九年级中考数学总复习专题训练(四) 函数及其图象

合集下载

2020年九年级数学中考三轮专题复习:函数及其图象(含答案)

2020年九年级数学中考三轮专题复习:函数及其图象(含答案)

2020年中考数学三轮专题复习函数及其图象(含答案)一、选择题(本大题共6道小题)1. 二次函数y=(x-1)2+3的图象的顶点坐标是 ()A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)2. 若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为直线x=-1,则使函数值y>0成立的x的取值范围是()A.x<-4或x>2B.-4≤x≤2C.x≤-4或x≥2D.-4<x<23. 如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5 km处C.在南偏东15°方向5 km处D.在南偏东75°方向5 km处4. 第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()5. 从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为()6. 如图,☉O的半径为2,双曲线的解析式分别为y=和y=-,则阴影部分的面积为()A.4πB.3πC.2πD.π二、填空题(本大题共5道小题)7. 星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y(千米)与时间t(分)的关系如图所示,则上午8:45小明离家的距离是千米.8. 如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.9. 已知二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:x…-1 0 1 2 3 …y… 3 0 -1 0 m…(1)观察上表可求得m的值为;(2)这个二次函数的解析式为;(3)若点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,则n的取值范围为.10. 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①b>0;②a-b+c<0;③b+2c>0;④当-1<x<0时,y>0,正确的是__________________(填写序号).11. 如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y=(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若△ODE的面积为3,则k的值为.三、解答题(本大题共6道小题)12. 为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.13. 小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.14. 如图,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,交y轴于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出点D的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.15. 如图,抛物线y=-x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=-x2+bx+c的另一个交点为D,已知A(-1,0),D(5,-6),P点为抛物线y=-x2+bx+c上一动点(不与A,D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N,C,M,P为顶点的四边形为平行四边形.若存在,求出点M的坐标;若不存在,请说明理由.16. 某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50 m.设饲养室长为x(m),占地面积为y(m2).(1)如图①,问饲养室长x为多少时,占地面积y最大?(2)如图②,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.17. 在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,列表如下:x…-1 0 1 2 3 …y甲… 6 3 2 3 6 …乙写错了常数项,列表如下:x…-1 0 1 2 3 …y乙…-2 -1 2 7 14 …通过上述信息,解决以下问题:(1)求原二次函数y=ax2+bx+c(a≠0)的表达式;(2)对于二次函数y=ax2+bx+c(a≠0),当x时,y的值随x的值增大而增大;(3)若关于x的方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围. 2020年中考数学三轮专题复习函数及其图象-答案一、选择题(本大题共6道小题)1. 【答案】A2. 【答案】D[解析]∵二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为直线x=-1,∴二次函数的图象与x轴另一个交点为(-4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是-4<x<2.3. 【答案】D[解析]目标A的位置在南偏东75°方向5 km处,故选D.4. 【答案】B[解析]根据题意可知兔子先让乌龟跑了一段距离,但是比乌龟晚到终点,故选项B正确.5. 【答案】C6. 【答案】C[解析]根据反比例函数y=,y=-及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积.=π×22=2π.故选C.∴S阴影二、填空题(本大题共5道小题)7. 【答案】1.58. 【答案】x>3[解析]当x=3时,x=×3=1,∴点A在一次函数y=x的图象上,且一次函数y=x的图象经过第一、三象限,∴当x>3时,一次函数y=x的图象在y=kx+b的图象上方,即kx+b<x.9. 【答案】解:(1)3[解析]观察表格,根据抛物线的对称性可得x=3和x=-1时的函数值相等,∴m的值为3,故答案为:3.(2)y=(x-1)2-1[解析]由表格可得,二次函数y=ax2+bx+c图象的顶点坐标是(1,-1),∴y=a(x-1)2-1.又当x=0时,y=0,∴a=1,∴这个二次函数的解析式为y=(x-1)2-1.(3)n>0[解析]∵点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,∴结合二次函数的图象和性质可知n>0.10. 【答案】①③④[解析]根据图象可得:a<0,c>0,对称轴:直线x=-=1,∴b=-2a.∵a<0,∴b>0,故①正确;把x=-1代入y=ax2+bx+c,得y=a-b+c.由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=-1时,y=0,∴a-b+c=0,故②错误;当x=1时,y=a+b+c>0.∵b=-2a,∴-+b+c>0,即b+2c>0,故③正确;由图象可以直接看出④正确.故答案为:①③④.11. 【答案】4[解析]过点D作DH⊥x轴于H点,交OE于M,∵反比例函数y=(k>0)的图象经过点D,E,∴S△ODH=S△ODA=S△OEC=,∴S△ODH-S△OMH=S△OEC-S△OMH,即S△OMD=S四边形EMHC,∴S△ODE=S梯形DHCE=3,设D(m,n),∵D为AB的中点,∴B(2m,n).∵反比例函数y=(k>0)的图象经过点D,E,∴E2m,,∴S梯形=+n m=3,DHCE∴k=mn=4.三、解答题(本大题共6道小题)12. 【答案】解:(1)设1只A型节能灯的售价是x元,1只B型节能灯的售价是y元,根据题意,得解得答:1只A型节能灯的售价是5元,1只B型节能灯的售价是7元.(2)设购买A型节能灯a只,则购买B型节能灯(200-a)只,总费用为w元,w=5a+7(200-a)=-2a+1400,∵a≤3(200-a),∴a≤150,∵-2<0,w随a的增大而减小,∴当a=150时,w取得最小值,此时w=1100,200-a=50.答:最省钱的购买方案是:购买A型节能灯150只,B型节能灯50只.13. 【答案】解:(1)从线段AB得:两人从相距30 km的两地同时出发,1 h后相遇,则v小王+v小李=30 km/h,小王从甲地到乙地行驶了3 h,∴v小王=30÷3=10(km/h),∴v小李=20 km/h.(2)C点的意义是小李骑车从乙地到甲地用了30÷20=1.5(h),此时小王和小李的距离是1.5×10=15(km),∴C点坐标是(1.5,15).设直线BC的解析式为y=kx+b,将B(1,0),C(1.5,15)分别代入解析式,得解得:∴线段BC的解析式为y=30x-30(1≤x≤1.5).14. 【答案】解:(1)D(-2,3).(2)设二次函数的解析式为y=ax2+bx+c(a,b,c为常数,且a≠0),根据题意,得解得∴二次函数的解析式为y=-x2-2x+3.(3)x<-2或x>1.15. 【答案】[分析] (1)将点A,D的坐标分别代入直线表达式、抛物线的表达式,即可求解;(2)设出P点坐标,用参数表示PE,PF的长,利用二次函数求最值的方法.求解;(3)分NC是平行四边形的一条边或NC是平行四边形的对角线两种情况,分别求解即可.解:(1)将点A,D的坐标代入y=kx+n得:解得:故直线l的表达式为y=-x-1.将点A,D的坐标代入抛物线表达式,得解得故抛物线的表达式为:y=-x2+3x+4.(2)∵直线l的表达式为y=-x-1,∴C(0,-1),则直线l与x轴的夹角为45°,即∠OAC=45°,∵PE∥x轴,∴∠PEF=∠OAC=45°.又∵PF∥y轴,∴∠EPF=90°,∴∠EFP=45°.则PE=PF.设点P坐标为(x,-x2+3x+4),则点F(x,-x-1),∴PE+PF=2PF=2(-x2+3x+4+x+1)=-2(x-2)2+18,∵-2<0,∴当x=2时,PE+PF有最大值,其最大值为18.(3)由题意知N(0,4),C(0,-1),∴NC=5,①当NC是平行四边形的一条边时,有NC∥PM,NC=PM.设点P坐标为(x,-x2+3x+4),则点M的坐标为(x,-x-1),∴|y M-y P|=5,即|-x2+3x+4+x+1|=5,解得x=2±或x=0或x=4(舍去x=0),则点M坐标为(2+,-3-)或(2-,-3+)或(4,-5);②当NC是平行四边形的对角线时,线段NC与PM互相平分.由题意,NC的中点坐标为0,,设点P坐标为(m,-m2+3m+4),则点M(n',-n'-1),∴0==,解得:n'=0或-4(舍去n'=0),故点M(-4,3).综上所述,存在点M,使得以N,C,M,P为顶点的四边形为平行四边形,点M的坐标分别为:(2+,-3-),(2-,-3+),(4,-5),(-4,3).16. 【答案】解:(1)∵y=x·=-(x-25)2+,∴当x=25时,占地面积y最大.(2)y=x·=-(x-26)2+338,∴当x=26时,占地面积y最大.即当饲养室长为26 m时,占地面积最大.∵26-25=1≠2,∴小敏的说法不正确.17. 【答案】解:(1)根据甲同学的错误可知x=0时,y=c=3是正确的,由甲同学提供的数据,选择x=-1,y=6;x=1,y=2代入y=ax2+bx+3,得解得a=1是正确的.根据乙同学提供的数据,选择x=-1,y=-2;x=1,y=2代入y=x2+bx+c,得解得b=2是正确的,∴y=x2+2x+3.(2)≥-1[解析]抛物线y=x2+2x+3的对称轴为直线x=-1,∵二次项系数为1,故抛物线开口向上,∴当x≥-1时,y的值随x值的增大而增大.故答案为≥-1.(3)∵方程ax2+bx+c=k(a≠0)有两个不相等的实数根,即x2+2x+3-k=0有两个不相等的实数根,∴Δ=4-4(3-k)>0,解得k>2.。

初三数学函数及其图像试题

初三数学函数及其图像试题

初三数学函数及其图像试题1.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是【】【答案】 A。

【解析】如图,根据题意知,当点C在AB上运动时,DE是一组平行线段,线段DE从左向右运动先变长,当线段DE过圆心时为最长,然后变短,有最大值,开口向下。

观察四个选项,满足条件的是选项A。

故选A。

2.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元B.0.45 元C.约0.47元D.0.5元【答案】A【解析】由图像可知超过100面的部分,每面收费=(70-50)(150-100)=0.4元3.如图,在矩形ABCD中,AB=4cm,AD=2cm,动点M自点A出发沿A→B的方向,以每秒1cm的速度运动,同时动点N自点A出发沿A→D→C的方向以每秒2cm的速度运动,当点N到达点C时,两点同时停止运动,设运动时间为x(秒),△AMN的面积为y(cm2),则下列图象中能反映y与x之间的函数关系的是【答案】D【解析】在矩形ABCD中,AB=4cm,AD=2cm,AD+DC=AB+AD=4+2=6cm,∵点M以每秒1cm的速度运动,∴4÷1=4秒,∵点N以每秒2cm的速度运动,∴6÷2=3秒,∴点N先到达终点,运动时间为3秒,①点N在AD上运动时,y=AM?AN=x?2x=x2(0≤x≤1);②点N在DC上运动时,y=AM?AD=x?2=x(1≤x≤3),∴能反映y与x之间的函数关系的是D选项.故选D.4.两个不相等的正数满足a+b=2,ab=t-1,设S=(a-b),则S关于t的函数图象是A.射线(不含端点)B.线段(不含端点)C.直线D.抛物线的一部分【答案】B【解析】分析:要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.解答:解:首先根据题意,消去字母a和b,得到S和t的关系式.S=(a-b)2=(a+b)2-4ab=22-4(t-1)=8-4t.然后根据题意,因为ab=t-1,所以t=ab+1,又因为ab>0,故t>1;①又因为S=(a-b)2>0,所以8-4t>0,所以t<2.②由①②得1<t<2,故S关于t的函数图象是一条不含端点的线段.故选B.5.函数的自变量的取值范围是.【答案】>1【解析】依题意可得,解得,所以函数的自变量的取值范围是6.(本小题满分14分)如下图,点A是抛物线C1:的顶点,点B是抛物线C2:的顶点,并且OB⊥OA.(1)求点A的坐标;(2)若OB=,求抛物线C2的函数解析式;(3)在(2)条件下,设P为轴上的一个动点,探究:在抛物线C1或C2上是否存在点Q,使以点O,B,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.【答案】(1)A(-2,-1);(2);(3)Q1(,4),Q2(,4),Q3(-2,4),Q4(6,4),共四种情况.【解析】(1)由抛物线的函数解析式可得出其顶点坐标;(2)作AD轴于点D,BC轴于点C,然后得△AOD∽△OBC,根据相似三角形的性质,可求出BC和OC的值,即看得出其抛物线顶点B的坐标,由此得出抛物线C2的函数解析式;(3)作出图像,在平行四边形中,由于对角线平分平行四边形,即可求得.试题解析:解:(1)A(-2,-1);(2分)(2)以下为解题思路表述:如图,作AD轴于点D,BC轴于点C,由(1)得AD=1,OD=2,OA=,又由条件可推得△AOD∽△OBC,(证明相似,5分)∴,即.∴BC=4,同理可得OC=2,(7分)∴B(2,-4),(8分)∴抛物线C2:.即. (10分)(3)设Q(),如题图和备用图,在平行四边形中,由于对角线平分平行四边形,∴,可得或,∴或-2或6,∴Q1(,4),Q2(,4),Q3(-2,4),Q4(6,4),共四种情况. (14分)注:第(3)小题每个答案1分,共4分.【考点】二次函数综合题.7.(本题满分7分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件。

九年级数学中考专项复习——函数图像与实际问题应用题(附答案)

九年级数学中考专项复习——函数图像与实际问题应用题(附答案)

中考专项复习——函数与实际问题1. 甲、乙两车从A 城出发前往B 城.在整个行程中,甲车离开A 城的距离1km y 与甲车离开A 城的时间 h x 的对应关系如图所示.乙车比甲车晚出发1h 2,以60 km/h 的速度匀速行驶.(Ⅰ)填空:① A ,B 两城相距km② 当02x ≤≤时,甲车的速度为 km/h ③ 乙车比甲车晚 h 到达B 城 ④ 甲车出发4h 时,距离A 城km⑤ 甲、乙两车在行程中相遇时,甲车离开A 城的时间为 h(Ⅱ)当2053x ≤≤时,请直接写出1y 关于x 的函数解析式.(Ⅲ)当1352x ≤≤时,两车所在位置的距离最多相差多少km ?y 1/ km 53232. 已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:离开家的时间/min 6 10 20 46 离家的距离/km12.5(Ⅱ)填空:① 聪聪家到体育场的距离为______km② 聪聪从体育场到文具店的速度为______km/min ③ 聪聪从文具店散步回家的速度为______ km/min④ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.3.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表: 一次购买台数(台) 2 6 15 … 甲电器店收费(元) 6000 … 乙电器店收费(元)4800…(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.4.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.5.共享电动车是一种新理念下的交通工具:主要面向的出行市场,现有A 两种品牌的共享电动车,给出的图象反映了收费元与骑行时间min 之间的对应关系,其中品牌收费方式对应,品牌的收费方式对应. 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为,小明家到工厂的距离为,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时的值是 . (Ⅲ)直接写出,关于的函数解析式.3~10km B y x A 1y B 2y 300m /min 9km x 1y 2y x y /元O 10 20 x /min8 66. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.7. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为 y 乙(个),其函数图象如图所示. (I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =8. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的折出售.在乙书店一次购书的标价总额不超过元的按标价总额计费,超过元后的部分打折.设在同一家书店一次购书的标价总额为(单位:元,). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元… 在甲书店应支付金额/元 … 在乙书店应支付金额/元…(Ⅱ)设在甲书店应支付金额元,在乙书店应支付金额元,分别写出、关于的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额元,则在甲、乙两个书店中的 书店购书应支付的金额少.9. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家,文具店离家.周末小明从家出发,匀速跑步到体育场;在体育场锻炼后,匀速走了到文具店;在文具店停留买笔后,匀速走了返回家.给出的图象反映了这个过程中小明离开家的距离与离开家的时间之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min离开家的距离/ km(II )填空:① 体育场到文具店的距离为______ ② 小明从家到体育场的速度为______ ③ 小明从文具店返回家的速度为______④ 当小明离家的距离为时,他离开家的时间为______ (III )当时,请直接写出关于的函数解析式.81001006x 0x 501503*********y 2y 1y 2y x 2801203km 1.5km 15min 15min 15min 20min 30min km y min x 6122050701.23km km /min km /min 0.6km min 045x ≤≤y x10. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.11. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m②明明在书店停留的时间是min③明明与家距离900m 时,明明离开家的时间是 min(Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式. 时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m400 60012. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km⑤ 当甲车离开A 城120km 时甲车行驶了 h ⑥ 当乙车出发行驶 h 时甲乙两车相距20km13.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F32506886104参考答案1. 解:(Ⅰ)①360 ②60 ③56④6803⑤52或196(Ⅱ)当0≤x ≤2时 160y x =当2223x <≤时 1120y =当222533x <≤时 1280803y x =-(Ⅲ)当1352x ≤≤时由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大 ∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103km2.解:(Ⅰ) 1.5(Ⅱ)①2.5 ②③ ④12或 (Ⅲ)当时当时3. 解:(Ⅰ)16800 33000 14400 36000(Ⅱ)当0<≤5时当>5时,即;=⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数).(x >0且x 为正整数)531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x1y 23000802400y x x %(Ⅲ)设与的总费用的差为元. 则 即. 当时 即 解得.∴当时 选择甲乙两家电器店购买均可 ∵<0∴随的增大而减小∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算4. 解:(Ⅰ)1 0.5(Ⅱ)填空:(i ) 25 (ii )(iii ) (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧x (0≤x ≤15),1(15<x ≤30), x +2(30<x ≤ 45).5.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>6. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y ∵图象过),(500和)(330,80∴⎩⎨⎧+==b k b8033050 1y 2y y 180060002400y x x 6006000y x 0y60060000x10x10x 600y x 1y 2y 23115160115130-解得⎩⎨⎧==505.3b k ∴y 与x 的函数关系式为505.3+=x y )800(≤≤x7. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当时 当时当时∵图象经过(4 120)则 解得:∴ 当时∴(2)设 把 分别代入得解得 ∴与时间t 之间的函数关系式为:8. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲03t t y 40=甲43≤t <120=甲y 84≤t <140b t y +=甲1440120b +⨯=401-=b 84≤t <4040-=t y 甲⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲2b kt y +=乙(5,0)(8,360)⎩⎨⎧+=+=22836050b k b k ⎩⎨⎧-==6001202b k y 乙)乙85(600120≤≤-=t t y9. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x10. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13(Ⅲ)当04x ≤<时5y x =当412x <≤时5154y x =+11. 解:(Ⅰ)1000 600(Ⅱ)①600 ②4 ③4.5或7或338 (Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<) 12. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或213. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x (Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等. 时间/min 2 3 4 12 容器内水量/L 10 15 20 30。

中考数学复习专题训练--函数及其图象

中考数学复习专题训练--函数及其图象

中考数学复习专题训练--函数及其图象专题透析:初中数学中的函数主要包括一次函数、二次函数和反比例函数.其中二次函数是初等函数中的重要内容,在解决各类数学问题和实际问题有着广泛的应用,是近几年中考的热点之一.在函数部分主要以一次函数与反比例函数相结合,一次函数与二次函数相结合考查,考查的形式以选择、填空题、解答题为主,其中二次函数为基架的综合题常作为考试的压轴题.二次函数主要考查表达式、顶点坐标、开口方向、对称轴、最值、用二次函数模型解决生活中的实际问题.利用二次函数解决生活中的实际问题以及二次函数与几何知识相结合的综合题通常以解答题的形式出现.本例谈针对今年中考的函数部分的可能出现的题型分专题讲析(带有预测性),每个专题后面配有互动练习供同学们继续巩固提升.专题Ⅰ.函数的图象与系数之间的关系运用例析例1.在同一直角坐标系中,二次函数()2y ax a c x c =+++与一次函数y ax c =+(a 0≠ )点拨:本题是常见的双函数图象的问题.题中A B 、选项中的a 的符号是矛盾的,要进一步看二次函数的图象分别与坐标轴的交点或两个函数图象的交点,发现C 选项也是矛盾的.故选D .后评:特殊判断:令y 0=,则()2ax a c x c 0+++=,用十字相乘法可以求出12cx 1,x a=-=- ,将c x a=-代入y ax c 0=+=,说明二次函数()2y ax a c x c =+++与一次函数y ax c =+(a 0≠ )的图象同时交于x 轴上的c ,0a ⎛⎫- ⎪⎝⎭,同时由于与y 轴的交点均为()0,c 故选D .例2.如图,二次函数()=++≠2y ax bx c a 0的图象与x 轴交于A B 、两点,与y 轴交于C 点,且对称轴为直线=x 1,点B 的坐标为()-1,0.则下列四个结论:①.+=2a b 0;②.-+<4a 2b c 0;③.>ac 0;④.当<y 0时,<-x 1或>x 2.其中正确的个数为( )A.1B.2C.3D.4分析:由对称轴=-=bx 12a可得+=2a b 0,故①是正确的;当=-x 2时,根据图示容易得到-+<4a 2b c 0,故②是正确的;由图象的开口方向和与y 轴交点的位置可知<>a 0,c 0,所以<ac 0,故③是错误的;根据二次函数图象的对称性可得当<y 0时,<-x 1或>x 3,故④是错误的.故本题正确的答案有2个.故选B.方法小结:1.从图中信息容易判断出结果的.⑴. a b c 、、的符号⇔ abc 积的符号;⑵.当出现a b 、的代数式时,应想到对称轴的运用;⑶.当出现2b 与4ac 的代数式时,应当想到与x 轴交点的个数或顶点坐标公式;⑷.当出现a b c,4a 2b c,9a 3b c,±+±+±+ 应想到x 取对应的特殊值为1±,2±,3±,….2.由图中信息容通过推理、代换才能得出结果的.我们要抓住图中的关键信息,利用“数形结合”的思想,将陌生的问题转化为熟悉的问题来解决.师生互动练习:1.正比例函数=y kx 与反比例函数+=-2k 1y x(k 是常数,且≠k 0)在同一平面直角坐标系)2.在同一平面坐标系中,一次函数y ax b =+和二次函数2y ax bx=+的图象可能为( )3.在同一坐标系中,函数y mx m =+和2y mx 2x 2=-++(m 为常数,且m 0≠)的图象可能为( )4.二次函数()2y ax bx c a 0=++≠的图象如图,给出以下四个结论(虚线部分为对称轴:①.24ac b 0-<;②.4a c 2b+<;③.3b 2c 0+<;④.a b c 0++<;⑤.a b c -+值最大;⑥.()()m am b b a m 1++<≠-.其中正确的个数为 ( )A.3个B.4个C.5个D.6个5.已知抛物线=-+21y x 4x 和直线=2y 2x .我们约定:当x 任取一值时,x 对应的函数值分别为12y y 、;若≠12y y ,取12y y 、中较小值记为M ;当=12y y ,记为==12M y y .下列判断:①.当>x 2时,=2M y ;②.当<x 0时,x 的值越大,M 的值越大;③.使得M 大于4的x 值不存在;④.若=M 2,则=x 1.其中正确的有 ( )A.1个B.2个C.3个D.4个6.如图是二次函数()2y ax bx c a 0=++≠的图象,有以下结论:①.ab 0>;②.a b c 0++<;③.b 2c 0+<;④.a 2b 4c 0-+>;⑤.3a b 2=. 其中正确的有:.(填写序号)7.抛物线2y ax bx c =++的顶点为()D 1,2-,与x 轴的一个交点()A 3,0-和()2,0-之间,其部分图象如图,则下列7个结论:①.a b c 0++<;②.24ac b 8a ->;(提示:结合顶点纵坐标巧代换)③.若()()122,y ,1,y - 是抛物线上的亮点,则12y y <;④.()m am b a b +<- (其中m 是常数);⑤.方程2ax bx c 20++-=有两个不相等的实数根;⑥.222a c b 2ac +>- ;(提示:移项,配方,因式分解.)⑦.3b 2c 0+> .(提示:当x 1=时,y a b c =++L ;结合对称轴1a b 2=巧代换)其中正确的结论是(请填序号).BADB CA x专题Ⅱ.函数的的实际应用例析例.某公司生产一种健身产品在市场上收到普遍欢迎,每年可以在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润为1y (元)与国内销售x(千件)之间的关系为+<≤⎧=⎨-+≤<⎩115x 90(0x 2)y 5x 130(0x 6).若在国外销售,平均每件产品的利润2y (元)与国外的销售数量t (千件)之间的关系为()⎧<≤⎪=⎨-+≤<⎪⎩210000t 2y 5t 110(2t 6).⑴.用x 的代数式表示t ,则t = ;当<≤0x 4时,2y 与x 的函数关系式为2y =;当≤<x时,=2y 100.⑵.求每年该公司的销售这种健身产品的总利润w (元)与国内销售数量x (千件)的函数关系式,并指出x 的取值范围;⑶.该公司每年国内、国外的销售量分别为多少时,可使公司每年的总利润最大?最大值为多少?分析:⑴.由该公司的年产量为6千件,每年在国内、国外市场上全部售完,可得国内销售量+国外销售量=6千件,即+=x t 6,变形为=-t 6x ;根据平均每件产品的利润2y (元)与国外的销售数量t (千件)之间的关系()⎧<≤⎪=⎨-+≤<⎪⎩210000t 2y 5t 110(2t 6)及=-t 6x 即可求出2y 与x 的函数关系.⑵.根据总利润=国内销售的利润+国外销售的利润,结合函数解析式,分三种情况讨论:①.<≤0x 2;②.<≤2x 4;③. <≤4x 6.⑶.先利用配方法将各解析式写成顶点式,再根据二次函数的性质,求出三种情况下的最大值,再比较即可.解:(由同学们自我完成解答过程).师生互动练习:1.某商场一商场某产品每件成本10元,试销阶段发现每件产品的销售价x (元)与产品销售量y (件)之间的关系如下表,且日销售量y (件)与是售价x (元)是一次函数.⑴.求出日销售量y (件)与是售价x (元)的函数函数关系式.⑵.要使每日的利润最大,每件产品的销售价应定为多少元?此时最大利润是多少?2.千年古镇赵化的某宾馆有50个房间供游住宿,当每个房间的房价为每天180元,房间会全部住满;当每个房间每天的房价每增加10元时,就会有一个房间空闲,宾馆需对游客居住的每个房间每天支出20元各种费用,根据规定,每个房间每天的房价不得高于340元,设每个房间的房价每天增加x 元(x 为10的正整数倍).⑴.设一天的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;⑵.设宾馆一天的利润为W 元,求W 与x 的函数关系式;⑶.一天订住多少房间时宾馆的利润最大?最大利润是多少?3.某店经营文具用品,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件文具售价不能高于40元.设每件文具的销售单价上涨x 元时(x 为正整数),月销售利润为y 元.⑴.求y 与x 的函数关系式并直接写出自变量x 的取值范围;⑵.每件文具的售价定为多少元时,月销售利润恰好是2520元?⑶.每件文具的售价定为多少元时刻使月销售利润最大?最大月利润是多少?4.某市的某公司用1800万元购得某种产品的生产技术、生产设备,进行该产品的生产加工.已知生产这种产品每件还需成本费40元,经过市场调研发现:该产品的销售单价,需定在100元到200元之间为合理.当单价在100元时,销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x (元),年销售量为y (万件),年获利为W (万元).(年利润=年销售量-生产成本-投资成本)⑴.直接写出y 与x 之间的函数关系式;⑵.求第一年的年获利W 与x之间的函数关系式,并请说明不论销售单价定为多少,该公司投资的第一年肯定是亏损的,最小亏损多少?⑶.在使第一年亏损最小的前提下,若该公司希望到第二年的年底,弥补第一年的亏损后,两年的总盈利为1490万元,且使产品销售量最大,销售单价应定为对少元?专题Ⅲ. 二次函数和圆共同搭建的综合题例析例.如图,点(),M 40,以点M 为圆心,2为半径的圆与x 轴交于点A B 、,已知抛物线21y x bx c 6=++过点A 和B ,与y 轴交于点C .⑴.求点C 的坐标,并画出抛物线的大致图象;⑵.点()Q 8m 、在抛物线21y x bx c 6=++上,点P对称轴上一个动点,求PQ PB +最小值;⑶.CE 是过点C 的⊙M 的切线,点E 是切点,求OE 所在直线的解析式. 分析:⑴.由已知条件容易得出()()A 2,0B 60、,利用待定系数法求得抛物线21y x bx c 6=++中的⎧=-⎪⎪⎨⎪=⎪⎩4b 3c 2,故抛物线为=+214y x x 263-,要并画出抛物线的大致图象,可以进一步求出此抛物线的对称轴、顶点坐标、与坐标轴交点的坐标,以对称轴和顶点、交点的位置可以画出抛物线的大致图象.见下面的图象(见示意图①):故 C (0,2);⑵.本问可先求出抛物线的对称轴直线=x 4;由于 点()Q 8m 、在抛物线21y x bx c 6=++上,所以把()Q 8m 、代入=+214y x x 263-即可求出m 的值,进而找出Q 点在抛物线=+214y x x 263-的位置,根据轴对称的性质和三角形三边之间的关系,要使抛物线对称轴直线=x 4上的一点P 满足+PQ PB 的值最小,关键是找出Q 点或B 点关于抛物线的直线=x 4为对称轴的对称点,连线找出与抛物线对称轴的直线=x 4对称点即可.由于抛物线是轴对称图形,所以有现成的A B 、是关于直线=x 4;根据轴对称的性质可知=PA PB ,在Rt △DKQ 利用勾股定理便可求出.(见示意图②)⑶. 由于直线OE 过原点,按常规思路要求OE 所在直线的解析式关键是求点E 的坐标,根据题中的条件要求点E 我们只有另辟蹊径;“见切点、连半径、得垂直”,我们再连接CM (见示意图③),容易证明Rt △DEM ≌Rt △DOC ,通过△CDM 和△ODE 都是等腰三角形,可以证得OE ∥OM ,利用待定系数法可以求出OM 所在直线的解析式,利用一次函数的图象与正比例函数图象的平移关系可求OE 所在直线的解析式.解:(由同学们自我完成解答过程).点评:本例的⑴问利用待定系数法可求出抛物线的解析式,较简单;本例的⑵问要在抛物线的对称轴上求作一点P ,且足+PQ PB 的值最小;关键是找出Q B 、两点中其中一点关于抛物线的对称轴的对称点,而抛物线是轴对称图形,给我们提供了“现成”的对称点,所以点P 的位置通过连线找交点即可,而要求+PQ PB 又可以转化在直角三角形中利用勾股定理求出,本问所串联的知识点多;本例的⑶问的难点在于平时我们都习惯于通过点的坐标来求直线的解析式,而忽略了直线的平移规律;由于本问OE 所在直线的点E 的坐标不易求出,所以可以考虑求与直线OE 所平行的直线的解析式,连接CM 这一难点就破解了,十分巧妙!师生互动练习:1.如图,点P 在y 轴上,⊙P 交x 轴于A B 、两点,连接BP 并延长交⊙P 于点C ,过点C 的直线y 2x b =+交x 轴于点D ,且⊙P2⑴.求点B P C 、、的坐标;⑵.求证:CD 是⊙P 的切线;⑶.若二次函数()2y x a 1x 6=-+++的图象经过点B ,求这个二次函数的解析式,并写出使二次函数值小于一次函数y 2x b =+值的x 的取值范围.2. 在直角坐标系中,⊙A 半径为4,圆心A 的坐标为()2,0,⊙A 与x 轴交于E F 、两点,与y 轴交于C D 、两点,过点C 作⊙A 的切线BC ,与x 轴交于点B .⑴.求直线CB 的解析式;⑵.若抛物线()=++≠2y ax bx c a 0的顶点在直线BC 上,与x 轴的交点恰好为点E F 、,求该抛物线的解析式;⑶.试判断点C 是否在抛物线上;⑷.在抛物线上是否存在三个点,由它构成的三角形与△AOC相似,直接写出这样的点.3.已知:如图,抛物线2y x =-x 轴分别交于A B 、两点,与y 轴交于C 点,⊙M 经过原点O 以及A C 、,点D 是劣弧 OA⑴.求抛物线的顶点E 的坐标;⑵.求⊙M 的面积;⑶.连接CD 交AO 于点F ,延长CD 至G ,使=FG 2,试探究点D 运动到何处时,直线GA 与⊙M 相切,并说明理由.专题Ⅳ. 反比例函数、一次函数综合运用例析例.如图,四边形ABCD 为正方形,点A 的坐标为()0,2,点B 的坐标为()-0,3,反比例函数()=≠ky k 0x的图象经过点C ,一次函数=+y kx b 的图象经过点A C 、.⑴.求反比例函数与一次函数的解析式;⑵.点P 是反比例函数图象上的一点,△OAP 的面积恰好等于正方形ABCD 的面积,求点P 的坐标.分析:⑴.先根据正方形的性质求出点C 的坐标为()-5,3,由于C 在反比例函数的图象上,再将C 的代入()=≠ky k 0x,运用待定系数法可以求出反比例函数的解析式;同样根据A C 、的坐标利用待定系数法可以求出一次函数的解析式.⑵.设点P 的坐标为()x,y ,先由△OAP 的面积恰好等于正方形ABCD 的面积,列出关于x 的方程,解方程求出x 的值,再将x 的值代入=-15y x,即可进一步求出点P 的坐标.解:(由同学们自我完成解答过程).师生互动练习:1.如图,一次函数=+y kx b 的图象与反比例函数=-8y xA B 、两点,且点A 的横坐标为和点B 的纵坐标为-2.⑴.求一次函数的解析式;⑵.求△AOB 的面积.2.如图,已知反比例函数=ky x的图象经过点()A ,过点A 作⊥AB x 轴于B ,△AOB ⑴.求k 和b 的值;⑵.若一次函数=+y ax 1的图象经过点A ,并且与x 轴相交于点M ,试求AO :AM 的值;⑶.如果以AM 为一边的正三角形AMP 的顶点P 在二次函数=-+-2y x m 9的图象上,求m 的值.3.如图,已知点()1,3在函数()=>ky x 0x的图象上,E 是矩形ABCD 对角线BD 的中点,函数()=>ky x 0x的图象又经过A E 、两点,点E 的横坐标为m⑴.求k 的值;⑵.求点C 的横坐标(用m 表示);⑶.当∠=ABD 45 时,求m 的值.4.如图,已知直线1y x 2=与双曲线()ky k 0x=>交于A B 、两点,且点A 的横坐标为4.⑴.求K 的值;⑵.若双曲线()ky k 0x=>上一点C 的纵坐标为8,求△AOC 的面积;⑶.过原点O 的另一条直线l 交双曲线()ky k 0x=>于,P Q 两点(P 点在第一象限),若点A B P Q 、、、为顶点组成的四边形面积为24,求点P 的坐标.5. 如图,在平面直角坐标系xOy 中,直线=+1y k x b 交x ()-A 3,0,交y 轴于点()0,2,并与=2ky x点C ,⊥CD x 轴,垂足为D ,OB 是△ACD 的中位线.⑴.求一次函数和反比例函数的解析式;⑵.若点C'是点C 关于y 轴的对称点,并求出△ABC 的面积.备用图。

2021年人教版九年级数学中考复习质量检测 函数及其图像

2021年人教版九年级数学中考复习质量检测   函数及其图像

单元达标测试(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(2020·淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3) B.(-3,2)C.(-3,-2) D.(-2,-3)2.(2020·黄石)函数y=1x-3+x-2 的自变量x的取值范围是()A.x≥2,且x≠3 B.x≥2 C.x≠3 D.x>2,且x≠33.(2020·沈阳)一次函数y=kx+b(k≠0)的图象经过点A(-3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(2020·武汉)若点A(a-1,y1),B(a+1,y2)在反比例函数y=kx(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<-1 B.-1<a<1C.a>1 D.a<-1或a>15.(2020·衢州)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是()A.向左平移2个单位,向下平移2个单位B.向左平移1个单位,向上平移2个单位C.向右平移1个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位6.(2020·张家界)如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数y=-6x和y=8x的图象交于点A和点B,若点C是x轴上任意一点,连接AC,BC,则△ABC的面积为()A.6 B.7 C.8 D.14第6题图第8题图第9题图7.(2020·眉山)已知二次函数y=x2-2ax+a2-2a-4(a为常数)的图象与x轴有交点,且当x>3时,y随x的增大而增大,则a的取值范围是()A.a≥-2 B.a<3 C.-2≤a<3 D.-2≤a≤3 8.(2020·新疆)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=cx在同一平面直角坐标系中的图象可能是()9.(2020·广东)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2-4ac>0;③8a+c<0;④5a +b+2c>0,正确的有()A.4个B.3个C.2个D.1个10.(2020·雅安)已知,等边三角形ABC和正方形DEFG的边长相等,按如图所示的位置摆放(C点与E点重合),点B,C,F共线,△ABC沿BF方向匀速运动,直到B点与F点重合.设运动时间为t,运动过程中两图形重叠部分的面积为S,则下面能大致反映S与t之间关系的函数图象是()第10题图第12题图第14题图第15题图二、填空题(每小题3分,共24分)11.(2020·哈尔滨)抛物线y=3(x-1)2+8的顶点坐标为.12.(2020·遵义)如图,直线y=kx+b(k,b是常数且k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为.13.(2020·宁夏)若二次函数y=-x2+2x+k的图象与x轴有两个交点,则k的取值范围是_.14.(2020·齐齐哈尔)如图,在平面直角坐标系中,矩形ABCD 的边AB在y轴上,点C坐标为(2,-2),并且AO∶BO=1∶2,点D在函数y=kx(x>0)的图象上,则k的值为.15.(2020·绥化)黑龙江省某企业用货车向乡镇运送农用物资,行驶2小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程y(km)与行驶时间x(h)的函数关系如图所示,2小时后货车的速度是km/h.16.(2020·长春)如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=-32(x-h)2+k(h,k为常数)与线段AB交于C,D两点,且CD=12AB,则k的值为.第16题图第17题图第18题图17.(2020·鄂州)如图,点A 是双曲线y =1x (x <0)上一动点,连接OA ,作OB ⊥OA ,且使OB =3OA ,当点A 在双曲线y =1x上运动时,点B 在双曲线y =k x 上移动,则k 的值为 .18.(2020·仙桃)如图,已知直线a :y =x ,直线b :y =-12x 和点P(1,0),过点P 作y 轴的平行线交直线a 于点P 1,过点P 1作x 轴的平行线交直线b 于点P 2,过点P 2作y 轴的平行线交直线a 于点P 3,过点P 3作x 轴的平行线交直线b 于点P 4……按此作法进行下去,则点P 2020的横坐标为 .三、解答题(共66分)19.(8分)(2020·北京)在平面直角坐标系xOy 中,M(x 1,y 1),N(x 2,y 2)为抛物线y =ax 2+bx +c(a >0)上任意两点,其中x 1<x 2.(1)若抛物线的对称轴为直线x =1,当x 1,x 2为何值时,y 1=y 2=c ;(2)设抛物线的对称轴为直线x =t ,若对于x 1+x 2>3,都有y 1<y 2,求t 的取值范围.20.(10分)(2020·泸州)如图,在平面直角坐标系xOy中,已知一次函数y=32x+b的图象与反比例函数y=12x的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.21.(10分)(2020·绵阳)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?22.(12分)(2020·黄石)如图,反比例函数y=kx(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,BC∥x轴.(1)求k的值;(2)以AB,BC为边作菱形ABCD,求D点坐标.23.(12分)(2020·黔东南州)黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x,y之间的部分数值对应关系如表:请写出当11≤x≤19时,y与x之间的函数关系式;(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?24.(14分)(2020·张家界)如图,抛物线y=ax2-6x+c交x 轴于A,B两点,交y轴于点C.直线y=-x+5经过点B,C.(1)求抛物线的解析式;(2)抛物线的对称轴l与直线BC相交于点P,连接AC,AP,判定△APC的形状,并说明理由;(3)在直线BC上是否存在点M,使AM与直线BC的夹角等于∠ACB的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.单元达标测试(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(2020·淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( C )A.(2,3) B.(-3,2)C.(-3,-2) D.(-2,-3)2.(2020·黄石)函数y=1x-3+x-2 的自变量x的取值范围是()A.x≥2,且x≠3 B.x≥2 C.x≠3 D.x>2,且x≠33.(2020·沈阳)一次函数y=kx+b(k≠0)的图象经过点A(-3,0),点B(0,2),那么该图象不经过的象限是( D ) A.第一象限B.第二象限C.第三象限D.第四象限4.(2020·武汉)若点A(a-1,y1),B(a+1,y2)在反比例函数y=kx(k<0)的图象上,且y1>y2,则a的取值范围是( B )A.a<-1 B.-1<a<1C.a>1 D.a<-1或a>15.(2020·衢州)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是( C )A.向左平移2个单位,向下平移2个单位B.向左平移1个单位,向上平移2个单位C.向右平移1个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位6.(2020·张家界)如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数y=-6x和y=8x的图象交于点A和点B,若点C是x轴上任意一点,连接AC,BC,则△ABC的面积为( B )A.6 B.7 C.8 D.14第6题图第8题图第9题图7.(2020·眉山)已知二次函数y=x2-2ax+a2-2a-4(a为常数)的图象与x轴有交点,且当x>3时,y随x的增大而增大,则a的取值范围是( D )A.a≥-2 B.a<3 C.-2≤a<3 D.-2≤a≤3 8.(2020·新疆)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=cx在同一平面直角坐标系中的图象可能是( D )9.(2020·广东)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2-4ac>0;③8a+c<0;④5a +b+2c>0,正确的有( B )A.4个B.3个C.2个D.1个10.(2020·雅安)已知,等边三角形ABC和正方形DEFG的边长相等,按如图所示的位置摆放(C点与E点重合),点B,C,F共线,△ABC沿BF方向匀速运动,直到B点与F点重合.设运动时间为t,运动过程中两图形重叠部分的面积为S,则下面能大致反映S与t之间关系的函数图象是()第10题图第12题图第14题图第15题图二、填空题(每小题3分,共24分)11.(2020·哈尔滨)抛物线y=3(x-1)2+8的顶点坐标为__(1,8)__.12.(2020·遵义)如图,直线y=kx+b(k,b是常数且k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为__x<4__.13.(2020·宁夏)若二次函数y=-x2+2x+k的图象与x轴有两个交点,则k的取值范围是__k>-1__.14.(2020·齐齐哈尔)如图,在平面直角坐标系中,矩形ABCD 的边AB在y轴上,点C坐标为(2,-2),并且AO∶BO=1∶2,点D在函数y=kx(x>0)的图象上,则k的值为__2__.15.(2020·绥化)黑龙江省某企业用货车向乡镇运送农用物资,行驶2小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程y(km)与行驶时间x(h)的函数关系如图所示,2小时后货车的速度是__65__km/h. 16.(2020·长春)如图,在平面直角坐标系中,点A 的坐标为(0,2),点B 的坐标为(4,2).若抛物线y =-32 (x -h)2+k(h ,k 为常数)与线段AB 交于C ,D 两点,且CD =12 AB ,则k 的值为__72 __. 第16题图 第17题图 第18题图17.(2020·鄂州)如图,点A 是双曲线y =1x (x <0)上一动点,连接OA ,作OB ⊥OA ,且使OB =3OA ,当点A 在双曲线y =1x上运动时,点B 在双曲线y =k x 上移动,则k 的值为__-9__.18.(2020·仙桃)如图,已知直线a :y =x ,直线b :y =-12x 和点P(1,0),过点P 作y 轴的平行线交直线a 于点P 1,过点P 1作x 轴的平行线交直线b 于点P 2,过点P 2作y 轴的平行线交直线a 于点P 3,过点P 3作x 轴的平行线交直线b 于点P 4……按此作法进行下去,则点P 2020的横坐标为__21010__.三、解答题(共66分)19.(8分)(2020·北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为直线x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为直线x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.解:(1)由题意知y1=y2=c,∴x1=0,∵对称轴为直线x=1,∴M,N关于直线x=1对称,∴x2=2,∴当x1=0,x2=2时,y1=y2=c(2)∵抛物线的对称轴为直线x=t,若对于x1+x2>3,都有y1<y2,∴t≤3 220.(10分)(2020·泸州)如图,在平面直角坐标系xOy中,已知一次函数y=32x+b的图象与反比例函数y=12x的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.解:(1)∵点A(a ,6)在反比例函数y =12x 的图象上,∴6a=12,∴a =2,∴A(2,6),把A(2,6)代入一次函数y =32 x +b中得:32 ×2+b =6,∴b =3,∴该一次函数的解析式为:y =32 x +3(2)由⎩⎨⎧y =32x +3,y =12x 得:⎩⎪⎨⎪⎧x 1=-4,y 1=-3, ⎩⎪⎨⎪⎧x 2=2,y 2=6, ∴B(-4,-3),当x =0时,y =3,即OC =3,∴S △AOB =S △ACO +S △BCO =12×3×2+12 ×3×4=921.(10分)(2020·绵阳)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x 的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?解:(1)甲书店:y =0.8x ,乙书店:y =⎩⎪⎨⎪⎧x (0<x ≤100)0.6x +40(x>100)(2)令0.8x =0.6x +40,解得:x =200,当x <200时,选择甲书店更省钱,当x =200时,甲乙书店所需费用相同,当x >200时,选择乙书店更省钱22.(12分)(2020·黄石)如图,反比例函数y =k x (k ≠0)的图象与正比例函数y =2x 的图象相交于A(1,a),B 两点,点C 在第四象限,BC ∥x 轴.(1)求k 的值;(2)以AB ,BC 为边作菱形ABCD ,求D 点坐标.解:(1)∵点A(1,a)在直线y =2x 上,∴a =2×1=2,即点A 的坐标为(1,2),∵点A(1,2)是反比例函数y =k x (k ≠0)的图象与正比例函数y =2x 图象的交点,∴k =1×2=2,即k 的值是2(2)由题意得:2x =2x ,解得:x =1或-1,经检验x =1或-1是原方程的解,∴B(-1,-2),∵点A(1,2),∴AB =(1+1)2+(2+2)2=2 5 ,∵菱形ABCD是以AB,BC 为边,且BC∥x轴,∴AD=AB=2 5 ,AD∥x轴,∴D(1+2 5 ,2)23.(12分)(2020·黔东南州)黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x ≤19时,甲商品的日销售量y(单位:件)与销售单价x 之间存在一次函数关系,x ,y 之间的部分数值对应关系如表:请写出当11≤x ≤19时,y 与x 之间的函数关系式;(3)在(2)的条件下,设甲商品的日销售利润为w 元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?解:(1)设甲、乙两种商品的进货单价分别是a 元/件,b 元/件,由题意,得⎩⎪⎨⎪⎧3a +2b =60,2a +3b =65, 解得⎩⎪⎨⎪⎧a =10,b =15, ∴甲、乙两种商品的进货单价分别是10元/件,15元/件(2)设y 与x 之间的函数关系式为y =k 1x +b 1,将(11,18),(19,2)代入,得⎩⎪⎨⎪⎧11k +b =18,19k +b =2, 解得⎩⎪⎨⎪⎧k =-2,b =40, ∴y 与x 之间的函数关系式为y =-2x +40(11≤x ≤19)(3)由题意得:w =(-2x +40)(x -10)=-2x 2+60x -400=-2(x -15)2+50(11≤x ≤19),∴当x =15时,w 有最大值为50,∴当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元24.(14分)(2020·张家界)如图,抛物线y =ax 2-6x +c 交x 轴于A ,B 两点,交y 轴于点C.直线y =-x +5经过点B ,C.(1)求抛物线的解析式;(2)抛物线的对称轴l 与直线BC 相交于点P ,连接AC ,AP ,判定△APC 的形状,并说明理由;(3)在直线BC 上是否存在点M ,使AM 与直线BC 的夹角等于∠ACB 的2倍?若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)∵直线y =-x +5经过点B ,C ,∴当x =0时,可得y =5,即点C 的坐标为(0,5).当y =0时,可得x =5,即点B的坐标为(5,0),∴⎩⎪⎨⎪⎧5=a·02-6×0+c ,0=a·52-6×5+c , 解得⎩⎪⎨⎪⎧a =1,c =5, ∴该抛物线的解析式为y =x 2-6x +5(2)△APC 的为直角三角形,理由如下:∵解方程x 2-6x +5=0,则x 1=1,x 2=5.∴A(1,0),B(5,0).∵抛物线y =x 2-6x+5的对称轴l 为直线x =3,∴△APB 为等腰三角形.∵C 的坐标为(5,0),B 的坐标为(5,0),∴OB =CO =5,即∠ABP =45°.∴∠BAP =45°.∴∠APB =180°-45°-45°=90°.∴∠APC =180°-90°=90°.∴△APC 的为直角三角形(3)如图,作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,∵M 1A =M 1C ,∴∠ACM 1=∠CAM 1.∴∠AM 1B =2∠ACB.∵△ANB 为等腰直角三角形.∴AH =BH =NH =2.∴N(3,2).设AC 的函数解析式为y =kx +b(k ≠0).∵C(0,5),A(1,0),∴⎩⎪⎨⎪⎧5=b ,0=k +b , 解得b =5,k=-5.∴AC 的函数解析式为y =-5x +5,设EM 1的函数解析式为y =15 x +n ,∵点E 的坐标为(12 ,52 ),∴52 =15 ×12 +n ,解得:n =125 ,∴EM 1的函数解析式为y =15 x +125 .∵⎩⎪⎨⎪⎧y =-x +5,y =15x +125, 解得⎩⎨⎧x =136,y =176, ∴M 1的坐标为(136 ,176 ).在直线BC 上作点M 1关于N 点的对称点M 2,设M 2(a ,-a +5),则有:3=136+a 2 ,解得a =236 ,∴-a +5=76 ,∴M 2的坐标为(236,76).综上,存在使AM与直线BC的夹角等于∠ACB的2倍的点,且坐标为M1(136,176),M2(236,76)21 / 21。

中考数学总复习 专题提升四 一次函数图象与性质的综合应用(含答案)

中考数学总复习 专题提升四 一次函数图象与性质的综合应用(含答案)

一次函数图象与性质的综合应用1.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是(C )2.如图,在Rt △ABC 中,∠C =90°,AC =1 cm ,BC =2 cm ,点P 从点A 出发,以1 cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A ,设点P 的运动时间为x (s),线段AP 的长度为y (cm),则能够反映y 与x 之间函数关系的图象大致是(A ),(第2题图))(第14题图)3.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应为点为直线y =34x 上一点,则点B 与其对应点B ′间的距离为 (C )A. 94B. 3C. 4D. 54.汽车以60 km/h 的速度在公路上匀速行驶,1 h 后进入高速路,继续以100 km/h 的速度匀速行驶,则汽车行驶的路程s (km)与行驶的时间t (h)的函数关系的大致图象是(C )5.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是(C )A. 1<m <7B. 3<m <4C. m >1D. m <46.如图,已知一条直线经过点A (0,2),B (1,0),将这条直线向左平移,使其与x 轴、y 轴分别交与点C ,D .若DB =DC ,则直线CD 的函数表达式为y =-2x -2.,(第6题图))7.已知直线y =-(n +1)n +2x +1n +2(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012=__5032014__.解:令x =0,则y =1n +2; 令y =0,则-n +1n +2x +1n +2=0, 解得x =1n +1. ∴S n =12·1n +1·1n +2=12⎝ ⎛⎭⎪⎫1n +1-1n +2,∴S 1+S 2+S 3+…+S 2012=12×⎝ ⎛12-13+13-14+14-15+…+12013-⎭⎪⎫12014=12×⎝ ⎛⎭⎪⎫12-12014=5032014. 8.已知直线y =kx +b ,若k +b =5,kb =6,那么该直线不经过第__四__象限.9.如图,点A ,B 的坐标分别为(0,2),(3,4),点P 为x 轴上的一点.若点B 关于直线AP 的对称点B ′恰好落在x 轴上,则点P 的坐标为__(43,0)__.(第9题图)10.已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(第10题图水银柱的长度x (cm) 4.2 … 8.2 9.8 体温计的读数y (℃)35.0…40.042.0(1)求y 关于的函数关系式(不需要写出函数自变量的取值范围).(2)用该体温计测体温时,水银柱的长度为6.2 cm ,求此时体温计的读数.解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧35=4.2k +b ,40=8.2k +b ,解得⎩⎪⎨⎪⎧k =54,b =29.75.∴y =54x +29.75.∴y 关于x 的函数关系式为y =54x +29.75.(2)当x =6.2时,y =×6.2+29.75=37.5.答:此时体温计的读数为37.5 ℃.(第11题图)11.如图,一次函数y =ax +b 与反比例函数y =k x的图象交于A ,B 两点,点A 坐标为(m ,2),点B 坐标为(-4,n ),OA 与x 轴正半轴夹角的正切值为13,直线AB 交y 轴于点C ,过C作y 轴的垂线,交反比例函数图象于点D ,连结OD ,BD . (1)求一次函数与反比例函数的表达式. (2)求四边形OCBD 的面积.解:(1)如解图,过点A 作AE ⊥x 轴于点E .(第11题图解)∵点A (m ,2),tan∠AOE =13,∴tan ∠AOE =AE OE =2m =13,∴m =6,∴点A (6,2).∵y =k x 的图象过点A (6,2), ∴2=k6,∴k =12,∴反比例函数的表达式为 y =12x.∵点B (-4,n )在 y =12x的图象上,∴n =12-4=-3,∴点B (-4,-3).∵一次函数y =ax +b 过A ,B 两点,∴⎩⎪⎨⎪⎧6k +b =2,-4k +b =-3,解得⎩⎪⎨⎪⎧k =12,b =-1.∴一次函数的表达式为y =12x -1.(2)对于y =12x -1,当x =0时,y =-1,∴点C (0,-1). 当y =-1时,-1=12x,∴x =-12,∴点D (-12,-1), ∴S 四边形OCDB =S △ODC +S △BDC=12×|-12|×|-1|+12×|-12|×|(-3)-(-1)| =6+12 =18.12.甲、乙两车从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h ,并且甲车途中休息了0.5 h ,如图是甲、乙两车行驶的距离y (km)与时间x (h)的函数图象.(第12题图)(1)求出图中m ,a 的值.(2)求出甲车行驶路程y (km)与时间x (h)的函数表达式,并写出相应的x 的取值范围. (3)当乙车行驶多长时间时,两车恰好相距50 km? 解:(1)由题意,得 m =1.5-0.5=1.120÷(3.5-0.5)=40, ∴a =40×1=40. ∴a =40,m =1.(2)∵260÷40=6.5,6.5+0.5=7,∴0≤x ≤7.当0≤x ≤1时,设y 与x 之间的函数表达式为y =k 1x ,由题意,得 40=k 1, ∴y =40x ;当1<x ≤1.5时, y =40;当1.5<x ≤7时,设y 与x 之间的函数表达式为y =k 2x +b ,由题意,得⎩⎪⎨⎪⎧40=1.5k 2+b ,120=3.5k 2+b , 解得⎩⎪⎨⎪⎧k 2=40,b =-20.∴y =40x -20.∴y =⎩⎪⎨⎪⎧40x (0≤x ≤1),40(1<x ≤1.5),40x -20(1.5<x ≤7).(3)设乙车行驶的路程y 与时间x 之间的函数表达式为y =k 3x +b 3,由题意,得⎩⎪⎨⎪⎧0=2k 3+b 3,120=3.5k 3+b 3, 解得⎩⎪⎨⎪⎧k 3=80,b 3=-160.∴y =80x -160.当40x -20-50=80x -160时, 解得x =94.当40x -20+50=80x -160时, 解得x =194.94-2=14,194-2=114. 答:乙车行驶14 h 或114h ,两车恰好相距50 km.13.经统计分析,某市跨河大桥上的车流速度v (千米/小时)是车流密度x (辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x ≤220时,车流速度v 是车流密度x 的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度.(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数(即:车流量=车流速度×车流密度).求大桥上车流量y 的最大值.解:(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,由题意,得⎩⎪⎨⎪⎧80=20k +b ,0=220k +b , 解得⎩⎪⎨⎪⎧k =-25,b =88.∴当20≤x ≤220时,v =-25x +88,当x =100时,v =-25×100+88=48(千米/小时).(2)由题意,得⎩⎪⎨⎪⎧-25x +88>40,-25x +88<60,解得70<x <120.∴应控制大桥上的车流密度在70~120辆/千米范围内. (3)设车流量y 与x 之间的关系式为y =vx , 当0≤x ≤20时, y =80x .∵k =80>0,∴y 随x 的增大而增大, ∴x =20时,y 最大=1600; 当20≤x ≤220时y =(-25x +88)x =-25(x -110)2+4840,∴当x =110时,y 最大=4840. ∵4840>1600,∴当车流密度是110辆/千米,车流量y 取得最大值,是每小时4840辆.14.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳设享受医保的某居民一年的大病住院医疗费用为元,按上述标准报销的金额为y 元. (1)直接写出x ≤50000时,y 关于x 的函数表达式,并注明自变量x 的取值范围. (2)若某居民大病住院医疗费用按标准报销了20000元,则他住院医疗费用是多少元? 解:(1)由题意得:①当x ≤8000时,y =0;②当8000<x ≤30000时,y =(x -8000)×50%=0.5x -4000;③当30000<x ≤50000时,y =(30000-8000)×50%+(x -30000)×60%=0.6x -7000. (2)当花费30000元时,报销钱数为y =0.5×30000-4000=11000, ∵20000>11000,∴他的住院医疗费用超过30000元,当花费是50000元时,报销钱数为y =11000+20000×0.6=23000(元), 故住院医疗费用小于50000元.故把y =20000代入y =0.6x -7000中,得 20000=0.6x -7000, 解得x =45000.答:他住院医疗费用是45000元.15.某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同. (1)求甲、乙两种油茶树苗每株的价格.(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少? 解:(1)设甲、乙两种油茶树苗每株的价格分别为x 元,y 元,由题意,得 ⎩⎪⎨⎪⎧y =x +3,100x=160y ,解得⎩⎪⎨⎪⎧x =5,y =8.答:甲、乙两种油茶树苗每株的价格分别为5元,8元.(2)设购买甲种树苗a 株,则购买乙种树苗(1000-a )株,由题意,得 5a +8(1000-a )=5600,解得a =800,∴乙种树苗购买株数为1000-800=200株.答:购买甲种树苗800株,购买乙种树苗200株.(3)设购买甲种树苗b 株,则购买乙种树苗(1000-b )株,设购买的总费用为W 元,由题意,得90%b +95%(1000-b )≥1000×92%, 解得b ≤600.易得W =5b +8(1000-b )=-3b +8000, ∵k =-3<0,∴W 随b 的增大而减小,∴当b =600时,W 最低=6200元.答:购买甲种树苗600株,购买乙种树苗400株时,费用最低,最低费用是6200元. 16.某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放.某日从上午7点到10点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的变化趋势如图①,每个无人售票窗口售出的车票数y 2(张)与售票时间x (h)的变化趋势是以原点为顶点的抛物线的一部分,如图②.若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同. (1)求图②中所确定抛物线的表达式.(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?(第16题图)解:(1)设y 2=ax 2,当x =2时,y 1=y 2=40,把点(2,40)的坐标代入y 2=ax 2,得 4a =40, 解得a =10,∴y 2=10x 2.(2)设y 1=kx +b (1≤x ≤3),把点(1,0),(2,40)的坐标分别代入y 1=kx +b ,得⎩⎪⎨⎪⎧k +b =0,2k +b =40,解得⎩⎪⎨⎪⎧k =40,b =-40. ∴y 1=40x -40.∴当x =3时,y 1=80,y 2=90.设需要开放m 个普通售票窗口,由题意,得 80m +90×5≥900,∴m ≥558.∵m 取整数, ∴m ≥6.答:至少需要开放6个普通售票窗口.。

九年级数学代数专题复习(四)函数图象知识精讲 人教四年制

九年级数学代数专题复习(四)函数图象知识精讲 人教四年制

九年级数学代数专题复习(四)函数图象知识精讲 人教四年制【同步教育信息】一. 本周教学内容:代数专题复习(四)——函数图象二. 重点、难点:1. 函数解析式与图象的关系2. 常见函数的图象特征【典型例题】[例1] 某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3小时后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y )是时间(t )的函数,那么这个函数的大致图象是( )A B C D解:当30≤≤t 时,t y 100= 当3>t 时,)3)(100150(300---=t y即t y 50450-=,故选B 。

[例2] 在同一坐标系中,函数c bx ax y ++=2和c ax bx y ++=2的图象只可能是( )解:易知两图象交点为(0,c )和(1,c b a ++)且对称轴在y 轴同侧,故选C 。

[例3] 如图,P 是反比例函数xky =的图象上的一点,过P 点分别向x 轴、y 轴引垂线,得图中阴影部分的矩形面积为3,则这个反比例函数的解析式为。

解:设P (0x ,0y ),则矩形面积为300=-y x ,故300-==y x k∴ 填xy 3-= [例4] 已知抛物线c bx ax y ++=2与x 轴有两个不同交点,且两交点之间距离小于2,若04=-b a ,0>+-c b a ,则下列判断中错误的是。

①0<abc ②0>c ③c a >4④0>++c b a解:如图,易知对称轴为2-=x ,故0>a ,0>b ,0>c ,且042>-ac b ∴c a >4 又知1=x 时,0>++=c b a y ,故应填①[例5] 函数2||-=x y 的图象应该是( )解:易知函数最小值为2-,故选C[例6] 一次函数b ax y +=1,a bx y +=2,在同一坐标系中示意图象为( )解:易知两直线交于点(1,b a +)排除A 和B 项,又由于a 、b 不为零,故选D 。

九年级数学中考复习-函数及其图像专题-二次函数的图像3教案

九年级数学中考复习-函数及其图像专题-二次函数的图像3教案

一、素质教育目标(一)知识教学点1.使学生会用描点法画出二次函数y=ax2+k与y=a(x-h的图象;2.使学生了解抛物线y=ax2+k与y=a(x-h)2的对称轴与顶点;3.了解抛物线y=ax2+k与y=a(x-h)2同y=ax2的位置关系.(二)能力训练点:1.继续通过画图的教学,培养学生的动手能力;2.培养学生观察、分析、总结的能力;3.继续向学生进行数形结合的数学思想方法的渗透.(三)德育渗透点:向学生渗透事物总是不断运动、变化和发展的观点.二、教学重点、难点和疑点1.教学重点:画出形如y=ax2+k与形如y=a(x-h的二次函数的图象;能指出上述函数图象的开口方向,对称轴,顶点坐标.因为画出函数图象,是我们研究函数性质的重要方法,只有在准确的图象启发下,我们才能正确得出函数图象的变化趋势和性质,而这些特殊二次函数问题的研究,又是我们研究一般二次函数的基础.2.教学难点:恰当地选值列表,正确地画出形如y=ax2+k和形如y=a(x-h的函数图象.因为二次函数的图象,随着我们研究越来越深入,越来越一般,画起来也就越来越复杂,而恰当地选值,是画出二次函数图象,并能使我们从图象正确得出结论的关键.三、教学步骤(一)明确目标提问:1.什么是二次函数?2.我们已研究过了什么样的二次函数?3.形如y=ax2的二次函数的开口方向,对称轴,顶点坐标各是什么?通过这三个问题,进一步复习巩固所学的知识点,同时引出本节课要学习的问题.从这节课开始,我们就来研究二次函数y=ax2+bx+c的图象.(板书)(二)整体感知复习提问:用描点法画出函数y=x2的图象,并根据图象指出:抛物线y=x2的开口方向,对称轴与顶点坐标.教师可边提问边在黑板上列出表格,同时在事先准备好的有坐标系的小黑板上画出该函数的图象,然后可以找层次较低的学生来指出抛物线y=x2的开口方向,对称轴及顶点坐标,针对学生的回答情况加以总结,评价.下面,我们来看一下如何完成下面的例题?(出示幻灯)例1 在同一平面直角坐标系内画出函数y=与y=的图象.可以由学生先选择好自变量的值列表,就列在刚才复习中画函数y=x2的图象所列的表下面.如下表:列完表之后,可以让一名同学上黑板,把这两个函数的图象画在刚才复习中画有函数y=x2的图象的小黑板上,以便于下面的比较,其他同学在练习本上完成,教师巡回指导,等上黑板的同学画完,再集中加以总结即可.然后,由学生来观察小黑板上画出的三条抛物线,让学生思考下列问题:(1)抛物线y=的开口方向,对称轴与顶点坐标是什么?(2)抛物线y=x2-1的开口方向,对称轴与顶点坐标是什么?这两个问题可以由图象直接得到,可适当找一些层次较低的学生来回答,给他们以表现的机会.(3)抛物线y=x2+1,y=x2-1与y=x2的开口方向,对称轴,顶点坐标有何异同?(4)抛物线y=x2+1,y=x2-1与y=x2有什么关系?通过这两个问题,可使学生深入理解这三条抛物线之间的联系与区别,便于学生以后分析问题.答:形状相同,位置不同.关于上述回答可继续提问:(可按学生的层次不同来选择问题的深度)①你所说的形状相同具体是指什么?答:抛物线的开口方向和开口大小都相同.②根据你所学过的知识能否回答:为何这三条抛物线的开口方向和开口大小都相同?答:因为a的值相同.通过这一问题,使学生对此类问题形成规律:抛物线的形状相同就说明a的值相同,而a的值相同就可以说抛物线的形状相同.加深学生对系数a的作用的理解.③这三条抛物线的位置有何不同?它们之间可有什么关系?先由学生思考,讨论之后,给出答案.答:若沿y轴平移,这三条抛物线可重合.④抛物线y=x2+1是由抛物线y=x2沿y轴怎样移动了几个单位得到的?抛物线y=x2-1呢?答:抛物线y=x2+1是由抛物线y=x2沿y轴向上平移1个单位得到的;而抛物线y=x2-1是由抛物线y=x2沿y轴向下平移1个单位得到的.⑤你认为是什么决定了会这样平移?答:y=ax2+k中的k的值决定了会这样平移.若k>0,则向上平移,若k<0,则向下平移.练习题1由学生独立完成,口答.下面,我们再来看一类二次函数的图象:(出示幻灯)的图象.注意:画这两个图形时,参考前面画图列表时x的取值都是关于某一个值对称的,可先让学生猜测画这两个图时x的取值各以应什么数为中间点,然后左右能对称.通过这样的训练能帮助学生以后自主考虑问题时怎样找思路.列完表之后,与例1一样处理,找一名同学板演,教师最好能事先。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级中考数学总复习专题训练(四)(函数及其图象)考试时间:120分钟 满分150分一、选择题(每小题4分,共52分)1.一次函数y=3x-1的图象不经过( )。

A .第一象限B .第二象限C .第三象限D .第四象限2.某闭合电路中,电源电压为定值,电流I (A )与电阻R (Ω)成反比例.如图表示的是该电路中电流I 与电阻R 之间函数关系的图象,则用电阻R 表示电流I 的函数解析式为( )。

A .I =6RB .I =-6RC .I =3RD .I =2R3.函数xy 1=和函数y=x 的图象在同一平面直角坐标系内的交点个数是( )。

A.1个B.2个C.3个D.0个 4.设A (x 1,y 1)、B (x 2,y 2)是反比例函数y=x2-图象上的两点,若x 1<x 2<0,则y 1与y 2之间的关系是( )。

A. y 2<y 1<0B. y 1<y 2<0C. y 2>y 1>0D. y 1>y 2>0 5.已知方程组⎩⎨⎧-=--=-3232y x y x 的解为⎩⎨⎧=-=11y x ,则函数y=2x+3与y= 12 x+32的交点坐标为( )。

A .(l ,5)B .(-1,1)C .(l ,2)D .(4,l ) 6.反比例函数xk y3+=的图象在二、四象限,则k 的取值范围是( )。

A .K ≤3B .K ≥-3C .K >3D .K <-3. 7.当k <0时,反比例函数y =xk 和一次函数y =kx +2的图象大致是图中的( )。

ABC D8.如图,正比例函数y=x 和y=mx 的图象与反比例函数y =xk 的图象分别交于第一象限内的A 、C 两点,过A 、C分别向x 轴作垂线,垂足分别为B 、D.若直角三角形AOB 与直角三角形COD 的面积分别为S 1、S 2,则S 1与S 2的关系为( )。

A .S 1>S 2 B. S 1=S 2C. S 1<S 2D.与m 、k 的值有关9.抛物线y=x 2-2x+1的对称轴是( )。

A .直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-210.抛物线y=x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为( )。

A .y=x 2+4x+3 B. y=x 2+4x+5C. y=x 2-4x+3 D .y=x 2-4x -511.无论m 为任何实数,二次函数y=x 2+(2-m)x+m 的图象总过的点是( )。

A.(-1,0)B.(1,0)C.(-1,3)D.(1,3) 12.无论m 为何实数,直线m x y 2+=与4+-=x y 的交点不可能在( )。

A.第一象限 B.第二象限 C.第三象限 D.第四象限13.在反比例函数y=kx中,当x >0时,y 随x 的增大而增大,则二次函数y=kx 2+2kx 的图像大致是( )。

二、填空题(每小题4分,共32分)1.直线y=3x+6与x 轴的交点的横坐标x 的值是方程2x+a=0的解,则a•的 值是_________。

2.点A(1,m)在函数y=2x 的图象上,则点A 关于y 轴的对称的点的坐标为_________。

3.已知函数32)2(3--+=m x m y 是一次函数,则m=_________,此函数图象经过第_________象限。

4.若函数y=25(2)kk x --是反比例函数,则k=_________。

5.已知y 与x +l 成正比例,当x=5时,y =12,则y 关于x 的函数解析式是6.二次函数y=mx 2+2x +m -4m 2的图象过原点,则此抛物线的顶点坐标是_________。

(-4,-4)7.已知抛物线y=ax 2+bx+c 的图象顶点为(-2,3),且过(-1,5),则抛物线的表达式为_________。

8.如果抛物线y=-2x 2+mx -3的顶点在x 轴正半轴上,则m=_________。

三、解答下列各题(每小题11分,共66分)1.某电信公司开设了甲、乙两种市内移动通信业务。

甲种使用者每月需缴15元月租费, 然后每通话1分钟, 再付话费0.3元; 乙种使用者不缴月租费, 每通话1分钟, 付话费0.6元。

若一个月内通话时间为x 分钟, 甲、乙两种的费用分别为y 1和y 2元.(1)试分别写出y 1、y 2与x 之间的函数关系式; (2)在同一坐标系中画出y 1、y 2的图像;(3)根据一个月通话时间, 你认为选用哪种通信业务更优惠?2.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元?3.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.(1)要使鸡场面积最大,鸡场的长度应为多少m?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?比较(1)(2)的结果,你能得到什么结论?4.如图,二次函数cbxxy++=2的图象经过点M(1,—2)、N(—1,6)。

(1)求二次函数cbxxy++=2的关系式。

(3分)(2)把Rt△ABC放在坐标系内,其中∠CAB = 90°,点A、B的坐标分别为(1,0)、(4,0),BC = 5。

将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离。

(4分)5.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为X轴建立直角坐标系(如图所示)。

(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和....的最大值是多少?请你帮施工队计算一下.PDAy6.如图,直线k y =和双曲线xk y =相交于点P ,过P 点作PA 0垂直x 轴,垂足A 0,x 轴上的点A 0、A 1、A 2、……、A n 的横坐标是连续整数。

过点A 1、A 2、……、A n 分别作x 轴的垂线,与双曲线xk y =(x > 0)及直线k y =分别交于点B 1、B 2、……、B n 、C 1、C 2、……、C n . ⑴求A 0点坐标; ⑵求1111B A B C 及2222B A B C 的值;⑶试猜想nn n n B A B C 的值(直接写答案)7.已知抛物线y =ax 2(a >0)上有两点A 、B ,其横坐标分别为-1,2,请探求关于a 的取值情况,△ABO 可能是直角三角形吗?不能,说明理由;能是直角三角形,写出探求过程。

九年级中考数学总复习专题训练(四)参考答案一、1、B 2、A 3、B 4、C 5、B 6、D 7、B 8、B 9、A 10、A 11、D 12、C 13、D 二、1、4; 2、(-1,2); 3、-2,一、二、四; 4、-2;5、y=2x+2; 6、(-4,-4); 7、y=2x 2+8x+11 ;8、62-。

三、1.(1)y 1=15+0.3x (x ≥0)y 2=0.6x (x ≥0)(2)如下图:(3)由图像知:当一个月通话时间大于50分钟时, 甲种业务更优惠 【说明: 用方程或不等式求解进行分类讨论也可】2、⑴若商店经营该商品不降价,则一天可获利润100³(100-80)=2000(元) ⑵ ①依题意得:(100-80-x )(100+10x )=2160即x 2-10x+16=0 解得:x 1=2,x 2=8经检验:x 1=2,x 2=8都是方程的解,且符合题意.答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元.②依题意得:y=(100-80-x )(100+10x )∴y= -10x 2+100x+2000=-10(x-5)2+2250画草图(略) 观察图像可得:当2≤x ≤8时,y ≥2160∴当2≤x ≤8时,商店所获利润不少于2160元. 3、(1)依题意得鸡场面积y=-.350312x x +-∵y=-31x 2+350x=31-(x 2-50x)=-31(x -25)2+3625,∴当x=25时,y 最大=3625,即鸡场的长度为25 m 时,其面积最大为3625m 2.(2)如中间有几道隔墙,则隔墙长为nx -50m.∴y=nx -50²x=-n1x 2+n50x=-n 1(x 2-50x) =-n 1(x -25)2+n625,当x=25时,y 最大=n625,即鸡场的长度为25 m 时,鸡场面积为n625 m 2.结论:无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25 m.4、(1)∵M (1,-2),N (-1,6)在二次函数y = x 2+bx+c 的图象上,∴⎩⎨⎧=+--=++.61,21c b c b 解得⎩⎨⎧=-=.1,4c b 二次函数的关系式为y = x 2-4x+1。

(2)Rt △ABC 中,AB = 3,BC = 5,∴AC = 4,,034,14422=--+-=x x x x解得.72212164±=+±=x∵A (1,0),∴点C 落在抛物线上时,△ABC 向右平移71+个单位。

5、解:⑴()()12,0,6,6M P⑵(法1)设这条抛物线的函数解析式 为:()266y a x =-+ ∵抛物线过O(0,0) ∴06)60(2=+-a 解得16a =-∴这条抛物线的函数解析式为:()21666y x =--+即2126y x x =-+.(法2)设这条抛物线的函数解析式 为:c bx ax y ++=2 ∵抛物线过O(0,0),()()12,0,6,6M P 三点,∴⎪⎩⎪⎨⎧=+⋅+⋅=+⋅+⋅=01212666022c b a c b a c 解得:⎪⎪⎩⎪⎪⎨⎧==-=0261c b a∴这条抛物线的函数解析式为:2126y x x =-+.⑶设点A 的坐标为21,26m m m ⎛⎫-+ ⎪⎝⎭∴OB=m ,AB=DC=m m2612+-根据抛物线的轴对称,可得:OB CM m ==∴122BC m =- 即AD=12-2m ∴l =AB+AD+DC=m mm m m26121226122+--++-=122312++-m m=15)3(312+--m∴当m=3,即OB=3米时,三根木杆长度之和l 的最大值为15米。

相关文档
最新文档