,DE=EF=FA ,∠BCD=∠EFA=60︒,G、H在形内, 且∠AGB=∠DHE=120︒. 求证:AG+GB+GH+DH+HE ≥CF .证明 连BD 、AE 、BE ,作点G 、H 关于BE 的对称点G '、H ',连BG '、DG '、G 'H '、AH '、EH '。