北师大版数学七年级下年山东省枣庄市十六中学期末复习.docx
北师大版七年级下册数学期末总复习资料整理【新教材】

北师大版七年级数学下册总复习第一章 整式的乘除 一、幂的运算性质1、同底数幂相乘:底数不变,指数相加.m n m n a a a +=•2、幂的乘方:底数不变,指数相乘.nm m n a a =)(3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘.n n n b a ab =)(4、零指数幂:任何一个不等于0的数的0次幂等于1.10=a (0≠a ) 注意00没有意义.5、负整数指数幂:pp a a 1=- (p 正整数,0≠a )6、同底数幂相除:底数不变,指数相减.m n m n a a a -=÷(0≠a )注意:以上公式的正反两方面的应用.常见的错误:632a a a =•,532)(a a =,33)(ab ab =,326a a a =÷,4222a a a =+ 二、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式.三、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项. 四、多项式乘以多项式:连同各项的符号把其中一个多项式的各项乘以另一个多项式的每一项.()()bn bm an am n m b a +++=++五、平方差公式两数的和乘以这两数的差,等于这两数的平方差.即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方.()()22b a b a b a -=-+六、完全平方公式两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍.()ab b a b a 2222++=+ ()ab b a b a 2222-+=-常见错误:()222b a b a +=+ ()222b a b a -=- 七、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式. 八、多项式除以单项式:连同各项的符号,把多项式的各项都除以单项式.第二章 相交线与平行线一、互余、互补、对顶角1、相加等于90°的两个角称这两个角互余. 性质:同角(或等角)的余角相等.2、相加等于180°的两个角称这两个角互补. 性质:同角(或等角)的补角相等.3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角. 性质:对顶角相等.4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角. (相邻且互补) 二、三线八角: 两直线被第三条直线所截①在两直线的相同位置上,在第三条直线的同侧(旁)的两个角叫做同位角. ②在两直线之间(内部),在第三条直线的两侧(旁)的两个角叫做内错角. ③在两直线之间(内部),在第三条直线的同侧(旁)的两个角叫做同旁内角. 三、平行线的判定及性质同位角相等 ⇔ 两直线平行 内错角相等 ⇔ 两直线平行 同旁内角互补 ⇔ 两直线平行四、尺规作图(用圆规和直尺作图)①作一条线段等于已知线段.②作一个角等于已知角.第三章三角形一、认识三角形1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2、三角形三边的关系:两边之和大于第三边;两边之差小于第三边.(已知三条线段确定能否组成三角形,已知两边求第三边的取值范围)3、三角形的内角和是180°;直角三角形的两锐角互余.锐角三角形(三个角都是锐角)4、三角形按角分类直角三角形(有一个角是直角)钝角三角形(有一个角是钝角)5、三角形的特殊线段:a)三角形的中线:连结顶点与对边中点的线段.(分成的两个三角形面积相等)b)三角形的角平分线:内角平分线与对边的交点到内角所在的顶点的线段.c)三角形的高:顶点到对边的垂线段.(每一种三角形的作图)二、全等三角形:1、全等三角形:能够重合的两个三角形.2、全等三角形的性质:全等三角形的对应边、对应角相等.3、全等三角形的判定:判定方法内容简称边边边三边对应相等的两个三角形全等SSS边角边两边与这两边的夹角对应相等的两个三角形全等SAS角边角两角与这两角的夹边对应相等的两个三角形全等ASA 角角边两角与其中一个角的对边对应相等的两个三角形全等AAS 斜边直角边斜边与一条直角边对应相等的两个直角三角形全等HL注意:三个角对应相等的两个三角形不能判定两个三角形形全等;AAA两条边与其中一条边的对角对应相等的两个三角形不能判定两个三角三角形全等.SSA4、全等三角形的证明思路:5、三角形具有稳定性,三、作三角形1、已经三边作三角形2、已经两边与它们的夹角作三角形3、已经两角与它们的夹边作三角形(已经两角与其中一角的对边转化成这种情况)4、已经斜边与一条直角边作直角三角形第四章变量之间的关系一、变量、自变量与因变量①两个变量x与y,y随x的改变而改变,那么x是自变量(先变的量),y是因变量(后变的量).二、变量之间的表示方法:①列表法②关系式法:能精确地反映自变量与因变量之间数值的对应关系.③图象法:用水平方向的数轴(横轴)上的点表示自变量,用坚直方向的数轴(纵轴)表示因变量.第五章生活中的轴对称一、轴对称图形与轴对称①一个图形沿某一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形.这条直线叫做对称轴.②两个图形沿某一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称.这条直线叫做对称轴.③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形二、角平分线的性质:角平分线上的点到角两边的距离相等.∵∠1=∠2 PB⊥OB PA⊥OA∴ PB=PA三、线段垂直平分线:①概念:垂直且平分线段的直线叫做这条线段的垂直平分线.②性质:线段垂直平分线上的点到线段两个端点的距离相等.∵ OA=OB CD⊥AB∴ PA=PB四、等腰三角形性质:(有两条边相等的三角形叫做等腰三角形)①等腰三角形是轴对称图形;(一条对称轴)②等腰三角形底边上中线,底边上的高,顶角的平分线重合;(三线合一)③等腰三角形的两个底角相等.(简称:等边对等角)五、在一个三角形中,如果有两个角相等,那么它所对的两条边也相等.(简称:等角对等边)六、等边三角形的性质:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质.①等边三角形的三条边相等,三个角都等于60;②等边三角形有三条对称轴.七、轴对称的性质:①关于某条直线对称的两个图形是全等形;②对应线段、对应角相等;②对应点的连线被对称轴垂直且平分;④对应线段如果相交,那么交点在对称轴上.八、镜子改变了什么:3 21cba 第3题第5题ED CBA第6题t (小时)2 O30S (千米)第8题1、物与像关于镜面成轴对称;(分清左右对称与上下对称)2、常见的问题:①物体成像问题;②数字与字母成像问题;③时钟成像问题第六章 概率初步一、概率:反映事件发生可能性大小的数. 事件P 的概率=所有出现的结果的总数出现的结果数事件P二、事件的分类三、游戏是否公平:双方事件发生的概率是否相等. 【复习题一】2.如果21x kx ++是一个完全平方式,那么k 的值是 .3.如图,两直线a 、b 被第三条直线c 所截,若∠1=50°,∠2=130°,则直线a 、b 的位置关系是 .4. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.5. 一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是 .6. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添加的条件是 .7. 现在规定两种新的运算“﹡”和“◎”:a ﹡b =22a b +;a ◎b =2ab ,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= . 8. 某物体运动的路程s (千米)与运动的时间t (小时)关系如图所示,则当t =3小时时,物体运动所经过的路程为 千米.第14题1 2 3 4 5t (月)Oc (件)第10题E DCBA9. 下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =-10. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( )A.15°B.20°C.25°D.30° 11. 观察一串数:0,2,4,6,……. 第n 个数应为( )A. 2(n -1)B. 2n -1C. 2(n +1)D. 2n +1 13、如右图,ΔABC ,AB = AC , AD ⊥BC , 垂足为D , E 是AD 上任一点, 则有几对全等三角形( ) A.1 B.2 C.3 D.414. 如图表示某加工厂今年前5个月每月生产某种产品的产量c (件)与时间t (月)之间的关系,则对这种产品来说,该厂( )A.1月至3月每月产量逐月增加,4、5两月产量逐月减小B.1月至3月每月产量逐月增加,4、5两月产量与3月持平C.1月至3月每月产量逐月增加,4、5两月产量均停止生产D.1月至3月每月产量不变,4、5两月均停止生产 15. 下列图形中,不一定...是轴对称图形的是( ) A. 等腰三角形 B. 线段 C. 钝角 D. 直角三角形16. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A.1B.2C. 3D.4 17. 计算:()()3426y y 2-;18. 先化简()()()()221313151x x x x x --+-+-,再选取一个你喜欢的数代替x ,并求原代数式的值.19. 如图,某村庄计划把河中的水引到水池M 图痕迹,不写作法和证明)理由是: .20. 两个全等的三角形,可以拼出各种不同的图形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种? (至少设计四种)21. 在“五·四”青年节中,全校举办了文艺汇演活动. 小丽和小芳都想当节目主持人,但现在只有一个名额. 小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去. 若你是小芳,会同意这个办法吗? 为什么?22. 一个长方形的养鸡场的长边靠墙,墙长1435米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?ODCB A第24题E DCBA第25题24. 某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且AC =BD ,AB =CD. 小明认为图中的两个三角形全等,他的思考过程是:在△ABO 和△DCO 中⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗? 如果正确,他用的是判定三 角形全等的哪个条件? 如果不正确,请你增加一个条件,并 说明你的思考过程.25. 如图所示,要想判断AB 是否与CD 平行,我们可以测量那些角;请你写出三种方案,并说明理由.【复习题二】1. 已知,231()9(732=⋅a 则12a 的值为 .2. 已知三点M 、N 、P 不在同一条直线上,且MN=4厘米,NP=3厘米,M 、P 两点间的距离为x 厘米,那么x 的取值范围是 .3. 一只小鸟自由自在在空中飞翔,然后随意落在下图(由16个小正方形组成)中,则落在阴影部分的概率是 .4它最终停留在黑色方砖上的概率是 (全相同).5.计算:8100×0.125100 = .6.如图,ΔABC 中,AB 的垂直平分线交AC 于点M .若CM=3cm AM=5cm ,则ΔMBC 的周长=_____________cm ..7、有一种原子的直径约为0.00000053米,它可以用科学记数法表示为___________米. 8.某下岗职工购进一批货物,到集贸市场零售,已知卖出去的货物数量x 与售价y 的关系如下表:写出用x 表示y 的公式是________.9.掷一颗均匀的骰子,6点朝上的概率为( ) A .0 B .21 C .1 D .6110.地球绕太阳每小时转动通过的路程约是51.110km ⨯,用科学记数法表示地球一天(以24小时计)转动通过的路程约是( )A .70.26410km ⨯B .62.6410km ⨯C .526.410km ⨯D .426410km ⨯ 11.=5)(m a ( )(A)m a +5 (B)m a -5 (C) m a 5 (D)55m a 12.)()23)(23(=---b a b a(A)2269b ab a -- (B)2296a ab b -- (C)2249b a - (D)2294a b -15.一个多项式的平方是m a a ++122,则=m ( ). (A)6 (B) 6- (C)36- (D)36O BAt (秒)S (米)12648A CD B16.小强和小敏练短跑,小敏在小强前面12米.如图,OA 、BA 分别表示小强、小敏在短跑中的距离S(单位:米)与时间t (单位:秒)的变量关系的图象.根据图象判断小强的速度比小敏的速度每秒快( )A .2.5米B .2米C .1.5D .1米 17、计算:19.已知:线段a 、c 和∠β (如图),利用直尺和圆规作ΔABC ,使BC=a ,AB=c ,∠ABC=∠β.(不写作法,保留作图痕迹).20.如图,如果AC=BD ,要使⊿ABC ≌⊿DCB ,请增加一个条件,并说明理由.21.在下面的解题过程的横线上填空,并在括号内注明理由 .如图,已知∠A=∠F ,∠C=∠D ,试说明BD ∥CE. 解:∵∠A=∠F(已知)∴AC ∥DF( ) ∴∠D=∠ ( ) 又∵∠C=∠D(已知) ∴∠1=∠C(等量代换)∴BD ∥CE( )22.图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t (单位:时)的变量关系的图象.根据图象回答问题:(1)在这个变化过程中,因变量是_____________,自变量是_______________.路程S /千米时间t / 时111210981614121086420AEB C D第2题图nmba70°70°110°第3题图CBA 2112第六题图DCB A (2)9时,10时30分,12时所走的路程分别是多少?(3)他休息了多长时间?(4)他从休息后直至到达目的地这段时间的平均速度是多少?23.如图,已知:BD AB ⊥,BD ED ⊥,CD AB =,DE BC =,那么AC 与CE 有什么关系? 写出你的猜想并说明理由.【复习题二】2、如图,互相平行的直线是 .3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = .4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 .5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 .6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 .DA 7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如此下去,结果如下表:则=n a . 8、已知412+-kx x 是一个完全平方式,那么k 的值为 . 9、近似数25.08万精确到 位,有 位有效数字,用科学计数法表示为 .10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 . 11、下列各式计算正确的是( ) A. a 2+ a 2=a 4 B. 211aa a =÷- C. 226)3(x x = D. 222)(y x y x +=+12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( ) A.91B. 61 C. 51 D. 31 13、一列火车由甲市驶往相距600km 的乙市,火车的速度是200km /时,火车离乙市的距离s (单位:km )随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )876954521DC B A FED CB AEDC BA 14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD ,∠BED=110°,BF 平分∠ABE ,DF 平分∠CDE ,则∠BFD=( )A. 110°B. 115°C.125°D. 130°17、平面上4条直线两两相交,交点的个数是 ( ) A. 1个或4个 B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个18、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论:① ∠A E D =90° ; ② ∠A D E = ∠ C D E ; ③ D E = B E ; ④ AD =AB +CD , 四个结论中成立的是 ( ) A. ① ② ④B. ① ② ③C. ② ③ ④D. ① ③ ④19、计算:(1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-20、某地区现有果树24000棵,计划今后每年栽果树3000棵. (1)试用含年数x (年)的式子表示果树总棵数y (棵); (2)预计到第5年该地区有多少棵果树?乙甲BAOEDCBA21、小河的同旁有甲、乙两个村庄(左图),现计划在河岸AB 上建一个水泵站,向两村供水,用以解决村民生活用水问题.(1)如果要求水泵站到甲、乙两村庄的距离相等,水泵站M 应建在河岸AB 上的何处? (2)如果要求建造水泵站使用建材最省,水泵站M 又应建在河岸AB 上的何处?22、超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.一次性购物满300元者,如果不摇奖可返还现金15元. (1)摇奖一次,获一等奖的概率是多少?(2)老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.23、如图,已知△ABC 中,AB = AC ,点D 、E 分别在AB 、AC 上,且BD = CE ,如何说明OB=OC 呢?解:∵AB=AC ∴∠A B C =∠A C B ( )又∵BD = CE ( ) BC = CB ( ) ∴△BCD ≌△CBE ( )∴∠( ) = ∠( ) ∴OB = OC ( ). 25、星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据(3)她骑车速度最快是在什么时候? 车速多少?(4)玲玲全程骑车的平均速度是多少?26、把两个含有45°角的直角三角板如图放置,点D 在AC上连接AE、BD,试判断AE与BD的关系,并说明理由.【复习题一】参考答案1. 5x ;2a .2.±2.3.平行.4.3.397×1075.836.26或22㎝7. AC=AE(或BC=DE ,∠E=∠C ,∠B=∠D) 8.-20 9. 45 10.B6395 21.解:=1212y 2y - =12y 22.解:=5x 5x 19x 14x 4x 222-++-+- 当x =0时,原式=2 23.解:理由是: 垂线段最短 . ……2作图……2分 24.解25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是3162=,而小丽去的可能性是61,所以游戏不公平. ……2分 26.解:根据小王的设计可以设宽为x 米,长为(x +5)米, 根据题意得2x +(x +5)=35 解得x =10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.根据小赵的设计可以设宽为x 米,长为(x +2)米, 根据题意得2x +(x +2)=35解得x =11.因此小王设计的长为x +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). ……2分 27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只.(3)近似数.(4)比条形统计图更形象、生动.(能符合即可) ………(每小题1分) 28.解:小明的思考过程不正确. …1分 添加的条件为:∠B=∠C(或∠A=∠D 、或符合即可)…3分在△ABO 和△DCO 中DCO ABO CD AB DOC AOB CB ∆≅∆⇒⎪⎩⎪⎨⎧=∠=∠∠=∠ …… 5分(答案不唯一) 29. (1)∠EAB=∠C ;同位角相等,两直线平行.(2)∠BAD=∠D ;内错角相等,两直线平行(3)∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.(1)22b a -.(2)()b a -,()b a + ,()()b a b a -+ . (3)()()b a b a -+=22b a -. (4):评分标准:每空1分,(4)小题各1分31.(1)解:由图象可以看出农民自带的零钱为5元;(2)()元5.030520=- (3)()()千克,千克453015154.02026=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分. 【复习题二】参考答案一、1、3; 2、1<x <7; 3、165; 4、2; 5、41; 6、1; 7、12;8、7103.5-⨯; 9、4,百分 ; 10、y =3.1x ; 二、DBACD BBBDC三、1、原式=)4)(4(2222y x y x +-……(3’)= 4416y x -……(6’) 2、原式=x y y xy x y xy x 2)52344(22222÷-+--++……(2’)=x y x xy x -=÷+-2)22(2……(5’)= 212…..(6’)4、设原长方形的宽为x ,……(1’) 则x x 1553)3(12⨯=-……(3’),得3x =36,x =12…….(5’), .答……(6’) 5、加条件AB=DC .……(2’)∵AC=BD ,AB=DC ,BC=BC ……(5’), ∴△ABC ≌△DCB ……(6’)四、1、∵∠A=∠F(已知) ∴AC ∥DF( 内错角相等,两直线平行 ) ……(2’) ∴∠D=∠ 1 (两直线平行,内错角相等) ……(5’) 又∵∠C=∠D(已知) ∴∠1=∠C(等量代换) ∴BD ∥CE(同位角相等,两直线平行 )…….(7’)2、需要长为2x ……(2’) ,宽为4y ……(4’), 高为6z ……(6’), 总长为2x +4y +6z ……(7’). 五、1、(1)时间,路程.……(2’), (2)4千米,9千米,15千米.…….(5’) (3)0.5小时.…….(6’) (4) 4千米/小时.……(8’)2、AC 与CE 垂直……(2’) ∵AB ⊥BD , ∴∠ABC=90°, ∵ED ⊥BD , ∴∠EDC=90°,……(3’)又AB=CD , BC=DE ,∴△ABC ≌△CDE ……(5’)∵∠ACB+∠ECD=90°……(7’) ∴∠ACE=90° ……(8’) 【复习题三】参考答案19、 7.5 , 29,y x 22+ 20、x y 300024000+=,390005==y x 时,21、如图:22、P 一等奖=161, 60×16+50×81+40×41=20 20﹥15 ∴选择摇奖.23、等边对等角 、 已知 、 SAS 、 ∠ DCB 、 等角对等边.24、图略 ,(1)农村居民纯收入不断增加,特别是进入2000年后增幅更大; (2)2005年农村人均纯收入达3865元;(3)2005年农村人均纯收入是1990年的5倍多;(供参考) 25、(1)12点,30千米 (2)10:30 , 30 分钟 (3)13~15点,15千米/小时 (4)10千米/小时26、延长BD 交AE 于F ,证△BCD ≌△ACE ,可得BD=AE ,BD ⊥AE .2015七年级下学期期末数学考试试卷班级 姓名 分数一、选择题(每题5分,共60分) 1、下列运算正确的是( )。
北师大版七年级下册数学期末总复习资料整理

北师大版七年级数学下册总复习第一章 整式的乘除一、幂的运算性质1、同底数幂相乘:底数不变,指数相加. n m n m a a a +=∙ ()0≠a2、幂的乘方:底数不变,指数相乘. ()mn nm a a = ()0≠a3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘. ()m m m b a ab = ()0,0≠≠b a4、零指数幂:任何一个不等于0的数的0次幂等于1.10=a ,(0≠a )注意00没有意义.5、负整数指数幂:p p aa 1=-(p 为正整数,0≠a ) 6、同底数幂相除:底数不变,指数相减.n m n m a a a -=÷ ()0≠a注意:以上公式的正反两方面的应用. 二、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式.三、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项. 四、多项式乘以多项式:连同各项的符号把其中一个多项式的各项乘以另一个多项式的每一项. ()()bn bm an am n m b a +++=++ 五、平方差公式两数的和乘以这两数的差,等于这两数的平方差.即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方. ()()22b a b a b a -=-+ 六、完全平方公式两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍.()2b a +=222b ab a ++ ()2222b ab a b a +-=-七、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式. 八、多项式除以单项式:连同各项的符号,把多项式的各项都除以单项式.第二章 相交线与平行线一、互余、互补、对顶角1、相加等于90°的两个角称这两个角互余.性质:同角(或等角)的余角相等.2、相加等于180°的两个角称这两个角互补.性质:同角(或等角)的补角相等.3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角.性质:对顶角相等.4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角.(相邻且互补)二、三线八角:两直线被第三条直线所截①在两直线的相同位置,在第三条直线的同侧的两个角叫同位角.②在两直线之间(内部),在第三条直线的两侧的两个角叫内错角.③在两直线之间(内部),在第三条直线的同侧的两个角叫同旁内角.三、平行线的判定及性质同位角相等→两直线平行内错角相等→两直线平行同旁内角互补→两直线平行四、尺规作图(用圆规和直尺作图)①作一条线段等于已知线段.②作一个角等于已知角.第三章三角形一、认识三角形1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2、三角形三边的关系:两边之和大于第三边;两边之差小于第三边.(已知三条线段确定能否组成三角形,已知两边求第三边的取值范围)3、三角形的内角和是180°;直角三角形的两锐角互余.4、三角形按角分类:锐角三角形 (三个角都是锐角);直角三角形 (有一个角是直角);钝角三角形 (有一个角是钝角)5、三角形的特殊线段:a) 三角形的中线:连结顶点与对边中点的线段.(分成的两个三角形面积相等)b) 三角形的角平分线:内角平分线与对边的交点到内角所在的顶点的线段.c) 三角形的高:顶点到对边的垂线段.(每一种三角形的作图)二、全等三角形:1、全等三角形:能够重合的两个三角形.2、全等三角形的性质:全等三角形的对应边、对应角相等.3、全等三角形的判定:注意:三个角对应相等的两个三角形不能判定两个三角形形全等;AAA两条边与其中一条边的对角对应相等的两个三角形不能判定两个三角三角形全等SSA 4、全等三角形的证明思路:5、三角形具有稳定性,三、作三角形1、已经三边作三角形2、已经两边与它们的夹角作三角形3、已经两角与它们的夹边作三角形(已经两角与其中一角的对边转化成这种情况)4、已经斜边与一条直角边作直角三角形第四章变量之间的关系一、变量、自变量与因变量①两个变量x与y,y随x的改变而改变,那么x是自变量(先变的量),y是因变量(后变的量).二、变量之间的表示方法:①列表法②关系式法:能精确地反映自变量与因变量之间数值的对应关系.③图象法:用水平方向的数轴(横轴)上的点表示自变量,用坚直方向的数轴(纵轴)表示因变量.第五章生活中的轴对称一、轴对称图形与轴对称①一个图形沿某一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形.这条直线叫做对称轴.②两个图形沿某一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称.这条直线叫做对称轴.③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形二、角平分线的性质:角平分线上的点到角两边的距离相等.∵∠1=∠2 PB⊥OB PA⊥OA ∴ PB=PA三、线段垂直平分线:①概念:垂直且平分线段的直线叫做这条线段的垂直平分线.②性质:线段垂直平分线上的点到线段两个端点的距离相等.∵ OA=OB CD⊥AB ∴ PA=PB四、等腰三角形性质: (有两条边相等的三角形叫做等腰三角形)①等腰三角形是轴对称图形; (一条对称轴)②等腰三角形底边上中线,底边上的高,顶角的平分线重合; (三线合一)③等腰三角形的两个底角相等. (简称:等边对等角)五、在一个三角形中,如果有两个角相等,那么它所对的两条边也相等.(简称:等角对等边)六、等边三角形的性质:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质.①等边三角形的三条边相等,三个角都等于60;②等边三角形有三条对称轴.七、轴对称的性质:①关于某条直线对称的两个图形是全等形;②对应线段、对应角相等;③对应点的连线被对称轴垂直且平分;④对应线段如果相交,那么交点在对称轴上. 八、镜子改变了什么:1、物与像关于镜面成轴对称;(分清左右对称与上下对称)2、常见的问题:①物体成像问题;②数字与字母成像问题;③时钟成像问题第六章 概率初步事件P 出现的结果数一、概率:反映事件发生可能性大小的数.所有出现的结果总数出现的结果数事件的概率事件pp所有出现的结果的总数 二、事件的分类三、游戏是否公平:双方事件发生的概率是否相等.。
北师大版七年级数学下期末总复习资料

北师大版七年级数学下期末总复习资料期末总复习资料第一章整式考点分析:本章的内容以计算为主,故大部分的分值落在计算题,属于基础题,同学们要必拿哦!占15—20分左右单项式整式多项式同底数幂的乘法幂的乘方积的乘方幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整整式的除法多项式除以单项式一、整式的有关概念1、单项式:数与字母乘积,这样的代数式叫单项式。
单独一个数或字母也是单项式。
2、单项式的系数:单项式中的数字因数。
3、单项式的次数:单项式中所有的字母的指数和。
4、多项式:几个单项式的和叫多项式。
5、多项式的项及次数:组成多项式中的单项式叫多项式的项,多项式中次数最高项的次数叫多项式的次数。
6、整式:单项式与多项式统称整式。
(分母含有字母的代数式不是整式)练习一:(1)指出下列单项式的系数与指数各是多少。
a)1((2)指出下列多项式的次数及项。
二、整式的运算432)2(yxmn32)3(r?32)4(?252)1(523??nmyx4232372)2(abzyx??.(一)整式的加减法:基本步骤:去括号,合并同类项。
(二)整式的乘法1、同底数的幂相乘法则:同底数的幂相乘,底数不变,指数相加。
数学符号表示:练习二:判断下列各式是否正确。
2、幂的乘方法则:幂的乘方,底数不变,指数相乘。
数学符号表示:练习三:判断下列各式是否正确。
3、积的乘方法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。
(即等于积中各因式乘方的nmnm aaa??m()()(),(,)(为正整数其中为正整数其中ncbaabcnbaab nnnnnnn??.积。
)符号表示:练习四:计算下列各式。
4、同底数的幂相除法则:同底数的幂相除,底数不变,指数相减。
数学符号表示:特别地:练习五:(1)判断正误32332324)()4,)2()3,)21()2,)2)(1baxybaxyz??nmnm a aa???)0(1),0(10?????aapaaa pp为正整数(2)计算(3)用分数或者小数表示下列各数_____________105.1)3____;__________3)2_;__________21)1430?? ??????????5、单项式乘以单项式法则:单项式乘以单项式,把它们的系数、相同nmnmmmnnmm aaxxxaa????????????)6),())(5,2)2)(455)3662;)1222213112511)字母的幂分别相乘,其余的字母则连同它的指数不变,作为积的一个因式。
新版北师大版七年级数学下册期末全册单元知识点专题总复习(解析版)

期末复习(一)整式的乘除01 知识结构本章知识属于中考必考内容,难度较低,单独考查时,考查内容主要包括:同底数幂的乘除法,幂的乘方与积的乘方,整式的化简等,与其他知识结合考查时,常与因式分解、分式的化简等知识结合起来考查.02典例精讲【例1】(遵义中考)如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a-1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积为(C)A.2 cm2B.2a cm2C.4a cm2 D.(a2-1)cm2【思路点拨】由拼成的长方形(不重叠无缝隙)的面积等于大正方形的面积减去小正方形的面积可解决.【方法归纳】解答与整式运算的应用有关的题关键是通过建立整式运算模型,把实际问题转化为整式运算问题来解.【例2】(茂名中考)先化简,后求值:a2·a4-a8÷a2+(a3)2,其中a=-1.【思路点拨】原式第一项利用同底数幂的乘法法则计算,第二项利用同底数幂的除法法则计算,最后一项利用幂的乘方运算法则计算,合并得到最简结果,将a的值代入计算即可求出值.【解答】原式=a6-a6+a6=a6.当a=-1时,原式=1.【方法归纳】此题考查了整式的混合运算——化简求值,涉及的知识有:同底数幂的乘、除法法则,幂的乘方以及合并同类项法则,熟练掌握各种法则是解本题的关键.【例3】(宁波中考)先化简,再求值:(1+a)(1-a)+(a-2)2,其中a=-3.【思路点拨】原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并得到最简结果,将a 的值代入计算即可求出值.【解答】原式=1-a2+a2-4a+4=-4a+5.当a=-3时,原式=-4×(-3)+5=17.【方法归纳】此题考查了整式的混合运算,涉及的知识有:平方差公式、完全平方公式、去括号法则以及合并同类项法则,熟练掌握公式及法则是解本题的关键.【例4】利用乘法公式计算:【思路点拨】 在(1)中,因为59.6+60.42=60,所以59.6×60.4=(60-0.4)×(60+0.4),根据平方差公式即可简便计算;在(2)中,因为1022=(100+2)2,根据完全平方公式即可简便计算. 【解答】 (1)59.6×60.4=(60-0.4)×(60+0.4)=3 600-0.16=3 599.84.(2)1022=(100+2)2=1002+400+4=10 404.【方法归纳】 在有理数的乘法或乘方计算中,当数值不易计算时,应考虑是否能利用乘法公式进行简便计算. 03 整合集训一、选择题(每小题3分,共30分)1.计算:a 2·a 4=(A )A .a 6B .a 8C .2a 6D .a 22.人体内某种细胞的形状可近似看作球状,它的直径是0.000 001 56 m ,这个数据用科学记数法可表示为(A )A .1.56×10-6 mB .1.56×10-5mC .156×10-5 mD .1.56×106m 3.计算|-8|-(-12)0的结果是(B )A .-7B .7C .712 D .94.(南充中考)下列运算正确的是(A )A .3x -2x =xB .2x ·3x =6xC .(2x )2=4x D .6x ÷2x =3x 5.下列计算中,正确的是(D )A .a 0=1B .32÷3-2=1 C .m 6÷m 2=m 3 D .3-2=196.计算(-3)100×(-13)101等于(C )A .-1B .1C .-13 D.137.下列计算错误的有(D )①(2x +y )2=4x 2+y 2;②(3b -a )2=9b 2-a 2;③(-3b -a )(a -3b )=a 2-9b 2;④(-x -y )2=x 2+2xy +y 2; ⑤(x -12)2=x 2-2x +14.A .1个B .2个C .3个D .4个8.(临沂中考)请你计算:(1-x)(1+x),(1-x)(1+x +x 2),…,猜想(1-x)·(1+x +x 2+…+x n)的结果是(A )A .1-x n +1B .1+x n +1C .1-x nD .1+x n9.若(x +y)2=9,(x -y)2=5,则xy 的值为(B )A .-1B .1C .-4D .4 10.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是(D ) A .6 B .2m -8 C .2m D .-2m 二、填空题(每小题4分,共20分)11.若(5a +3b)2=(5a -3b)2+A ,则A =60ab .12.若102·10n -1=106,则n 的值为5.15.一个长方形的面积是(x2-9)平方米,其长为(x+3)米,用含有x的整式表示它的宽为(x-3)米.三、解答题(共50分)16.(10分)计算:(1)(x+5)(x-5)-x(x+25);解:原式=x2-25-x2-25x=-25-25x.(2)(x-y)2-(8x2y2-4xy3)÷4xy.解:原式=x2-2xy+y2-2xy+y2=x2-4xy+2y2.17.利用乘法公式计算:(1)51×49;解:原式=(50+1)×(50-1)=2 500-1=2 499.(2)1 9992.解:原式=(2 000-1)2=2 0002-4 000+1=3 996 001.18.(10分)小操找来一张挂历纸包数学课本.已知课本长为a厘米,宽为b厘米,厚为c厘米,小操想将课本封面与封底的每一边都包进去2厘米.问小操应在挂历纸上剪下一块多大面积的长方形?解:需要在挂历纸上剪下一块长为(2b+c+4)厘米,宽为(a+4)厘米的长方形.所以面积为(2b+c+4)·(a+4)=2ab+ac+4a+8b+4c+16(平方厘米).19.(8分)某同学在计算一个多项式乘以-3x2时,因抄错运算符号,算成了加上-3x2,得到的结果是x2-4x+1,那么正确的计算结果是多少?解:这个多项式是(x2-4x+1)-(-3x2)=4x2-4x+1,正确的计算结果是(4x2-4x+1)·(-3x2)=-12x4+12x3-3x2.20.(10分)数学课上,老师出了这样一道题:先化简,再求值:(2x+y)(2x-y)-(2x-y)2+2y2,其中xy=2 017.小亮一看,题中没有给出x和y的值,只给出了xy的值,所以小亮认为根据题中条件不可能求出题目的值.你认为小亮的说法正确吗?请说明理由.解:不正确.理由如下:因为(2x+y)(2x-y)-(2x-y)2+2y2=4x2-y2-4x2+4xy-y2+2y2=4xy.所以,当xy=2 017时,原式=4×2 017=8 068.21.(14分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式;(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.解:(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(2)原式=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.期末复习(二) 相交线与平行线01 知识结构相交线与平行线⎩⎪⎨⎪⎧相交线⎩⎪⎨⎪⎧余角、补角及其性质垂线及其性质同位角、内错角、同旁内角平行线⎩⎪⎨⎪⎧平行公理及推论直线平行的条件平行线的性质用尺规作角本章内容在考试中涉及的考点主要有:对顶角,邻补角,垂直的有关性质,平行线的性质与判定等,其中利用平行线的性质求角度是本章考查的热点,通常结合角平分线、对顶角、三角形内角和等知识点综合考查,考查频率较高,难度适中.02 典例精讲【例1】 (永州中考)如图,下列条件中能判定直线l 1∥l 2的是(C )A .∠1=∠2B .∠1=∠5C .∠1+∠3=180°D .∠3=∠5【思路点拨】 平行线的判定定理有:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行.根据以上内容判断即可.【方法归纳】 本题考查了平行线的判定的应用,注意:平行线的判定定理有:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.【例2】 如图,直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,∠COB =145°,则∠AOC=35°,∠DOE=55°.【方法归纳】 本题考查了对顶角、邻补角及垂直的性质,识别对顶角与邻补角及其相关性质是解题的关键. 【例3】 如图,利用直尺和圆规,过点A 作直线l 的平行线AB ,并说明你的作图根据.【思路点拨】 我们知道“同位角相等,两直线平行”,所以根据该基本事实用尺规作出一对相等同位角即可作平行线.【解答】 直线AB 即为所求.作图依据:同位角相等,两直线平行.【方法归纳】 这里借助平行线条件“同位角相等,两直线平行”作已知直线的平行线,在运用尺规作图过程中,需要操作规范,保留作图的痕迹.1.图中,∠1,∠2是对顶角的为(C)A B C D2.一个角的余角是(B)A.一定是钝角B.一定是锐角C.可能是锐角,也可能是钝角D.以上答案都不对3.(呼和浩特中考)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为(C)A.70°B.100°C.110°D.120°4.如图所示,下列说法错误的是(B)A.∠1和∠3是同位角B.∠1和∠5是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角5.如图,OB⊥OA,∠BOD=30°,OD平分∠AOC,则∠BOC的度数是(C)A.60° B.40° C.30° D.20°6.如图,直线a,b被直线c所截,下列说法正确的是(D)A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b7.一只因损坏而倾斜的椅子,从背后看到的形状如图所示,其中两组对边的平行关系没有发生变化,若∠1=75°,8.(常州中考)已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是(A)A.2 B.4 C.5 D.79.(北京中考)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为(B)A.26°B.36°C.46°D.56°10.如图,结合图形作出了如下判断或推理:①如图甲,如果CD⊥AB,D为垂足,那么点C到AB的距离等于C,D两点间的距离;②如图乙,如果AB∥CD,那么∠B=∠D;③如图丙,如果∠A CD=∠CAB,那么AD∥BC;④如图丁,如果∠1=∠2,∠D=120°,那么∠BCD=60°.其中正确的个数有(B)A.1个 B.2个C.3个 D.4个二、填空题(每小题4分,共20分)11.若∠1+∠2=90°,∠1+∠3=90°,则∠2与∠3的关系是相等,理由是同角的余角相等.12.已知∠α的补角等于∠α的5倍,则∠α=30°.13.如图,作一个角等于已知角,其尺规作图的原理是SSS(填“SAS”“ASA”或“SSS”).14.如图,小岛B在小岛A的北偏东35°的方向,小岛C在小岛B的北偏西65°的方向,连接AB,BC,AC,则∠ABC 的度数是80°.15.(菏泽中考)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是15°.三、解答题(共50分)16.(8分)如图,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,试说明:a∥c.解:因为∠1=∠2,所以a∥b.又∠3+∠4=180°,所以c∥b.所以a∥c(平行与同一直线的两条直线平行).17.(8分)画三角形ABC,使其两边为已知线段a,b,夹角为β.(要求:用尺规作图,写出已知、求作;保留作图痕迹;不在已知的线、角上作图;不写作法)解:已知:线段a,b及∠β.求作:△ABC,使AB=a,BC=b,∠B=∠β.作图:略.18.(10分)如图,∠B=∠C,B,A,D三点在同一直线上,∠DAC=∠B+∠C,AE是∠DAC的平分线,试说明:AE∥BC.解:因为AE是∠DAC的平分线,所以∠DAE=∠CAE.所以∠DAC=∠DAE+∠CAE=2∠CAE.因为∠B=∠C,所以∠DAC=∠B+∠C=2∠C.所以2∠CAE=2∠C.即∠CAE=∠C.所以AE∥BC.19.(10分)如图,已知∠B=43°,∠BDC=43°,∠A=∠1,试说明:∠2=∠BDE.解:因为∠B=43°,∠BDC=43°,所以∠B=∠BDC.所以AB∥CD.所以∠A=∠C.因为∠A=∠1,所以∠C=∠1.所以AC∥DE.20.(14分)如图,AB∥CD,直线EF分别与AB,CD交于点G,H,GM⊥EF,HN⊥EF,交AB于点N,∠1=50°.(1)求∠2的度数;(2)试说明:H N∥GM;(3)求∠HNG的度数.解:(1)因为AB∥CD,所以∠EHD=∠1=50°.所以∠2=∠EHD=50°.(2)因为GM⊥EF,HN⊥EF,所以∠MGH=∠NHF=90°.所以HN∥GM.(3)因为HN⊥EF,所以∠NHF=90°.所以∠NHC=∠NHF-∠2=90°-50°=40°.因为AB∥CD,所以∠HNG=∠NHC=40°.期末复习(三) 变量之间的关系01 知识结构本章知识是学习函数的基础,要求掌握表示变量之间关系的三种方法,学会分析变量之间的关系,并能进行简单的预测.02 典例精讲【例1】 下面的表格列出了一个试验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是(C )A .b =d 2B .b =2dC .b =d2D .b =d +25【思路点拨】 这是一个用图表表示的关系,可以看出d 是b 的2倍,即可得关系式.【方法归纳】 利用表格表示两个变量之间关系,其对应值清晰明了,但它们之间的关系不够明朗,要结合数据加以分析才能发现潜在的规律.从表示自变量与因变量的表格中辨识自变量与因变量,一般第一栏为自变量,第二栏为因变量.【例2】 下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序(D )①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水(水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系);④一杯越来越凉的水(水温与时间的关系).A .①②④③B .③④②①C .①④②③D .③②④①【思路点拨】 观察图象的走势,并与实际情景相联系是解决此题的关键.【方法归纳】 解决此类题重在观察图象并对图象上的数量关系和走势进行分析,抓住图象的转折点,这些转折点往往是运动状态发生改变或者相互的数量关系发生改变的地方.【例3】 如图所示,圆柱的高为10 cm ,当圆柱的底面半径变化时,圆柱的体积也发生变化.(1)在这个变化过程中,圆柱的底面半径是自变量,圆柱的体积是因变量;(2)请你求出圆柱的体积V(cm 3)与圆柱的底面半径R(cm )之间的关系式; (3)R 的值能为负值吗?为什么?(4)当圆柱的底面半径从2 cm 变化到5 cm 时,圆柱的体积变化了多少?(最后结果保留π)【思路点拨】 (1)题目中有两个变量,主动变化的量是圆柱的底面半径,随之变化的是圆柱的体积;在(2)中,根在(4)中,分别求出R 1=2 cm 和R 2=5 cm 时圆柱的体积,其差值即为体积的变化量. 【解答】 (2)因为圆柱的体积=底面积×高,所以V =πR 2×10=10πR 2.(3)因为R 为圆柱的底面半径,所以R>0,因此R 不能为负值.(4)因为10πR 22-10πR 21=10π·52-10π·22=10π·(52-22)=210π,所以圆柱体积增加了210π cm 3.【方法归纳】 当变量之间的关系以图形形式表示时,可根据图形特点寻找有关变量的等量关系.然后根据等量关系列出关系式.值得注意的是,为使实际问题有意义,在求出变量之间的关系式后,要根据具体的题目要求,确定自变量的取值范围. 03 整合集训一、选择题(每小题3分,共30分)1.小亮以每小时8千米的速度匀速行走时,所走路程s(千米)随时间t(小时)的增大而增大,则下列说法正确的是(C )A .8和s ,t 都是变量B .8和t 都是变量C .s 和t 都是变量D .8和s 都是变量2.已知三角形ABC 的面积为2 cm 2,则它的底边a(cm )与底边上的高h(cm )之间的关系为(D ) A .a =4h B .h =4aC .a =h 4D .a =4h3.对关系式的描述,不正确的是(D )A .x 看作自变量时,y 就是因变量B .x ,y 之间的关系也可以用表格表示C .x 在非负数范围内,y 的最大值为2D .当y =0时,x 的值为-24.如图所示y =2-x 是某市某天的气温随时间变化的图象,通过观察可知,下列说法中错误的是(C )A .这天15时气温最高B .这天3时气温最低C .这天最高气温与最低气温的差是13℃D .这天有两个时刻气温是30℃5.2017年1月4日上午,小华同学接到通知,他的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是(C )6.已知某山区平均气温与该山区海拔高度的关系如下表所示:则表中a 的值为(B )A .21.5B .20.5C .21D .19.57.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x 表示注水时间,用y 表示浮子的高度,则用来表示变量y 与x 之间关系的选项是(B )8.(衡阳中考)小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分钟)之间的关系,根据图象,下列信息错误的是(A )A .小明看报用时8分钟B .公共阅报栏距小明家200米C .小明离家最远的距离为400米D .小明从出发到回家共用时16分钟9.贝贝利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8 A.861 B.863 C.865 D.86710.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S(阴影部分),则变量S 与t 的大致图象为(A )二、填空题(每小题4分,共20分)11.圆的周长C 与圆的半径r 之间的关系式为C =2πr ,其中常量是2,π.12.一蜡烛高20厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是h =20-4t .13.如图是某个计算y 值的程序,若输入x 的值是32,则输出的y 值是12.14.(义乌中考)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的图象,则小明回家的速度是每分钟步行80米.15.下面由小木棒拼出的系列图形中,第n个图形由n个正方形组成,请写出第n个图形中小木棒的根数S与n的关系式S=3n+1.三、解答题(共50分)16.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有一家印刷社,收费y(元)与印刷数量x(张)之间关系如表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)从上表可知:收费y(元)随印刷数量x(张)的增加而增大;(3)若要印制1 000张宣传单,收费多少元?解:(1)上表反映了印刷数量和收费两个变量之间的关系,印刷数量是自变量,收费是因变量.(3)由上表可知:印刷数量每增加100张,收费增加15元,所以每张的价格是0.15元.所以收费y(元)与印刷数量x(张)之间的关系式为y=0.15x.当x=1 000时,y=0.15×1 000=150(元).故要印制1 000张宣传单,收费150元.17.(10分)青春期男、女生身高变化情况不尽相同,下图是小军和小蕊青春期身高的变化情况.(1)上图反映了哪两个变量之间的关系?自变量是什么?因变量是什么?(2)A,B两点表示什么?(3)小蕊10岁时身高多少?17岁时呢?(4)比较小军和小蕊青春期的身高情况有何相同与不同.解:(1)反映了身高随年龄的变化而变化的关系,自变量是年龄,因变量是身高.(2)A点表示小军和小蕊在11岁时身高都是140厘米,B点表示小军和小蕊在14岁时身高都是155厘米.(3)小蕊10岁时身高130厘米,17岁时身高160厘米.(4)相同点:进入青春期,两人随年龄的增长而快速长高,并且在11岁和14岁时两人的身高相同;不同点:11岁至14岁间小蕊的身高变化比小军的快些,14岁后小军的身高变化比小蕊的快些.18.(10分)如图所示,在△ABC中,底边BC=8 cm,高AD=6 cm,E为AD上一动点,当点E从点D沿DA向点A 运动时,△BEC的面积发生了变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)若设DE长为x(cm),△BEC的面积为y(cm2),求y与x之间的关系式.解:(1)ED 长度是自变量,△BEC 的面积是因变量. (2)y 与x 的关系式为y =4x.19.(10分)新成药业集团研究开发了一种新药,在试验药效时发现,如果儿童按规定剂量服用,那么2小时的时候血液中含药量最高,接着逐步衰减,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当儿童按规定剂量服药后:(1)何时血液中含药量最高?是多少微克? (2)A 点表示什么意义?(3)每毫升血液中含药量为2微克以上时在治疗疾病时是有效的,那么这个有效期是多长?解:(1)服药后2小时血液中含药量最高,最高是4微克. (2)A 点表示血液中含药量为0. (3)有效期为5小时.20.(10分)如图,用一段长为60 m 的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD ,设与墙平行的篱笆AB 的长为x m ,菜园的面积为y m 2. (1)试写出y 与x 之间的关系式;(2)当AB 的长分别为10 m 和20 m 时,菜园的面积各是多少?解:(1)因为与墙平行的篱笆AB 的长为x m , 所以长方形的另一边长为60-x2 m ,则长方形的面积为60-x 2·x m 2.所以y 与x 之间的关系式为: y =60-x 2·x=-12x 2+30x.(2)当x =10时,y =-12×102+30×10=250(m 2);当x =20时,y =-12×202+30×20=400(m 2).21.(12分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h ),两车之间的距离为y(km ),图中的折线表示y 与x 之间的关系.根据图象解答下列问题: (1)甲、乙两地之间的距离为900km ; (2)请解释图中点B 的实际意义;(3)求慢车和快车的速度.解:(2)图中点B 的实际意义是:当慢车行驶4 h 时,慢车和快车相遇. (3)由图象可知,慢车12 h 行驶的路程为900 km , 所以慢车的速度为90012=75(km /h ).当慢车行驶4 h 时,慢车和快车相遇,两车行驶的路程之和为900 km ,所以慢车和快车行驶的速度之和为9004=225(km /h ),所以快车的速度为225-75=150(km /h ).期末复习(四) 三角形01 知识结构三角形⎩⎪⎪⎪⎨⎪⎪⎪⎧认识三角形⎩⎪⎨⎪⎧三角形的有关概念三角形的内角和三角形的分类三角形的三边关系三角形的中线、角平分线、高线图形的全等、全等三角形探索三角形全等的条件⎩⎪⎨⎪⎧SSS ASA AASSAS 用尺规作三角形利用三角形全等测距离本章常考内容包括:三角形的内角和,全等三角形的判定,常与平行线的性质、全等三角形的性质综合考查,且考查难度适中. 02 典例精讲【例1】 (淮安中考)若一个三角形的三边长分别为2,3,x ,则x 的值可以为2,3或4. 【思路点拨】 考虑三角形任意两边之和大于第三边,两边之差小于第三边来确定x 的值.【方法归纳】 本题考查了三角形三边关系,要确定第三边x 的取值,既要考虑两边之和大于第三边,又要顾及两边之差小于第三边,如果只想到一方面得到x 的取值就不准.【例2】 AD 为△ABC 中线,BE 为△ABD 中线.(1)猜想:△ABD 和△ADC 面积有什么关系?并简要说明理由;(2)作△BED 中BD 边上的高;(3)若△ABC 的面积为40,BD =5,则△BDE 中BD 边上的高是多少?【思路点拨】 (1)作AF⊥BC,根据三角形面积知等底等高的三角形面积相等;(2)根据高的定义作出图形;(3)由三角形面积进行解答.【解答】 (1)△ABD 和△ADC 面积相等.理由如下:作AF⊥BC 于点F , 因为AD 是△ABC 中线,所以BD =DC ,AF 是△ABD 和△ADC 的高. 所以△ABD 面积为12BD·AF,△ADC 面积为12CD·AF.所以△ABD 和△ADC 面积相等.(2)如图,EM 是△BED 中BD 边上的高. (3)因为△ABC 的面积为40,BD =5, 所以△ABD 面积为12×40=20.因为BE 为△ABD 中线, 所以△BED 的面积为10.所以12BD·EM=10,EM =4.即△BDE 中BD 边上的高是4.【方法归纳】 三角形的中线不但把边分成两部分,而且还把三角形分成面积相等的两部分;如果两三角形有两边相等,而且这两边上的高相等,那么这两个三角形面积相等.【例3】 (南充中考改编)如图,AD ,BC 相交于点O ,AD =CB ,∠OBD =∠ODB.请说明:AB =CD.【思路点拨】 根据已知条件寻找“边角边”条件,证明△ABD 和△CDB 全等,根据全等三角形对应边相等证明即可.【解答】 在△ABD 和△CDB 中, AD =CB ,∠ADB =∠CBD,BD =DB , 所以△ABD≌△CDB(SAS ). 所以AB =CD.【方法归纳】 本题考查了全等三角形的判定与性质,准确识图确定出全等的三角形并确定对应边是解题的关键. 【例4】 我国的纸伞工艺十分巧妙,如图,伞不论张开还是缩拢,△AED 与△AFD 始终保持全等,因此伞柄AP 始终平分同一平面内两条伞骨所成的角∠BAC,从而保证伞圈D 能沿着伞柄滑动.试说明△AED≌△AFD 的理由.【思路点拨】 由题意可知AE =AF ,AD =AD ,DE =DF ,根据三对边相等的两三角形全等即可证明△AED≌△AFD. 【解答】 理由如下:因为E ,F 为定点, 所以AE =AF.在△AED 和△AFD 中,AE =AF ,AD =AD ,DE =DF , 所以△AED≌△AFD(SSS ).【方法归纳】 本题考查最基本的三角形全等知识的应用;用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,是一种很重要的方法,注意掌握. 03 整合集训一、选择题(每小题3分,共30分)1.如图所示,工人师傅在安装木制门框时,为了防止变形,常常要在门框上钉两根斜拉的木条,这样做是利用了三角形的(C )A .美观性B .灵活性C .稳定性D .全等性2.(南通中考)有3 cm ,6 cm ,8 cm ,9 cm 的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为(C )A .1个B .2个C .3个D .4个3.(昭通中考)如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是(A)A.40° B.50° C.60° D.140°4.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是(C)A.SSS B.SAS C.ASA D.AAS5.(邵阳中考)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE 的大小是(C)A.45 ° B.54° C.40° D.50°6.小方画了一个有两边长为3和5的等腰三角形,则这个等腰三角形的周长为(D)A.11 B.13 C.8 D.11或137.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为(C)A.110° B.120° C.130° D.140°8.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌DEC,不能添加的一组条件是(C) A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=EC,∠A=∠DD.∠B=∠E,∠A=∠D9.如图所示,已知在△ABC中,AB=4,AC=3,AD是BC边上的中线,则下列结论错误的是(C)A.S△ABD=S△ACDB.△ABD比△ACD的周长多1C.△ABD≌△ACDD.AD的值可以为310.(台湾中考)在三角形中有较大的角对应较大的边,如图,有一△ABC,今以B为圆心,AB长为半径画弧,交BC 于D点,以C为圆心,AC长为半径画弧,交BC于E点.若∠B=40°,∠C=36°,则关于AD,AE,BE,CD的大小关系,下列正确的是(D)A.AD=AEB.AD<AEC.BE=CDD.BE<CD二、填空题(每小题4分,共20分)11.在△ABC中,∠A=30°,∠B=70°,这个三角形是锐角三角形(填“锐角”“直角”或“钝角”).12.如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并各自延长,使PC=PA,PD=PB,连接CD,测得CD长为25 m,则池塘宽AB为25m.13.如图,△BAE≌△BCE,△BAE≌△DCE,则∠D=30°.14.如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=3cm.15.在△ADB和△ADC中,下列条件:①BD=CD,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB =∠ADC,BD=DC.能得出△ABD≌△A CD的条件的序号是①②④.三、解答题(共50分)16.(10分)如图,点B,F,C,E在同一直线上,并且BF=CE,∠B=∠E.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△DEF,你添加的条件是AB=DE(答案不唯一);(2)添加了条件后,试说明:△ABC≌△DEF.解:若添加AB=DE,因为∠B=∠E.又因为BF=CE,所以BF+FC=CE+FC,即BC=EF.所以△ABC≌△DEF(SAS).17.(10分)尺规作图:如图,已知△ABC.求作△A1B1C1,使A1B1=AB,∠B1=∠B,B1C1=BC.(保留作图痕迹)解:如图所示:18.(10分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A,D重合,连接BE,EC.试猜想线段BE和EC的数量及位置关系,请说明理由.解:BE=EC,BE⊥EC.理由:因为AC=2AB,点D是AC的中点,所以AB=AD=DC.因为∠EAD=∠EDA=45°,所以∠EAB=∠EDC=135°.又因为EA=ED,所以△EAB≌△EDC.所以∠AEB=∠DEC,EB=EC.所以∠BEC=∠AED=90°.所以BE⊥EC,即BE=EC,且BE⊥EC.19.如图所示的A,B是两棵大树,两棵大树之间有一个废弃的圆形坑塘,为开发利用这个坑塘,需要测量A,B之间的距离,但坑塘里存有污水不能直接测量.(1)请你利用所学的知识,设计一个测量方案;(2)在你设计的测量方案中,需要测量哪些数据?为什么?解:(1)过点B画一条射线,在射线上选定O,D两点,使OD=OB;再作射线AO并在AO上截取OC=OA,如图所示.连接CD,测出CD的长就得到AB的长.(2)需要测量线段OA,OB,OC,OD,CD的长度.理由如下:在△AOB和△COD中,OA=OC,∠AOB=∠COD,OB=OD,所以△AOB≌△COD(SAS).所以AB=CD.20.(10分)如图,点B,E分别在AC,DF上,若∠AGB=∠EHF,∠C=∠D.。
新北师大版七下数学期末复习知识要点汇总

新北师大版七下数学期末复习知识要点汇总第一章整式的乘除单项式整式多项式同底数幂的乘法幂的乘方积的乘方幂运算同底数幂的除法零指数幂负指数幂单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式的乘除平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、同底数幂的乘法1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n = am﹒an。
5、对于底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
二、幂的乘方1、幂的乘方是指几个相同的幂相乘。
(am)n表示n个am 相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。
(am)n =amn。
3、此法则也可以逆用,即:amn =(am)n=(an)m。
三、积的乘方1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。
即(ab)n=anbn。
3、此法则也可以逆用,即:anbn =(ab)n。
四、三种“幂的运算法则”异同点1、共同点:(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。
2、不同点:(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
五、同底数幂的除法1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。
2、此法则也可以逆用,即:am-n = am÷an(a≠0)。
六、零指数幂1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
北师大版七年级数学(下)期末复习知识要点汇总

七年级数学(下)期末复习知识要点汇总第一章 整式的乘除单项式 整 式多项式同底数幂的乘法幂的乘方积的乘方幂运算 同底数幂的除法零指数幂负指数幂单项式与单项式相乘单项式与多项式相乘整式的乘法 多项式与多项式相乘整式的乘除 平方差公式完全平方公式单项式除以单项式整式的除法 多项式除以单项式一、同底数幂的乘法1、n 个相同因式(或因数)a 相乘,记作a n ,读作a 的n 次方(幂),其中a 为底数,n 为指数,a n 的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
即:a m ﹒a n =a m+n4、此法则也可以逆用,即:a m+n = a m ﹒a n 。
5、对于底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
二、幂的乘方1、幂的乘方是指几个相同的幂相乘。
(a m )n 表示n 个a m 相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。
(a m )n =a mn 。
3、此法则也可以逆用,即:a mn =(a m )n =(a n )m 。
三、积的乘方1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。
即(ab )n =a n b n 。
3、此法则也可以逆用,即:a n b n =(ab )n 。
四、三种“幂的运算法则”异同点1、共同点:(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。
整 式 的 乘 除(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
五、同底数幂的除法1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:a m÷a n=a m-n(a≠0)。
7年级下册数学期末考试重点知识清单(北师大版) (1)

北师大版七下数学各章节知识归纳第一章整式的运算知识回顾单项式整 式多项式 同底数幂的乘法幂的乘方 积的乘方 同底数幂的除法零指数幂 负指数幂 整式的加减 单项式与单项式相乘单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式.单独的一个数或一个字母也是单项式. 一个单项式中,所有字母的指数的和叫做这个单项式的次数. 二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式中次数最高的项的次数,叫做这个多项式的次数. 三、整式:单项式和多项式统称为整式. 四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项. 五、幂的运算性质:1、同底数幂的乘法:a m﹒a n=am+n(m,n 都是正整数); 2、幂的乘方:(a m )n =a mn(m,n 都是正整数);3、积的乘方:(ab )n=a n b n (n 都是正整数); 4、同底数幂的除法:a m÷a n=a m-n(m,n 都是正整数,a ≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a ≠0); 2、负整数指数幂:1(0)p pa aa -=≠p 是正整数.七、整式的乘除法: 1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式.2、单项式乘以多项式: 法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5、多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.八、整式乘法公式:1、平方差公式:(a+b )(a-b)=a 2-b22、完全平方公式:222222()2,()2,a b a ab b a b a ab b +=++-=-+第二章 相交线与平行线余角余角补角补角角两线相交 对顶角同位角 三线八角 内错角同旁内角平行线的判定 平行线平行线的性质尺规作图一、余角和补角:1、余角: 定义:如果两个角的和是直角,那么称这两个角互为余角. 性质:同角或等角的余角相等.2、补角: 定义:如果两个角的和是平角,那么称这两个角互为补角. 性质:同角或等角的补角相等.二、对顶角:我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角. 对顶角的性质:对顶角相等. 三、同位角、内错角、同旁内角:直线AB ,CD 与EF 相交(或者说两条直线AB ,CD 被第三条直线EF 所截),构成八个角.其中∠1与∠5这两个角分别在AB ,CD 的上方,并且在EF 的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB ,CD 之间,并且在EF 的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB ,CD 之间,并侧在EF 的同侧,像这样位置的两个角叫做同旁内角.A 2 1 B3 46 5 D7 8CF四、平行线的判定:1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行.简称:同位角相等,两直线平行.2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行.简称:内错角相等,两直线平行.3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行.简称:同旁内角互补,两直线平行.补充平行线的判定方法:(1)平行于同一条直线的两直线平行.(2)在同一平面内,垂直于同一条直线的两直线平行.(3)平行线的定义.五、平行线的性质:(1)两直线平行,同位角相等. (2)两直线平行,内错角相等. (3)两直线平行,同旁内角互补.六、尺规作图: 1、作一条线段等于已知线段. 2、作一个角等于已知角.第三章变量之间的关系知识回顾自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间图象一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量.2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量.3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量.(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量.(3)利用具体情境来体会两者的依存关系.二、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系.(1)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系.2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,第一行表示自变量,第二行表示因变量;(3)写出栏目名称,有时还根据问题内容写上单位;(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值.(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系.三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式.2、关系式的写法不同于方程,必须将因变量单独写在等号的左边.3、求两个变量之间关系式的途径:(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式. (2)根据表格中所列的数据写出变量之间的关系式;(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式.4、关系式的应用:(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值).四、图象1、图象是刻画变量之间关系的又一重要方法,其特点是非常直观、形象.2、图象能清楚地反映出因变量随自变量变化而变化的情况.3、用图象表示变量之间的关系时,通常用水平方向的数轴(又称横轴)上的点表示自变量,用竖直方向的数轴(又称纵轴)上的点表示因变量.4、图象上的点:(1)对于某个具体图象上的点,过该点作横轴的垂线,垂足的数据即为该点自变量的取值;(2)过该点作纵轴的垂线,垂足的数据即为该点相应因变量的值.(3)由自变量的值求对应的因变量的值时,可在横轴上找到表示自变量的值的点,过这个点作横轴的垂线与图象交于某点,再过交点作纵轴的垂线,纵轴上垂足所表示的数据即为因变量的相应值.(4)把以上作垂线的过程过来可由因变量的值求得相应的自变量的值.5、图象理解(1)理解图象上某一个点的意义,一要看横轴、纵轴分别表示哪个变量;(2)看该点所对应的横轴、纵轴的位置(数据);(3)从图象上还可以得到随着自变量的变化,因变量的变化趋势.五、速度图象1、弄清哪一条轴(通常是纵轴)表示速度,哪一条轴(通常是横轴)表示时间;2、准确读懂不同走向的线所表示的意义:(1)上升的线:从左向右呈上升状的线,其代表速度增加;(2)水平的线:与水平轴(横轴)平行的线,其代表匀速行驶或静止;(3)下降的线:从左向右呈下降状的线,其代表速度减小.六、路程图象1、弄清哪一条轴(通常是纵轴)表示路程,哪一条轴(通常是横轴)表示时间;2、准确读懂不同走向的线所表示的意义:(1)上升的线:从左向右呈上升状的线,其代表匀速远离起点(或已知定点);(2)水平的线:与水平轴(横轴)平行的线,其代表静止;(3)下降的线:从左向右呈下降状的线,其代表反向运动返回起点(或已知定点).七、三种变量之间关系的表达方法与特点:第四章三角形知识回顾三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的判定 ASAAASHL(适用于RtΔ)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示.2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”.3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;4、∠A、∠B、∠C为ΔABC的三个内角.二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.用字母可表示为a+b>c,a+c>b,b+c>a;a-b<c,a-c<b,b-c<a.2、判断三条线段a,b,c能否组成三角形:(1)当a+b>c,a+c>b,b+c>a同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形.3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即-<<+.a b c a b三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800.2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C 所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边.注:直角三角形的性质:直角三角形的两个锐角互余.(3)钝角三角形,即有一个内角是钝角的三角形.3、判定一个三角形的形状主要看三角形中最大角的度数.4、直角三角形的面积等于两直角边乘积的一半.5、任意一个三角形都具备六个元素,即三条边和三个内角.都具有三边关系和三内角之和为1800的性质.6、三角形内角和定理包含一个等式,它是我们列出有关角的方程的重要等量关系.四、三角形的三条重要线段1、三角形的三条重要线段是指三角形的角平分线、中线和高线.2、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(2)任意三角形都有三条角平分线,并且它们相交于三角形内一点.3、三角形的中线:(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线.(2)三角形有三条中线,它们相交于三角形内一点.4、三角形的高线:(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高.(2)任意三角形都有三条高线,它们所在的直线相交于一点.五、全等图形1、两个能够重合的图形称为全等图形.2、全等图形的性质:全等图形的形状和大小都相同.3、全等图形的面积或周长均相等.4、判断两个图形是否全等时,形状相同与大小相等两者缺一不可.5、全等图形在平移、旋转、折叠过程中仍然全等.6、全等图形中的对应角和对应线段都分别相等.六、全等分割1、把一个图形分割成两个或几个全等图形叫做把一个图形全等分割.2、对一个图形全等分割:(1)首先要观察分析该图形,发现图形的构成特点;(2)其次要大胆尝试,敢于动手,必要时可采用计算、交流、讨论等方法完成.七、全等三角形1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”.2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上.3、全等三角形的性质:全等三角形的对应边、对应角相等.这是今后证明边、角相等的重要依据.4、两个全等三角形,准确判定对应边、对应角,即找准对应顶点是关键.八、全等三角形的判定1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”.3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”.4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”.5、注意以下内容(1)三角形全等的判定条件中必须是三个元素,并且一定有一组边对应相等.(2)三边对应相等,两边及夹角对应相等,一边及任意两角对应相等,这样的两个三角形全等.(3)两边及其中一边的对角对应相等不能判定两三角形全等.6、熟练运用以下内容(1)熟练运用三角形判定条件,是解决此类题的关键.(2)已知“SS”,可考虑A:第三边,即“SSS”;B:夹角,即“SAS”.(3)已知“SA”,可考虑A:另一角,即“AAS”或“ASA”;B:夹角的另一边,即“SAS”.(4)已知“AA”,可考虑A:任意一边,即“AAS”或“ASA”.7、三角形的稳定性:根据三角形全等的判定方法(SSS)可知,只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了,三角形的这个性质叫做三角形的稳定性.九、作三角形1、作图题的一般步骤:(1)已知,即将条件具体化;(2)求作,即具体叙述所作图形应满足的条件;(3)分析,即寻找作图方法的途径(通常是画出草图);(4)作法,即根据分析所得的作图方法,作出正式图形,并依次叙述作图过程;(5)证明,即验证所作图形的正确性(通常省略不写).2、熟练以下三种三角形的作法及依据.(1)已知三角形的两边及其夹角,作三角形.(2)已知三角形的两角及其夹边,作三角形.(3)已知三角形的三边,作三角形.十、利用三角形全等测距离1、利用三角形全等测距离,实际上是利用已有的全等三角形,或构造出全等三角形,运用全等三角形的性质(对应边相等),把较难测量或无法测量的距离转化成已知线段或较容易测量的线段的长度,从而得到被测距离.2、运用全等三角形解决实际问题的步骤:(1)先明确实际问题应该用哪些几何知道解决;(2)根据实际问题抽象出几何图形;(3)结合图形和题意分析已知条件;(4)找到解决问题的途径.十一、直角三角形全等的条件1、在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”.2、“HL”是直角三角形特有的判定条件,对非直角三角形是不成立的;3、书写时要规范,即在三角形前面必须加上“Rt”字样.十二、分析-综合法1、我们在平时解几何题时,采用的解题方法通常有两种,综合法与分析法.2、综合法:从问题的条件出发,通过分析条件,依据所学知识,逐步探索,直到得出问题的结论.3、分析法:从问题的结论出发,不断寻找使结论成立的条件,直至已知条件.4、在具体解题中,通常是两种方法结合起来使用,既运用综合法,又运用分析法.第五章生活中的轴对称知识回顾轴对称图形轴对称分类轴对称角平分线轴对称实例线段的垂直平分线等腰三角形等边三角形生活中的轴对称轴对称的性质轴对称的性质镜面对称的性质图案设计轴对称的应用镶边与剪纸一、轴对称图形1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.2、理解轴对称图形要抓住以下几点:(1)指一个图形;(2)存在一条直线(对称轴);(3)图形被直线分成的两部分互相重合;(4)轴对称图形的对称轴有的只有一条,有的则存在多条;(5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;二、轴对称1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴.可以说成:这两个图形关于某条直线对称.2、理解轴对称应注意:(1)有两个图形;(2)沿某一条直线对折后能够完全重合;(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形;(4)对称轴是直线而不是线段;三、角平分线的性质1、角平分线所在的直线是该角的对称轴.2、性质:角平分线上的点到这个角的两边的距离相等.四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线.2、性质:线段垂直平分线上的点到这条线段两端点的距离相等.五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形.5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴.6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴.7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”.8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质.9、“三线合一”是等腰三角形特有的性质,是指其顶角平分线,底边上的高和中线,这三线,并非其他.10、等腰三角形的两个底角相等,简写成“等边对等角”.11、判定一个三角形是等腰三角形常用的两种方法:(1)两条边相等的三角形是等腰三角形;(2)如果一个三角形有两个角相等,那么它们所对的边也相等相等,简写为“等角对等边”.六、等边三角形1、等边三角形是指三边都相等的三角形,又称正三角形,是最特殊的三角形.2、等边三角形是底与腰相等的等腰三角形,所以等边三角形具备等腰三角形的所有性质.3、等边三角形有三条对称轴,三角形的高、角平分线和中线所在的直线都是它的对称轴.4、等边三角形的三边都相等,三个内角都是600.七、轴对称的性质1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角.2、关于某条直线对称的两个图形是全等图形.3、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分.4、如果两个图形关于某条直线对称,那么对应线段、对应角都相等.5、类似地,轴对称图形的性质有:(1)轴对称图形对应点所连的线段被对称轴垂直平分.(2)轴对称图形的对应线段、对应角相等.(3)根据轴对称图形的性质可求作轴对称图形的对应点、对应线段或对应角,并由此能补全轴对称图形.八、图案设计1、作出简单平面图形经过轴对称后的图形,实际上是轴对称图形的性质的灵活运用.2、作出简单平面图形经过轴对称后的图形的步骤:(1)首先要确定一个简单平面图形上的几个特殊点;(2)然后利用轴对称的性质,作出其相应的对称点(对应点所连的线段被对称轴垂直平分).(3)分别连接其对称点,则可得其对称图形.3、表达方式(以点M为例):(1)过点M作对称轴l的垂线,垂足为A;(2)延长MA到M’到,使M’A=MA,则点M’就是点M关于直线l的对称点.(3)在复杂的作图中,也可以叙述为:作出点M关于直线l的对称点M’.4、在运用轴对称设计图案时,就注意以下几点:(1)要有明确的设计意图;(2)创意要新颖独特;(3)设计出的图案要符合要求;(4)能清楚地表达自己的设计意图和制作过程.5、图案的设计除采用对称的手段外,通常还综合采用旋转、倒置、重复等手段和形式.6、设计的图案要美观、大方,积极向上,反映时代特色.九、镜面对称1、镜面对称的有关性质:(1)任何一个平面图形(物体)在镜子中的像与它是可以重合的.因此,一个轴对称图形在镜子中的像仍是轴对称图形.(2)若一个平面图形正对镜面,则其左(右)侧在镜中的像是其右(左)侧;(3)若一个平面图形(物体)垂直于镜面摆放,则靠近镜面的部分,其像也靠近镜面;2、关于数字0、1、3、8在镜面中像的两个结论:(1)如果写数字的纸条垂直于镜面摆放,则纸条上写的0、1、3、8所成的像与原来的数字完全一样. (2)如果纸条正对镜面摆放,则纸条上写的0、1、8这三个数字在镜中的像和原来的数字完全一样.3、像与物体到镜面的距离相等.4、像与物体的对应点连线被镜面垂直平分.5、由镜中的时间来判断真实时间是近几年来中考的一个热点.时间的表示有用一般数字表示的,也有直接用钟表来表示的.在判断时,大家要注意灵活利用镜面对称的知识来加以解决.第六章概率知识回顾必然事件事件不可能事件不确定事件概率等可能性游戏的公平性概率的定义概率几何概率设计概率模型一、事件1、事件分为必然事件、不可能事件、不确定事件.2、必然事件:事先就能肯定一定会发生的事件.也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1).3、不可能事件:事先就能肯定一定不会发生的事件.也就是指该事件每次都完全没有机会发生,即发生的可能性为零.4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间.5、三种事件都是相对于事件发生的可能性来说的,若事件发生的可能性为100%,则为必然事件;若事件发生的可能性为0,则为不可能事件;若事件不一定发生,即发生的可能性在0∽1之间,则为不确定事件.6、简单地说,必然事件是一定会发生的事件;不可能事件是绝对不可能发生的事件;不确定事件是指有可能发生,也有可能不发生的事件.7、表示事件发生的可能性的方法通常有三种:(1)用语言叙述可能性的大小.(2)用图例表示.(3)用概率表示.二、等可能性1、等可能性:是指几种事件发生的可能性相等.2、游戏规则的公平性:就是看游戏双方的结果是否具有等可能性.(1)首先要看游戏所出现的结果的两种情况中有没有必然事件或不可能事件,若有一个必然事件或不可能事件,则游戏是不公平的;。
北师大版七年级数学下册期末综合复习(含详解)

北师大版七年级数学下册期末综合复习 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、已知一辆汽车行驶的速度为50/km h ,它行驶的路程s (单位:千米)与行驶的时间t (单位:小时)之间的关系是50s t ,其中常量是( ) A .s B .50 C .t D .s 和t 2、下列事件中,是必然事件的是( )A .同位角相等B .打开电视,正在播出特别节目《战疫情》C .经过红绿灯路口,遇到绿灯D .长度为4,6,9的三条线段可以围成一个三角形. 3、如果一个角的补角是这个角的4倍,那么这个角为( ) A .36°B .30°C .144°D .150° 4、下列说法不正确的是( )A .两点确定一条直线B .经过一点只能画一条直线·线○封○密○外C .射线AB 和射线BA 不是同一条射线D .若∠1+∠2=90°,则∠1与∠2互余5、下列运算一定正确的是( )A .33(3)9a a =B .212a a a --⋅=C .01π=D .2142-⎛⎫=- ⎪⎝⎭6、已知∠A =37°,则∠A 的补角等于( )A .53°B .37°C .63°D .143°7、下面所给的银行标志图中是轴对称图形的是( )A .B .C .D .8、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同.现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是( ).A .15B .25 C .35 D .459、下列说法中正确的是( )A .锐角的2倍是钝角B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC =BC ,则点C 是线段AB 的中点 10、三个数02,23-,()13--中,负数的个数是( )A .0个B .1个C .2个D .3个第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分) 1、计算:36x x ⋅=________________. 2、小明制作了5张卡片,上面分别写了一个条件:①AB BC =;②AB BC ⊥;③AD BC =;④AC BD ⊥;⑤AC BD =.从中随机抽取一张卡片,能判定ABCD 是菱形的概率是________. 3、如图所示,锐角△ABC 中,D ,E 分别是AB ,AC 边上的点,连结BE 、CD 交于点F .将△ADC 和△AEB 分别绕着边AB 、AC 翻折得到△ADC '和△AEB ',且EB '∥DC '∥BC ,若∠BAC =42°,则∠BFC 的大小是 ___. 4、对于圆的周长公式c=2πr,其中自变量是______,因变量是______.5、计算:2021202023()()32-⨯-=_______6、随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.7、口袋中有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1球,摸出黑球的概率为_______. 8、已知4a b +=,2ab =,则()()22a b ++=______. ·线○封○密○外9、如图,在长方形ABCD中,AD=BC=5,AB=CD=12,AC=13,动点M在线段AC上运动(不与端点重合),点M关于边AD,DC的对称点分别为M1,M2,连接M1M2,点D在M1M2上,则在点M的运动过程中,线段M1M2长度的最小值是_______.10、如图,已知AB∥CD,∠1=55°,则∠2的度数为 ___.三、解答题(5小题,每小题8分,共计40分)1、足球比赛前,由裁判员拋掷一枚硬币,若正面向上则由甲队首先开球,若反面向上则由乙队首先开球,这种确定首先开球一方的做法对参赛的甲、乙两队公平吗?为什么?2、作ABC关于y轴对称的A 1B1C13、如图所示,已知12∠=∠,请你添加一个条件,证明:AB AC =.(1)你添加的条件是______;(2)请写出证明过程.4、根据要求画图或作答:如图所示,已知A 、B 、C 三点.(1)连结线段AB ;(2)画直线AC 和射线BC ;(3)过点B 画直线AC 的垂线,垂足为点D ,则点A 到直线BD 的距离是线段_______的长度. 5、在每个事件的括号里填上“必然”、“随机”、“不可能”等词语.①如果a b =,那么22a b =.( ) ·线○封○密·○外②如果0a b +=,那么0a <,0b >.( )③一只袋里有5个红球,1个白球,从袋里任取一球是红色的.( )④掷骰子游戏中,连续掷十次,掷得的点数全是6.( )-参考答案-一、单选题1、B【分析】根据常量的定义即可得答案.【详解】∵汽车行驶的速度为50/km h ,是不变的量,∴关系式50s t =中,常量是50,故选:B .【点睛】此题主要考查了常量与变量,正确理解常量与变量的定义是解题关键.2、D【分析】根据必然事件的概念即可得出答案.【详解】解:∵同位角不一定相等,为随机事件,∴A 选项不合题意,∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,∴B 选项不合题意,∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,∴C 选项不合题意,∵4+6>9,∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.∴D 选项符合题意,故选:D .【点睛】本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念. 3、A 【分析】 设这个角为x ,则它的补角为180x ︒- ,根据“一个角的补角是这个角的4倍”,列出方程,即可求解. 【详解】 解:设这个角为x ,则它的补角为180x ︒- ,根据题意得: 1804x x ︒-= , 解得:36x =︒ .故选:A【点睛】本题主要考查了补角的性质,一元一次方程的应用,明确题意,准确得到等量关系是解题的关键. 4、B【分析】根据两点确定一条直线,即可判断A ;根据过一点可以画无数条直线可以判断B ;根据射线的表示方·线○封·○密○外法即可判断C ;根据余角的定义,可以判断D .【详解】解:A 、两点确定一条直线,说法正确,不符合题意;B 、过一点可以画无数条直线,说法错误,符合题意;C 、射线AB 和射线BA 不是同一条射线,说法正确,不符合题意;D 、若∠1+∠2=90°,则∠1与∠2互余,说法正确,不符合题意;故选B .【点睛】本题主要考查了两点确定一条直线,;过一点可以画无数条直线,射线的表示方法余角的定义,熟知相关知识是解题的关键.5、C【分析】根据幂的乘方运算以及零指数幂、负整数指数幂、同底数幂的乘除法运算法则计算即可求解.【详解】解:A 、33(3)27a a =,故选项错误;B 、21a a a -⋅=,故选项错误;C 、01π=,故选项正确;D 、2142-⎛⎫= ⎪⎝⎭,故选项错误. 故选:C .【点睛】此题主要考查了整式的混合运算,涉及幂的乘方运算以及零指数幂、负整数指数幂、同底数幂的乘除法运算,正确掌握相关运算法则是解题关键.6、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A =37°,∴∠A 的补角的度数为180°-∠A =143°,故选D .【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键. 7、B 【分析】 根据轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,逐项分析判断即可. 【详解】 解:A.不是轴对称图形,故该选项不正确,不符合题意; B.是轴对称图形,故该选项正确,符合题意; C. 不是轴对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了轴对称图形的识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 8、B【分析】·线○封○密○外先找出滑冰项目图案的张数,再根据概率公式即可得出答案.【详解】解:∵有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是25;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.9、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.10、B【分析】先计算各数,并与0比较大小,根据比0小的个数得出结论即可.【详解】解:021=>0,2211339-==>0,()111333--==--<0, 负数的个数是1个, 故选:B . 【点睛】 本题考查有理数的幂运算,零指数幂,负指数幂,掌握有理数的幂运算,零指数幂,负指数幂,和比较大小是解题关键. 二、填空题 1、9x 【分析】 根据同底数幂的乘法法则,底数不变,指数相加计算即可. 【详解】 ∵36x x ⋅=9x , 故答案为:9x . 【点睛】 本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键. 2、25 【分析】 根据菱形的判定定理判断哪个条件合适,然后根据概率公式计算. 【详解】 根据菱形的判断,可得①;④能判定平行四边形ABCD 是菱形, ·线○封○密·○外∴能判定ABCD是菱形的概率是25,故答案为:25.【点睛】本题考查了菱形的判定,概率的计算,熟练掌握概率计算公式是解题的关键.3、96°96度【分析】根据题意由翻折的性质和全等三角形的对应角相等、三角形外角定理以及三角形内角和定理进行分析解答.【详解】解:设∠C′=α,∠B′=β,∵将△ADC和△AEB分别绕着边AB、AC翻折得到△ADC'和△AEB',∴△ADC≌△ADC′,△AEB≌△AEB′,∴∠ACD=∠C′=α,∠ABE=∠B′=β,∠BAE=∠B′AE=42°,∴∠C′DB=∠BAC′+AC′D=42°+α,∠CEB′=42°+β.∵C′D∥EB′∥BC,∴∠ABC=∠C′DB=42°+α,∠ACB=∠CEB′=42°+β,∴∠BAC+∠ABC+∠ACB=180°,即126°+α+β=180°.则α+β=54°.∵∠BFC=∠BDC+∠DBE,∴∠BFC=42°+α+β=42°+54°=96°.故答案为:96°.【点睛】本题考查全等三角形的性质,解答本题的关键是利用“全等三角形的对应角相等”和“两直线平行,内错角相等”进行推理. 4、r c【详解】试题解析:∵圆的周长随着圆的半径的变化而变化,∴对于圆的周长公式2πC r =,其中自变量是r ,因变量是C .故答案为,.r C5、23- 【分析】 先把原式化为2020232323⎡⎤⎛⎫-⨯-⨯ ⎪⎢⎥⎝⎭⎣⎦,再计算乘方运算,再算乘法运算,即可得到答案. 【详解】 解:20202021202023232()()32323⎡⎤⎛⎫-⨯-=-⨯-⨯ ⎪⎢⎥⎝⎭⎣⎦ 2020221.33 故答案为:23- 【点睛】 本题考查的是同底数幂的乘法的逆运算,积的乘方运算的逆运算,掌握“n n na b ab ”是解本题的关键.6、年份 入学儿童人数 2014【分析】(1)根据题意,每一年的递减人数相等判断出y 与x 是一次函数关系,设y=kx+b ,再取两组数据代入·线○封○密○外得到二元一次方程组,求出k 、b 即可得到答案;(2)根据不超过1000人列出不等式,然后求解即可得到答案.【详解】解:(1)从上表可以得到信息,入学儿童的人数随着年份的变化而变化,所以年份是自变量,入学儿童人数是因变量,故答案为:年份 ;入学儿童人数;(2):①设y=kx+b ,将x=2006,y=2520和x=2007,y=2330代入得到二元一次方程组,2006252020072330k b k b +⎧⎨+⎩==, 190383660k b -⎧⎨⎩==, 所以,y=-190x+383660;∴根据题意得,-190x+383660≤1000,解得x≥2014,所以,该地区从2014年起入学儿童人数不超过1000人.故答案为: 2014.【点睛】本题主要考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,观察出y 与x 是一次函数关系、灵活运用所学知识是解题的关键.7、23【分析】直接利用概率公式求解即可求得答案.【详解】解:∵一个不透明的袋子中只装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别, ∴随机从袋中摸出1个球,则摸出黑球的概率是:42423=+. 故答案为:23. 【点睛】 本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 8、14【分析】先将原式利用多项式乘以多项式法则变形,再将a +b 、ab 的值代入计算可得.【详解】解:(a +2)(b +2)=ab +2a +2b +4=ab +2(a +b )+4当a +b =4、ab =2时,原式=2+2×4+4=2+8+4=14,9、12013 【分析】 过D 作DM AC '⊥于M ',连接DM ,根据题意可得122M M DM =,从而可以判定M 1M 2最小值为·线○封○密○外2DM ',即可求解.【详解】解:过D 作DM AC '⊥于M ',连接DM ,如图:长方形ABCD 中,AD =BC =5,AB =CD =12,AC =13, ∴1122ADCAD CD AC S DM '=⨯=⨯ ∴60=13AD CD DM CD ⨯'=, ∵M 关于边AD ,DC 的对称点分别为M 1,M 2,∴DM 1=DM =DM 2,∴122M M DM =,线段M 1M 2长度最小即是DM 长度最小,此时DM ⊥AC ,即M 与M '重合,M 1M 2最小值为122013DM '=. 故答案为:12013. 【点睛】此题考查了轴对称的性质,掌握轴对称的有关性质将12M M 的最小值转化为DM 的最小值是解题的关键.10、125︒【分析】如图(见解析),先根据平行线的性质可得3155∠=∠=︒,再根据邻补角的定义即可得.【详解】解:如图,,155AB CD ∠=︒,3155∴∠=∠=︒,21803125∴∠=︒-∠=︒, 故答案为:125︒. 【点睛】 本题考查了平行线的性质、邻补角,熟练掌握平行线的性质是解题关键. 三、解答题 1、公平.理由见解析. 【分析】 抛掷一枚硬币,可出现正面朝上或反面朝上,两种结果发生的可能性相同,从而可得答案. 【详解】 解:公平.因为抛掷一枚硬币, 正面向上的概率和反面向上的概率各为12, 所以采用这种方法确定哪一队首先开球是公平的. 【点睛】 ·线○封○密○外本题考查的简单随机事件的概率,如果一个事件的发生有n种可能,而且这些事件发生的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.2、见解析【分析】直接利用轴对称图形的性质得出对应点位置进而得出答案.【详解】解:如图所示:【点睛】本题主要考查了利用轴对称变换作图,几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始.3、(1)B C∠=∠;(2)见解析【分析】(1)此题是一道开放型的题目,答案不唯一,如∠B=∠C或∠ADB=∠ADC等;(2)根据全等三角形的判定定理AAS推出△ABD≌△ACD,再根据全等三角形的性质得出即可.【详解】解:()1添加的条件是B C∠=∠,故答案为:B C∠=∠;()2证明:在ABD 和ACD 中12B C AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABD ∴≌()ACD AAS , AB AC ∴=. 【点睛】 本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,全等三角形的对应角相等,对应边相等. 4、(1)画图见解析;(2)画图见解析;(3)画图见解析,.AD 【分析】 (1)连接AB 即可; (2)过,A C 两点画直线即可,以B 为端点画射线BC 即可; (3)利用三角尺过B 画AC 的垂线,垂足为,D 可得,AD BD ⊥ 从而可得点A 到直线BD 的距离是垂线段AD 的长度. 【详解】 解:(1)如图,线段AB 即为所求作的线段, (2)如图,直线AC 和射线BC 即为所求作的直线与射线, (3)如图,BD 即为所画的垂线, ·线○封○密○外点A 到直线BD 的距离是线段AD 的长度.故答案为:.AD【点睛】本题考查的是画直线,射线,线段,过一点画已知直线的垂线,点到直线的距离的含义,掌握画直线,射线,线段及画已知直线的垂线是解本题的关键.5、①必然;②不可能;③随机;④随机【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】①如果a b =,那么22a b =,是必然事件;故答案为:必然 ②如果0a b +=,那么0a <,0b >,是不可能事件,0a b +=,那么0,0a b ==;故答案为:不可能③一只袋里有5个红球,1个白球,从袋里任取一球是红色的,是随机事件;故答案为:随机; ④掷骰子游戏中,连续掷十次,掷得的点数全是6,是随机事件.故答案为:随机【点睛】本题考查了确定事件和随机事件,根据相关知识判断事件的发生的可能性大小是解题的关键. ·线○封○密·○外。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鑫达捷
初中数学试卷 桑水出品
2015年山东省枣庄市十六中学七年级下册期末复习
数学试题
一、选择题(每小题3分,共30分) 1.下面
是一位同学做
的四道题:①a 3+a 3=a 6;②(xy 2)3=x 3y 6;③x 2•x 3=x 6;④(-a )2÷a=-a .其中
做对的一道题是( )
A .①
B .②
C .③
D .④
2. 如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( )
A .70°,
B .100°,
C .110°,
D .120°
3.下列大学的校徽图案是轴对称图形的是( ) A .清华大学, B .北京大学
C .中国人民大学,
D . 浙江大学
4 . 若m+n=7,mn=12,则m 2-mn+n 2的值是( )
A .11,
B .13,
C .37,
D .61
5.如果三角形的三个内角度数比为1∶1∶2,则这个三角形为( )
A .锐角三角形
B .钝角三角形
C .非等腰直角三角形
D .等腰直角三角形
6. 如果 ,那么 的值是( )
A. 2
B. 4
C. 0
D. -4
7.若一个三角形的两边的长是9和4,且周长是偶数,那么第三条边的长可能是( )
A .5
B .7
C .8
D .13
8. 一幅扑克去掉大小王后,从中任抽一张是红桃的概率是( )
A. B. C. D. 9.如图,在△ABC 中,AB=AC=10cm ,DE 是AB 的中垂线,△BDC 的周长为16cm ,•则BC 的长为( )
A .5cm
B .6cm
C .8cm
D .10cm
题号 一 二 三 总 分 得分 412113152121=+a a 221a
a +
鑫达捷 10.如图,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间
t 变化的图象大致是( )
二、填空题(每小题3分,共30分)
11.有一种原子的直径约为0.00000053
米,它可以用科学计数法表示为 米。
12.计算:-22+20-|-3|×(-3)-1 = =⨯-200220035)2.0( 。
13.如果一个等腰三角形的两边长分别为2cm 和5cm ,那么它的周长是___________。
14.若,23,83==n m 则=-n m 323
15.如下图,直线l 1∥l 2,AB ⊥l 1,垂足为O ,BC 与l 2相交与点E ,若∠1=33°,
则∠2= 。
16.已知:()()25;922
=+=-b a b a ,则a 2+b 2=___________。
17.当x 2+2(k-1)x+25是一个完全平方式, 则k 的值是 。
18. 如图,已知∠B=∠DEF ,AB=DE ,请添加一个条件使△ABC ≌△DEF ,则需添加的条件是 .
(15题图) (18题图) 19. (x 2-mx+3)(3x-2)的积中不含x 的二次项,则m 的值是 。
20.如图,把矩形ABCD 沿EF 对折,若∠1 = 360,则∠AEF 等于
三、解答下列各题
21.计算下列各题(1、2小题各5分,3小题6分,共16分)
1.()()()3
52432623b a ab b a ÷-⋅ 2. 5224745210x x x -
+--=- 3.[])2(5)3)(()(2
2y y y x y x y x ÷-++-+ 其中212=-=y x , 22.(6分)已知:线段a 、c 和∠β(如图),利用尺规作ΔABC ,
使BC=a ,AB=c ,∠ABC=∠β。
(不写作法,保留作图痕迹)。
23.(6分)如图,点G 在CA 的延长线上,AF =AG ,∠ADC =∠GEC .
求证:AD 平分∠BAC .
24.(6分)已知△ABC 三边长是a 、b 、c ,试化简代数式c a b b a c c b a --++---+
25.(6分)如图,口袋中有5张完全相同的卡片,分别写有1cm 、2cm 、3cm 、4cm
和5cm ,
F E
C B A
D 4cm 5cm
(第9题)
口袋外有2张卡片,分别写有4cm和5cm。
现随机从袋内取出一张卡片,与口袋外两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,回答下列问题:
(1)求这三条线段能构成三角形的概率。
(2)求这三条线段能构成等腰三角形的概率。
26.(6分)下图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图;
(1)分段描述汽车在第0分种到第28分钟的行驶情况;
(2)汽车在点A的速度是多少?在点C呢?
(3)司机在第28分钟开始匀速先行驶了4分钟,之后立即以减速行驶2分钟停止,请你在本图中补上从28分钟以后汽车速度与行驶时间的关系图。
27.(6分)已知如图,等腰直角三角形ABC中,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足EA=CF.求证:DE=DF.
28.(8分)如图①,直线l过正方形ABCD的顶点B,A、C两顶点在直线l同侧,过点A、C分别作AE⊥直线l, CF⊥直线l.
(1)试说明:EF=AE+CF;
(2)如图②,当A、C两顶点在直线l两侧时,其它条件不变,猜想EF、AE、CF满足什么数量关系,并说明理由。
2015年山东省枣庄市十六中学七年级下册期末复习
数学参考答案
一、选择题:
BCBBD ABABB
二、填空题:
11. 5.3×10-7 12. -8/3 -0.2 13. 12cm 14. 8
15. 1230 16. 17 17. 6或-4 18. BC=EF等(答案不唯一)
19. -2/3 20. 1080
三、解答题:
21 (1)18a3b8 (2) x=-9/4 (3)化简结果:-x-7/2y 带值:1/4
22 略
23. 先证∠CAD=∠AGF 再由AF=AG 证∠AGF=∠GFA=∠FAD
所以∠CAD=∠FAD 故AD平分∠BAC
24.由题意知:a+b>c c+b>a b<a+c
所以c
+
-
+
+=a+b-c-c-b+a+a+c-b=3a-b-c
a-
-
-
-
b
b
b
a
c
c
a
25. (1) 4/5 (2) 2/5
26. 略
27. 连接AD 再证明三角形AED 全等于三角形CFD 故可得DE=DF
28. (1) 证明三角形AEB 全等于三角形CBF 所以 AE=BF BE=CF
所以 BE+BF=AE+CF 即 EF=AE+CF
(2) EF=AE-CF (证明略)
鑫达捷。