八年级数学周清知识清单 2013
初二数学知识点梳理

初二数学知识点梳理学习学问要擅长思索,思索,再思索。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。
下面是我给大家整理的初二数学学问点,盼望对大家有所协助。
八年级数学学问点1、全等三角形的对应边、对应角相等2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5、边边边公理(SSS)有三边对应相等的两个三角形全等6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7、定理1在角的平分线上的点到这个角的两边的距离相等8、定理2到一个角的两边的距离一样的点,在这个角的平分线上9、角的平分线是到角的两边距离相等的全部点的集合10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边12、等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合13、推论3等边三角形的各角都相等,并且每一个角都等于60°14、等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15、推论1三个角都相等的三角形是等边三角形16、推论2有一个角等于60°的等腰三角形是等边三角形八年级上册数学学问点1、线段的垂直平分线可看作和线段两端点距离相等的全部点的集合2、定理1关于某条直线对称的两个图形是全等形3、定理2假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线4、定理3两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上5、逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称6、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^27、勾股定理的逆定理假如三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形8、定理四边形的内角和等于360°9、四边形的外角和等于360°10、多边形内角和定理n边形的内角的和等于(n-2)×180°11、推论随意多边的外角和等于360°12、平行四边形性质定理1平行四边形的对角相等13、平行四边形性质定理2平行四边形的对边相等14、推论夹在两条平行线间的平行线段相等初二下册数学学问点归纳四边形1、平行四边形性质:对边相等;对角相等;对角线相互平分。
初二数学知识点全总结精选

初二数学知识点全总结精选初二数学知识点全总结第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c 分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。
那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。
③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数② =(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
八年级数学知识清单

第16章精品知识汇总
1、平行四边形定义:有两组对边分别相等的四边形叫做平行四边形;
平行四边形的性质有:平行四边形的对角相等,邻角互补;
平行四边形的对边平行且相等;
平行四边形的对角线互相平分;
平行线之间的距离处处相等;
平行四边形是中心对称图形,对角线的交点为对称中心
”,一般按一定的方向依次表示
平行四边形的书写:平行四边形ABCD
2、矩形定义:有一个角是直角的平行四边形是矩形;矩形是一个特殊的平行四边形;
矩形的性质有:对边平行且相等;
四个内角都是直角;
对角线相等且互相平分;
既是轴对称图形又是中心对称图形;
3、菱形的定义:有一组邻边相等的平行四边形叫菱形;
菱形的性质:四条边都相等;
对角相等,邻角互补;
对角线互相垂直平分,并且每一条对角线平分一组对角;
既是轴对称图形又是中心对称图形;
4、正方形的定义:有一个角是直角的菱形叫做正方形;
有一组邻边相等的矩形叫做正方形;
正方形的性质:四条边相等,邻边垂直,对边相等;
四个角都是直角;
对角线相等且互相垂直平分,每一条对角线平分一组对角;
既是轴对称图形又是中心对称图形;
5、梯形的定义:只有一组对边平行的四边形叫做梯形。
等腰梯形定义:两腰相等的梯形叫做等腰梯形。
直角梯形定义:有一个角是直角的梯形叫直角梯形。
等腰梯形的性质:等腰梯形的两腰相等,两底平行;
等腰梯形在同一底上的两个内角相等;
等腰梯形的两条对角线相等;
等腰梯形是轴对称图形,它只有一条对称轴;。
【条件】八年级数学周周清三供参考

【关键字】条件八年级数学周周清三第十二和第十三章出题人:高慧一.选择题(每题3分,共30分)1.如图,已知△ABC≌△DCB,且AB=DC,则∠DBC等于()A.∠A B.∠DCB C.∠ABC D.∠ACB2.下列分子结构模型平面图中,至少有三条对称轴的是()A. B.C. D.3. 如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x等于()A.B..4 D.54. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A. B.C. D.5.下列说法正确的是()A.有三个角对应相等的两个三角形全等B.有一个角和两条边对应相等的两个三角形全等C.有两个角和它们夹边对应相等的两个三角形全等D.面积相等的两个三角形全等6. 如图△ABC沿直线AM对折后,使B落在AC的点B1上,若∠B1MC=20°,则∠AMB=( )A.65°B.70°C.75°D.807. 使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D。
一直角边和斜边对应相等8. 如图,E点在AB上,AC=AD,BC=BD,则全等三角形的对数有( )A.1 B..3 D.49. 2.如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A.PD=PE B.OD=OE C.∠DPO=∠EPO D.PD=OD10.三角形中到三边距离相等的点是()A.三条边的笔直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点二.填空题(每空3分,共24分)1.两条相交直线有条对称轴,对于一个角,它的角平分线又是它的,线段的对称轴是它的线。
2.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是2,AB=,AC=,则DE的长为_________ cm.3. 如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若BC=5㎝,BD=3㎝,则点D到AB的距离为______㎝.4. 如图,∠B=∠DEF,BC=EF, 要证△ABC≌△DEF,(1)若以“SAS”为依据,还缺条件;(2)若以“ASA”为依据,还缺条件.5. 如图,在△ABC中,BD=EC,∠ADB=∠AEC,∠B=∠C,则∠CAE=.三.解答题(46分)1. 如图,A,C,D,B在同一条直线上,AE=BF,AD=BC,AE∥BF.求证:FD∥EC.(6分)2. 已知:如图,AC⊥BD,BC=CE,AC=DC.求证:∠B+∠D=90°(10分)3. 已知:如图,BD=CD,CF⊥AB于点F,BE⊥AC于点E.求证:AD平分∠BAC.(10分)此文档是由网络收集并进行重新排版整理.word可编辑版本!。
周清学案

学生姓名家长签名周清学案一 知识清单▲ 一元二次方程的概念:必须满足三个条件:①方程; ②只含有个未知数; ③未知数的最高次数是次。
▲ 一元二次方程的一般形式:●二次项系数a≠0是前提条件;但b 、c 可以为0.●任何一元二次方程经过整理后都能化为一般形式。
▲ 一元二次方程的解法:(1)直接开平方法:● 形如ax 2=b (a≠0,a ·b ≥0) ,其解为x 1 = , x 2 =。
● 形如 (mx+n )2=k (m ≠0,k ≥0) ,其解为。
(2)配方法:①移项:常把含有未知数的项移到等号的,常数项移到等号的;②化系数为1;③配方:方程两边都加上;④变形:方程化为(x+n )2=k 的形式;⑤求解:若k<0,则方程;若k ≥0,则方程的解为。
(3)公式法:一元二次方程ax 2+bx+c=0 (a ≠0) 的求根公式为:。
●运用求根公式的前提条件是。
(4)因式分解法:①整理:化为(mx+n )(cx+d)=0 (m ≠0 c ≠0的形式;②降次:mx+n 或 cx+d ;③求解:x 1=, x 2 =.▲ 一元二次方程的根的判别式:①b 2-4ac>0 <=> ;② <=> 有两个相等的实数根;③<=> 。
● <=> 有两个实数根。
二选择1:下列方程是一元二次方程的有(填序号)。
①2531x x -=②2230x x-+=③2230x y -=④212x x +=⑤20ax bx c ++=(a 、b 、c 是常数) ⑥22(1)0n x n ++= (n 是常数) ⑦2120x x ---=2.已知关于x 的方程2kx 2+(8k+1)x+8k=0 有两个实数根,则k 的取值范围是 ( ) A.116k >-B、k≥116-且K ≠0C.K=116- D.116k >-且K ≠0 3.设一元二次方程05672=--x x 的两根分别是21,x x 则下列等式正确的是() A.75,762121-=-=+x x x x B. 75,762121==+x x x x C.75,762121-==+x x x x D. 75,762121=-=+x x x x4.若两个数的和为5,积为6,则以这两个数为根的一元二次方程是()A.0652=+-x xB. 0652=--x xC.0652=++x xD.0652=-+x x二 填空1 已知2222()1x y x y +-+()=12,则22x y +=。
八年级数学知识要点归纳

八年级数学知识要点归纳上册第一章 勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形。
满足222a b c +=的三个正整数称为勾股数。
第二章 实数1.平方根和算术平方根的概念及其性质:(1)概念:如果2x a =,那么x 是a的平方根,记作:a 的算术平方根。
(2)性质:①当a ≥00;当a②2=a ;a =。
2.立方根的概念及其性质:(1)概念:若3a ,那么x 是a(2a =;②3a =3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
5(a ≥0,b ≥0) a ≥0,b >0)。
第三章 1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这点定点称为旋转中心,转动的角称为旋转角。
旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
初二数学(上)必知知识点归纳

初二数学(上)必知知识点归纳初二数学(上)必知知识点归纳因式分解1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3.公因式的确定:系数的最大公约数?相同因式的最低次幂.注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4.因式分解的公式:(1)平方差公式:a2-b2=(a+b)(a-b);(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“x2+px+q是完全平方式?”.分式1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式.2.有理式:整式与分式统称有理式;即.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.7.分式的乘除法法则:.8.分式的乘方:.9.负整指数计算法则:(1)公式:a0=1(a≠0),a-n=(a≠0);(2)正整指数的运算法则都可用于负整指数计算;(3)公式:,;(4)公式:(-1)-2=1,(-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.11.最简公分母的确定:系数的最小公倍数?相同因式的最高次幂. 12.同分母与异分母的分式加减法法则:.13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a 和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.数的开方1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.2.平方根的性质:(1)正数的平方根是一对相反数;(2)0的平方根还是0;(3)负数没有平方根.3.平方根的表示方法:a的平方根表示为和.注意:可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为.注意:0的算术平方根还是0.5.三个重要非负数:a2≥0,|a|≥0,≥0.注意:非负数之和为0,说明它们都是0.6.两个重要公式:(1);(a≥0)(2).7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方. 8.立方根的性质:(1)正数的立方根是一个正数;(2)0的立方根还是0;(3)负数的立方根是一个负数.9.立方根的特性:.10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.11.实数:有理数和无理数统称实数.12.实数的分类:(1)(2).13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)几何表达式举例:(1)∵AD平分∠BAC∴∠BAD=∠CAD(2)∵∠BAD=∠CAD∴AD是角平分线2.三角形的中线定义:在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)几何表达式举例:(1)∵AD是三角形的中线∴BD=CD(2)∵BD=CD∴AD是三角形的中线3.三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.(如图)几何表达式举例:(1)∵AD是ΔABC的高∴∠ADB=90°(2)∵∠ADB=90°∴AD是ΔABC的高※4.三角形的三边关系定理:三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)几何表达式举例:(1)∵AB+BC>AC∴……………(2)∵AB-BC<AC∴……………5.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.(如图)几何表达式举例:(1)∵ΔABC是等腰三角形∴AB=AC(2)∵AB=AC∴ΔABC是等腰三角形6.等边三角形的定义:有三条边相等的三角形叫做等边三角形.(如图)几何表达式举例:(1)∵ΔABC是等边三角形∴AB=BC=AC(2)∵AB=BC=AC∴ΔABC是等边三角形7.三角形的内角和定理及推论:(1)三角形的内角和180°;(如图)(2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)※(4)三角形的一个外角大于任何一个和它不相邻的内角. (1)∵∠A+∠B+∠C=180°∴…………………(2)∵∠C=90°∴∠A+∠B=90°(3)∵∠ACD=∠A+∠B∴…………………(4)∵∠ACD>∠A∴…………………8.直角三角形的定义:有一个角是直角的三角形叫直角三角形.(如图)几何表达式举例:(1)∵∠C=90°∴ΔABC是直角三角形(2)∵ΔABC是直角三角形∴∠C=90°9.等腰直角三角形的定义:两条直角边相等的直角三角形叫等腰直角三角形.(如图)几何表达式举例:(1)∵∠C=90°CA=CB∴ΔABC是等腰直角三角形(2)∵ΔABC是等腰直角三角形∴∠C=90°CA=CB10.全等三角形的性质:(1)全等三角形的对应边相等;(如图)(2)全等三角形的对应角相等.(如图)几何表达式举例:(1)∵ΔABC≌ΔEFG∴AB=EF………(2)∵ΔABC≌ΔEFG∴∠A=∠E………11.全等三角形的判定:“SAS”“ASA”“AAS”“SSS”“HL”.12.角平分线的性质定理及逆定理:(1)在角平分线上的点到角的两边距离相等(2)到角的两边距离相等的点在角平分线上.13.线段垂直平分线的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)14.线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都是60°.(如图)16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形是等边三角形;(如图)(3)有一个角等于60°的等腰三角形是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)17.关于轴对称的定理(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.18.勾股定理及逆定理:(1)直角三角形的两直角边a、b的平方和等于斜边c的平方,即a2+b2=c2;(2)如果三角形的三边长有下面关系:a2+b2=c2,那么这个三角形是直角三角形.19.RtΔ斜边中线定理及逆定理:(1)直角三角形中,斜边上的中线是斜边的一半;(2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和. 2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段. 3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD?AB=BE?CA.4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即:(1)AC?CB=CD?AB;(2)∠1=∠B,∠2=∠A.8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角. 9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA”“SSA”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线:(1)选取和作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD是角平分线)①在BA上截取BE=BC构造全等,转移线段和角;②过D点作DE‖BC交AB于E,构造等腰三角形.(3)已知三角形中线(若AD是BC的中线)①过D点作DE‖AC交AB于E,构造中位线;②延长AD到E,使DE=AD连结CE构造全等,转移线段和角;③∵AD是中线∴SΔABD=SΔADC(等底等高的三角形等面积)(4)已知等腰三角形ABC中,AB=AC①作等腰三角形ABC底边的中线AD(顶角的平分线或底边的高)构造全等三角形;②作等腰三角形ABC一边的平行线DE,构造新的等腰三角形.(5)其它①作等边三角形ABC一边的平行线DE,构造新的等边三角形;②作CE‖AB,转移角;③延长BD与AC交于E,不规则图形转化为规则图形;④多边形转化为三角形;⑤延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形;⑥若a‖b,AC,BC是角平分线,则∠C=90°.。
初二数学必须掌握的知识点汇总

初二数学必须掌握的知识点汇总 01几何常见辅助线口诀三角形:图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,倍长中线得全等。
四边形:平行四边形出现,对称中心等分点。
梯形问题巧转换,变为三角或平四。
平移腰,移对角,两腰延长作出高。
如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆:半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径联。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
02由角平分线想到的辅助线如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE与CD的延长线交于一点来证明。
自已试一试。
(2)角分线上点向两边作垂线构全等如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。
求证:∠ADC+∠B=180分析:可由C向∠BAD的两边作垂线。
近而证∠ADC与∠B之和为平角。
如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学周清知识清单 2013.5.30
1、平均数:包含 和 : 平均数的计算只需将总数除以数据个数即可; 平均数的计算需考虑各部分在总体中的 。
2、中位数:计算中位数应先将数据按照 或 的顺序排列(相等的数据也要全部参与排列),则 的那个数字就是这组数据的中位数。
如果正中间的数字有两个,则把这两个数字的 作为这组数据的中位数。
3、众数:一组数据中出现次数最多的值。
一组数据可能只有 众数也可能有 ,但是,如果这组数据中每个值出现的次数 ,那么这组数据没有众数
4、扇形统计图是利用圆和___表示___和部分的关系,圆代表的是总体,即100%. 扇形代表______,圆的大小与总数量无关.
5、扇形统计图能清楚地表示各部分在总体中所占的______.
6、平均数、中位数和众数都反映了一组数据的集中趋势。
7、极差=最大值-最小值
8、方差
2222121[()()...()]n s x x x x x x n
=-+-++- 9、标准差 S=2s
10/方差越大,波动越大,方差越小,波动越小。
11、极差、方差、标准差反映了一组数据的离散程度。
12、)...(121n x x x n x +++=-
13、会计算算术平均数和加权平均数。
八年级数学周清试卷2013.5.30
1、已知一组数据的一个样本x 1,x 2,x 3,…x n 的平均数是0.24,方差是1.02,那么估计这组数据的总体平均数是 ,方差是 .
2、甲、乙两人进行投篮比赛,共进行了五次,每次每人投10个球.比赛结果投进个数分别为甲:6,5,7,8,7;乙:5,6,3,9,7.计算并将结果填入下表:
3、.已知样本99,100,101,x ,y 的平均数为100,方差是2,则x = ,y = .
4、甲、乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计、整理后结果如下:
试根据表中的数据分析:
(1)哪一个班级学生之间的成绩差异小一些?
(2)哪一个班级学生成绩达到优秀(每分钟输入汉字数≥120个)的人数多一些?
(3)若要从甲、乙两个班中选取一个班级的部分学生外出参加比赛,你认为应该选哪个班取胜的机会更大一些?为什么?
5、某校在“书香满校园”的读书活动期间,学生会组织了一次捐书活动.如图(1)是学生捐图书给图书馆的条形图,图(2)是该学校学生人数的比例分布图,已知该校学生共有1000人. (1)求该校学生捐图书的总本数; (2)问该校学生平均每人捐图
书多少本?
人均捐图 2 年级 图(1)
七年级 八年级 35% 九年级 30% 图(2)。