初一数学
初一数学知识点(精选5篇)

初一数学知识点(精选5篇)第一章有理数1.整数。
(正整数、0、负整数)2.正数和负数。
3.有理数。
(整数和分数统称有理数)4.自然数。
(非负整数)5.相反数。
(只有符号不同的两个数互为相反数)6.绝对值。
(一个数的绝对值就是表示这个数的点与原点的距离)第二章代数式1.代数式。
(用运算符号把数或表示数的字母连接起来的式子)2.代数式的值。
(求代数式的值就是给代数式中的字母个代数式确定值)第三章实数1.平方根。
(如果一个数的平方等于a,那么这个数就叫做a 的平方根)2.算数平方根。
(一个非负数的正的平方根叫做算数平方根)3.立方根。
(如果一个数的立方等于a,那么这个数就叫做a 的立方根)4.实数。
(有理数和无理数)5.实数的性质。
(实数能进行减、乘、除、加、乘方运算)6.近似数。
(通过四舍五入得到的与精确数接近的数)第四章整式和分式1.整式。
(与有理数相对的数式叫整式)2.分式。
(整式的一部分)3.分式的值为零。
(分子为零且分母不等于零)4.分式的乘除。
(乘除法转化成乘法计算)5.分式的加减。
(异分母的分式加减转化成通分后求和)6.分式方程。
(分母里含有未知数的方程叫分式方程)初一数学知识点篇21.有理数:有理数包括正整数、0和负整数。
有理数可以用分数表示。
2.数轴:数轴是一条直线,它的上面写着从0开始连续不断的点。
数轴上的0是正负数的分界线。
3.相反数:如果两个数的和为0,那么这两个数是一对相反数。
相反数包括正数和负数。
4.绝对值:一个数的绝对值是它离0的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数。
5.代数式:用代数式表示出数量关系和变化规律的式子。
包括等式、不等式、方程、不等式、函数等。
6.整式:整式包括单项式和多项式。
单项式是由数字和字母组成,多项式是由几个单项式组成。
7.分式:分式包括分子和分母。
分子是由数字和字母组成,分母是由分式和整式组成。
8.方程:用方程表示出两个量之间的关系,并且这个方程是一个等式。
七年级上册数学要点

七年级上册数学要点
1. 正负数:正数是大于0的数,负数是小于0的数。
0既不是正数也不是负数。
2. 有理数:有理数是可以表示为两个整数之比的数,包括整数和分数。
整数包括正整数、0和负整数,分数包括正分数和负分数。
3. 数轴:数轴是一条直线,可以用来表示所有的有理数。
数轴上的每一个点都对应一个有理数,反之亦然。
数轴上的点有原点(表示0的点)、正方向和单位长度。
在数轴上,右边的数总比左边的数大。
4. 相反数和绝对值:只有符号不同的两个数互为相反数。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
5. 倒数:乘积为1的两个数互为倒数。
0没有倒数。
6. 直线、射线和线段:直线可以向两侧无限延伸,没有端点。
射线有一个端点,可以向一侧无限延伸。
线段有两个端点,长度有限。
7. 角:角是由有公共端点的两条射线组成的图形。
这个公共端点是角的顶点,两条射线是角的两边。
角的度、分、秒是60进制的,即1度等于60分,1分等于60秒。
初一数学知识点归纳(全)

初一数学知识点归纳(全)初一数学知识点归纳如下:一、有理数1. 有理数的定义:能写成两个整数的比的数叫做有理数。
2. 有理数的分类:正有理数、负有理数和零。
3. 有理数的性质:比较两个有理数的大小,绝对值大的数较大;绝对值相等的数,正数较大;都是负数时,绝对值小的数较大。
4. 有理数的运算:加法、减法、乘法和除法。
二、整式的加减1. 整式的定义:由数字、字母的乘积组成的代数式叫做整式。
2. 整式的加减法法则:同类项合并,即把同类项的系数相加或相减,字母和字母的指数保持不变。
三、一元一次方程1. 方程的定义:含有未知数的等式叫做方程。
2. 一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1的方程叫做一元一次方程。
3. 解一元一次方程的方法:移项、合并同类项、系数化为1。
四、几何图形初步1. 几何图形的定义:用点、线、面等基本元素构成的图形叫做几何图形。
2. 几何图形的分类:平面图形和立体图形。
3. 平面图形的基本性质:对称性、相似性、全等性等。
4. 立体图形的基本性质:表面积、体积、棱长等。
五、相交线与平行线1. 相交线的定义:在同一平面内,两条直线相交于一点,这个点叫做交点。
2. 平行线的定义:在同一平面内,两条直线永远不相交,这两条直线叫做平行线。
3. 平行线的性质:同位角相等,内错角相等,同旁内角互补。
六、实数1. 实数的定义:有理数和无理数的统称叫做实数。
2. 实数的分类:有理数、无理数。
3. 无理数的定义:不能写成两个整数的比的数叫做无理数。
4. 实数的运算:加法、减法、乘法和除法。
七、平面直角坐标系1. 平面直角坐标系的定义:在平面上,以两条互相垂直的直线为坐标轴,建立直角坐标系。
2. 点的坐标:在平面直角坐标系中,每个点都有一个唯一的有序实数对(x, y)与之对应,这个有序实数对叫做该点的坐标。
3. 函数的定义:在平面直角坐标系中,对于每一个自变量x,都有唯一确定的因变量y与之对应,这种对应关系叫做函数。
初一数学知识点总结归纳(5篇)

初一数学知识点总结归纳第一章有理数1、大于0的数是正数。
2、有理数分类:正有理数、0、负有理数。
3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)4、规定了原点,单位长度,正方向的直线称为数轴。
5、数的大小比较:①正数大于0,0大于负数,正数大于负数。
②两个负数比较,绝对值大的反而小。
6、只有符号不同的两个数称互为相反数。
7、若a+b=0,则a,b互为相反数8、表示数a的点到原点的距离称为数a的绝对值9、绝对值的三句:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
10、有理数的计算:先算符号、再算数值。
11、加减:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)12、乘除:同号得正,异号的负13、乘方:表示n个相同因数的乘积。
14、负数的奇次幂是负数,负数的偶次幂是正数。
15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。
16、科学计数法:用ax10n表示一个数。
(其中a是整数数位只有一位的数)17、左边第一个非零的数字起,所有的数字都是有效数字。
【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
初一数学知识点总结(集合15篇)

初一数学知识点总结(集合15篇)初一数学知识点总结1初一数学:七年级数学公式总结乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解根与系数的关系-b+√(b2-4ac)/2a-b-√(b2-4ac)/2aX1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+( 2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82 +…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6 *7+…+n(n+1)=n(n+1)(n+2)/3其他常用数学公式正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c"*h正棱锥侧面积S=1/2c*h"正棱台侧面积S=1/2(c+c")h"圆台侧面积S=1/2(c+c")l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S"L注:其中,S"是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h初一数学知识点总结2知识点、概念总结1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。
初一数学必背知识点

初一数学必背知识点1、几何:(1)图形的基本类型。
包括点、线段、矩形、正方形、三角形、圆形、椭圆及其细分。
(2)形状的特征。
包括形态、体积、边长、角度、相交、平行、对称等。
(3)图形的构造。
包括平移、旋转、缩放及其原理。
2、数理逻辑:(1)符号逻辑。
包括判断式、析出式和表达式。
(2)蕴含关系。
包括等价、蕴含、非蕴含及其特征和联系。
(3)分析与推理。
包括逻辑推理、方程求解等技能的应用。
3、代数:(1)数的概念以及运算:整数、分数、小数、百分数及其运算。
(2)变量及其性质:变量、常数、系数、项的构成及其特征。
(3)方程的特殊形式及其解法:一元二次方程、平方差公式法、二次差公式法、变量代换法等。
(4)函数:一元函数、双调函数、正比函数、对数函数及其特征概念。
4、排列组合:(1)组合数学。
排列、组合、部分组合、比例组合的概念及其应用。
(2)概率论。
不同概率的概念、独立事件、同构事件、相互独立事件、期望及其应用。
(3)统计学。
比率、差率、积率、比值、百分比,均数及其用法。
5、几何分析:(1)点、直线、圆和线段。
它们的性质、相交、平行、相等等概念。
(2)平面图形。
矩形、正方形、三角形、多边形和等腰三角形的性质。
(3)圆锥、圆台及其应用。
球、圆柱体的体积及其计算方法。
(4)立体图形的概念。
正四、正八面体的性质和计算方法。
(5)空间几何图形的构成。
棱柱、棱台、棱锥及其计算方法。
以上就是初一数学必背知识点的梗概,学会这些知识点是学好数学的基础,考生们要用心研究理解,并归纳背诵,总结过程把握规律,能够更好地掌握数学知识点。
初一数学知识点总结整理

初一数学知识点总结整理一、数与式1. 数的概念:自然数、整数、有理数、无理数、实数。
2. 整数的加减法:同号两数相加、异号两数相减。
3. 分数的概念和加减法:分数的定义和基本性质。
4. 整数和分数的混合运算。
5. 空集的概念和表示法。
6. 等式的概念:等式的性质、等式的移项。
7. 代数式:字母的含义、代数式的性质。
8. 用字母表示数:字母代表数的大小、字母代表数的性质。
9. 代数式的加减法:同类项的加减法、同指数项的加减法。
10. 解一元一次方程:逆运算法解方程、两边乘以同一个数解方程。
11. 解一元一次方程的实际问题。
二、数的计算1. 大数的认识:亿、万亿的认识、大数的读法和写法。
2. 大数的加减法:列竖式计算、进位和退位。
3. 大数的乘法:列竖式计算、进位的规律。
4. 大数的除法:列竖式计算、退位和进位的规律。
5. 规则运算:优先级与结合律。
三、图形与几何1. 图形的分类:几何图形、平面图形、立体图形。
2. 角的概念和性质:角的定义、角的种类和性质。
3. 直线和线段的性质:直线的定义、线段的定义、直线和线段的比较。
4. 直角、钝角和锐角的认识与比较。
5. 两条直线的位置关系:平行线、垂直线、相交线。
6. 平行四边形的性质:对角线的性质、边的性质。
7. 正方形、长方形、菱形、矩形的性质。
8. 三角形的构造与性质:三角形的定义和分类、三角形的性质。
9. 相似三角形的定义和性质:相似三角形的判定、相似三角形的比例关系。
10. 直角三角形的性质和勾股定理。
11. 平行线的判定和性质:与平行线有关的角、平行线与平行线的交线。
12. 圆的概念和性质:圆的定义、圆心和半径、圆周长和面积。
四、数据与概率1. 数据的收集和整理:调查和询问、数据的组织和表示方法。
2. 平均值的概念和计算:平均数、中位数、众数的计算。
3. 统计图表的制作和分析:条形统计图、折线统计图、饼状统计图。
4. 概率的基本概念和计算:概率的定义、实验和事件、概率的计算。
初一数学目录

初一数学目录
一、数与式初步
自然数的性质与运算
整数的认识整数的加法与减法整数的乘法与除法整数的混合运算小数的性质与运算
小数的认识小数的加法与减法小数的乘法与除法小数的混合运算分数的性质与运算
分数的认识分数的加法与减法分数的乘法与除法分数的混合运算因数与倍数
最大公约数与最小公倍数素数与合数二、方程与不等式
一元一次方程
方程的概念与性质一元一次方程的解法一元一次方程的应用
不等式及其性质
不等式的概念与性质不等式的解法不等式在实际问题中的应用三、函数初步
函数的概念
函数的定义与性质函数的表示方法
函数的图像
平面直角坐标系函数的图像绘制函数的图像与性质的关系四、图形与几何
平面图形
常见的平面图形及其性质平面图形的周长与面积
立体图形
常见的立体图形及其性质立体图形的表面积与体积
图形的运动与变换
平移、旋转与对称相似与全等五、角与三角形
角的概念与性质
角的定义与度量角的分类与性质
三角形的概念与性质
三角形的分类与性质三角形的全等与相似三角形的边与角的关系六、统计与概率
统计
数据的收集与整理数据的描述与分析统计图表
概率
概率的概念与性质概率的计算方法概率在实际问题中的应用七、综合与实践
数学在实际生活中的应用
数学与经济数学与科技数学与社会
数学实验与探究
实验设计数据处理与分析结论的得出与讨论以上即为初一数学的目录内容,涵盖了数与式初步、方程与不等式、函数初步、图形与几何、角与三角形、统计与概率以及综合与实践等方面。
学生在学习过程中,应注重理论与实践相结合,深入理解数学的基础概念,培养解决实际问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学教材(七年级上册)的内容简介(完)
第一章:有理数(5节)
1、正数和负数:
正数:大于0的数叫做正数。
+2,+3,+可以省略
负数:小于0的数叫做负数。
-1,-2,—不可以省
0既不是正数,也不是负数
表示词语:低于、高于、零上、零下、盈利、亏损、增加、减少等等
±表示一个范围如:
(20±2)C ︒ 18C ︒ 22C ︒ 2、有理数:可以写成分数的数称为有理数。
数轴:
相反数:正数的相反数为负数,负数的相反数是正数,0的相反数是0 绝对值:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
记作 a
(1) 正数大于0,0大于负数,正数大于负数
(2) 两个负数,绝对值打的反而小。
3、有理数的加减法:法则,加法交换律,加法结合律
4、有理数的乘除法:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.
乘积是1的两个数互为倒数
乘法的交换律、结合律、分配律
除以一个数,相当于乘这个数的倒数。
5、有理数的乘方:求n 个相同因数的积的运算,叫乘方。
乘方的结果叫幂
n a :a 叫底数,n 叫指数
有理数的混合运算:(运算顺序)
1、先乘方,在乘除,最后加减;
2、同级运算,从左到右进行;
3、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
6、科学记数法:把一个大于10的数表示成n
10a ⨯的形式(其中a 是整数数位只有一位的数,n 是正整数),这样的记数法叫科学记数法。
7、近似数:大都采用:四舍五入,
有效数字:从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
第二章:整式的加减(2节)
1、整式
单项式:式子都是数或者字母的乘积。
如:100t,2a 6,at,t 2-,a,2
单独的一个数或者一个字母也是单项式
单项式的系数: 单项式的次
多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫常数项。
(定义中的和不能改成加减,如:13x 22--y x 是一个三次三项式:2x 、y x 23-、1-)
多项式的次数: 单项式和多项式统称为整式。
2、整式的加减
同类项:整式中所含字母相同,并且相同字母的指数也相同的项叫同类项。
合并同类项:把多项式中的同类项合并成一项,叫合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变:2283732x 42222---++++y x x x xy x
554
23222++--x x y x xy
去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符
号与原来的符号相同。
如果括号外的因数是负数,去括号后原括号内各项的符
号与原来的符号相反。
如:)25()3a 4(22ab b a ab b +---、⎥⎦
⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x 第三章:一元一次方程(4节)
1、方程:列方程时,要先设字母表示未知数,然后根据问题中
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用 数学解决实际问题的一种方法。
一元一次方程:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫一元一次方程。
解方程:求出使方程中等号左右两边相等的未知数的值的过程。
方程的解:未知数的值。
2、等式的基本性质:
等式的两边同加(或同减)同一个数(或式子),结果不变。
等式两边同乘同一个数,或除以同一个不为0的数,结果仍相等。
3、一元一次方程的解法:移项——合并同类项系数化1
4、实际问题与一元一次方程:同1.
第四章:图形认识初步:
1、直线、线段、射线、线段的中点、距离。
2、角的定义、
1周角0
360
、1平角=0
180、1度=60分、1分=60秒
角的平分线、余角、补角。