浙江省2017年普通高等学校招生全国统一考试数学模拟卷 word版

合集下载

(完整word版)浙江省宁波市2017年高考模拟考试数学试卷(2)

(完整word版)浙江省宁波市2017年高考模拟考试数学试卷(2)

, h 表示锥体的高
1 V 3 (S1
S1 S2 S2 )h
其中 S1, S2 分别表示台体的上、下底面积 ,
h 表示台体的高
球的体积公式
V= 4 πR3 3
其中 R 表示球的半径
选择题部分(共 40 分)
120 分钟。请考生按规
一、选择题:本大题共 目要求的。
10 小题,每小题 4 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题
c sin C
2 , c 2 2a ,
4
----------11 分
因为 S 1 ac sin B 1 a 2 2a 2 a2 9 ,
2
2
2
所以 a 3 .
19 .(本题满分 15 分)
(Ⅰ)取 BC 中点 M ,连结 EM , FM ,
易知 EM / / AB , FM / / PB ,
----------14 分 ----------2 分
21.(本小题满分 15 分) 已知椭圆方程为 x 2 y 2 1 ,圆 C : ( x 1) 2
4
y 2 r2 .
(Ⅰ)求椭圆上动点 P 与圆心 C 距离的最小值;
y
P
A
M
B
O
C
x
(Ⅱ) 如图, 直线 l 与椭圆相交于 A, B 两点, 且与圆 C 相切于
(第 21 题图 )
点 M ,若满足 M 为线段 AB 中点的直线 l 有 4 条,求半径 r 的取值范围.
A.i
B. i
C.1 i
3. 1
6
2x 展开式中含
x 2 项的系数为( ▲)
D.1 i
A . 15
B. 30

2017年普通高等学校招生全国统一考试数学试题(浙江卷,含解析)

2017年普通高等学校招生全国统一考试数学试题(浙江卷,含解析)

绝密★启用前2017年普通高等学校招生全国统一考试数学试题浙江卷【试卷点评】【命题特点】今年的高考数学试卷,试题的题型和背景熟悉而常见,整体感觉试题灵活,思维含量高.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础知识、基本技能以及数学思想方法的考查.在保持稳定的基础上,进行适度的改革和创新,最后一题对学生的能力有较高要求.从试卷的整体上看,“以稳为主”的试卷结构平稳,保持了“低起点、宽入口、多层次、区分好”的特色,主要体现了以下特点:1.考查双基、注重覆盖试题覆盖了高中数学的核心知识,涉及了函数的图象、单调性、周期性、最大值与最小值、三角函数、数列、立体几何、解析几何等主要知识,考查全面而又深刻.2.注重通性通法、凸显能力试题看似熟悉平淡,但将数学思想方法和素养作为考查的重点,淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求,提高了试题的层次和品位,许多试题保持了干净、简洁、朴实、明了的特点,充分体现了数学语言的形式化与数学的意义,如选择题第8、9、10等.3.分层考查、逐步加深试题层次分明,由浅入深,各类题型的起点难度较低,但落点较高,选择、填空题的前几道不需花太多时间就能破题,而后几题则需要在充分理解数学概念的基础上灵活应变;解答题的5个题目中共有11个小题,仍然具有往年的“多问把关”的命题特点.数学形式化程度高,不仅需要考生有较强的数学阅读与审题能力,而且需要考生有灵活机智的解题策略与分析问题解决问题的综合能力,如解答题的20、22题.4.紧靠考纲、稳中有变试题在考查重点保持稳定的前提下,坚持以中华文化为背景,体现数学文化的考查与思考,渗透现代数学思想和方法,在内涵方面,增加了基础性、综合性、应用性、创新性的要求.【命题趋势】1. 试卷整体难度会中等及以上;2. 试卷填空题多空出题目的:提高知识覆盖面﹑降低难度﹑提高得分率;3. 试卷会有一部分简单试题,照顾数学基础薄弱的学生,体现公平性原则;选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q PA .)2,1(-B .)1,0(C .)0,1(-D .)2,1(【答案】A 【解析】试题分析:利用数轴,取Q P ,所有元素,得=Q P )2,1(-. 【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.2.椭圆22194x y +=的离心率是A .3B .3C .23D .59【答案】B 【解析】【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于c b a ,,的方程或不等式,再根据c b a ,,的关系消掉b 得到c a ,的关系式,建立关于c b a ,,的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12+πB .32+πC .123+πD .323+π【答案】A 【解析】【考点】 三视图【名师点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.4.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则y x z 2+=的取值范围是A .[0,6]B .[0,4]C .[6,)∞+D .[4,)∞+【答案】D 【解析】试题分析:如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .【考点】 简单线性规划【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0≥++C By Ax 转化为b kx y +≤(或b kx y +≥),“≤”取下方,“≥”取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围. 5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – myA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】【考点】二次函数的最值【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上,且对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.6.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】【考点】 等差数列、充分必要性【名师点睛】本题考查等差数列的前n 项和公式,通过公式的套入与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若q p ⇒,则p 是q 的充分条件,若q p ⇐,则p 是q 的必要条件,该题“0>d ”⇔“02564>-+S S S ”,故为充要条件.7.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D 【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D . 【考点】 导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数)('x f 的正负,得出原函数)(x f 的单调区间.8.已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2. 若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ【答案】A 【解析】 试题分析:112212(),(),()()E p E p E E ξξξξ==∴<111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---<,选A .【考点】 两点分布【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i ξ服从两点分布,由两点分布均值与方差公式可得A 正确.9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B 【解析】【考点】 空间角(二面角)【名师点睛】立体几何是高中数学中的重要内容,也是高考重点考查的考点与热点.这类问题的设置一般有线面位置关系的证明与角度距离的计算等两类问题.解答第一类问题时一般要借助线面平行与垂直的判定定理进行;解答第二类问题时先建立空间直角坐标系,运用空间向量的坐标形式及数量积公式进行求解.10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I O A O B =,2·I OB OC =,3·I OC OD =,则A .321I I I <<B .231I I I <<C .213I I I <<D .312I I I <<【答案】C 【解析】【考点】 平面向量数量积运算【名师点睛】平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.本题通过所给条件结合数量积运算,易得90AOB COD ∠=∠>,由AB =BC =AD =2,CD =3,可求OC OA <,OD OB <,进而解得213I I I <<.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积6S ,=6S .【答案】2【解析】试题分析:将正六边形分割为6个等边三角形,则233)60sin 1121(66=⨯⨯⨯⨯=S【考点】数学文化【名师点睛】本题粗略看起来文字量大,其本质为将正六边形分割为6个等边三角形,确定6个等边三角形的面积,其中对文字信息的读取及提取有用信息方面至关重要,考生面对这方面题目时应多加耐心,仔细分析题目中所描述问题的本质,结合所学进行有目的的求解.12.已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b += ,ab = .【答案】5,2 【解析】试题分析:由题意可得22234a b abi i -+=+,则2232a b ab ⎧-=⎨=⎩,解得2241a b ⎧=⎨=⎩,则225,2a b ab +==【考点】复数的基本运算和复数的概念【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)+∈a bi a b R 的实部为a 、虚部为b (,)a b 、共轭为.-a bi13.已知多项式()1x +3()2x +2=5432112345x a x a x a x a x a +++++,则4a =________,5a =________.【答案】16,4【解析】【考点】二项式定理【名师点睛】本题主要考查二项式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r r r n T C a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项式定理的应用.14.已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos∠BDC =_______.【答案】24【解析】【考点】解三角形【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.15.已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是_______.【答案】4,【解析】试题分析:设向量,a b 的夹角为θ,由余弦定理有:212a b -=+=212a b +=+=54cos a b a b ++-=+令θθcos 45cos 45-++=y ,则[]21016,20y =+,据此可得:()()maxmin2025,164a b a ba b a b++-==++-==,即a b a b ++-的最小值是4,最大值是 【考点】平面向量模长运算【名师点睛】本题通过设入向量,a b 的夹角θ,结合模长公式, 解得54cos a b a b ++-=+能力和最值处理能力有一定的要求.16.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______中不同的选法.(用数字作答) 【答案】660 【解析】【考点】排列组合的应用【名师点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.在某些特定问题上,也可充分考虑“正难则反”的思维方式.17.已知α∈R ,函数a a xx x f +-+=|4|)(在区间[1,4]上的最大值是5,则a 的取值范围是___________.【答案】9(,]2-∞ 【解析】试题分析:[][]41,4,4,5x x x∈+∈,分类讨论: ①.当5a ≥时,()442f x a x a a x x x =--+=--,函数的最大值9245,2a a -=∴=,舍去;②.当4a ≤时,()445f x x a a x x x=+-+=+≤,此时命题成立;③.当45a <<时,(){}max max 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或:4555a a a a a a ⎧-+<-+⎪⎨-+=⎪⎩,解得:92a =或92a < 综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.【考点】基本不等式、函数最值【名师点睛】本题利用基本不等式,由[][]41,4,4,5x x x∈+∈,通过对解析式中绝对值号的处理,进行有效的分类讨论:①当5a ≥;②4a ≤;③45a <<,问题的难点最要在于对分界点的确认及讨论上,属难题.解题时,应仔细对各个情况进行逐一讨论.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)已知函数f (x )=sin 2x –cos 2x –x cos x (x ∈R ).(Ⅰ)求)32(πf 的值. (Ⅱ)求)(x f 的最小正周期及单调递增区间. 【答案】(Ⅰ)2;(Ⅱ)最小正周期为π,单调递增区间为Z k k k ∈++]32,6[ππππ. 【解析】(Ⅱ)由x x x 22sin cos 2cos -=与x x x cos sin 22sin =得)62sin(22sin 32cos )(π+-=--=x x x x f所以)(x f 的最小正周期是π 由正弦函数的性质得Z k k x k ∈+≤+≤+,2236222πππππ解得Z k k x k ∈+≤≤+,326ππππ所以)(x f 的单调递增区间是Z k k k ∈++]32,6[ππππ. 【考点】三角函数求值、三角函数的性质【名师点睛】本题主要考查了三角函数的化简,以及函数()ϕω+=x A y sin 的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.19.(本题满分15分)如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,AD BC //,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(Ⅰ)证明://CE 平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.PABCDE【答案】(Ⅰ)见解析;(Ⅱ)82. 【解析】(Ⅰ)如图,设PA 中点为F ,连结EF ,FB .因为E ,F 分别为PD ,PA 中点,所以AD EF //且AD EF 21=, 又因为AD BC //,AD BC 21=,所以BC EF //且BC EF =, 即四边形BCEF 为平行四边形,所以BF CE //, 因此//CE 平面PAB .MFH QNPABCDE设CD =1.在△PCD 中,由PC =2,CD =1,PD=2得CE =2, 在△PBN 中,由PN =BN =1,PB =3得QH =41, 在Rt △MQH 中,QH=41,MQ =2, 所以sin∠QMH =82, 所以直线CE 与平面PBC 所成角的正弦值是82. 【考点】证明线面平行,求线面角【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.另外,本题也可利用空间向量求解线面角.20.(本题满分15分)已知函数f (x )=(x e x -(12x ≥). (Ⅰ)求f (x )的导函数;(Ⅱ)求f (x )在区间1[+)2∞,上的取值范围.【答案】(Ⅰ)xe x x xf ----=)1221)(1()(';(Ⅱ)[0, 1212e -]. 【解析】解得或.因为( ()又,所以f (x )在区间[)上的取值范围是.【考点】导数的应用【名师点睛】本题主要考查导数的两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出)('x f ,有)('x f 的正负,得出函数)(x f 的单调区间;(二)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数)(x f 极值或最值. 21.(本题满分15分)如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点)2321)(,(<<-x y x P .过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求||||PQ PA ⋅的最大值.【答案】(Ⅰ))1,1(-;(Ⅱ)2716【解析】110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩ 解得点Q 的横坐标是)1(23422+++-=k k k x Q ,因为|PA 11)2x ++=)1(12++k k |PQ |= 1)1)(1()(1222++--=-+k k k x x k Q ,所以|PA ||PQ |=3)1)(1(+--k k令3)1)(1()(+--=k k k f ,因为2)1)(24()('+--=k k k f ,所以 f (k )在区间)21,1(-上单调递增,)1,21(上单调递减,因此当k =12时,||||PQ PA ⋅取得最大值2716. 【考点】直线与圆锥曲线的位置关系【名师点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3)1)(1()(+--=k k k f 求解||||PQ PA ⋅的最大值.22.(本题满分15分)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(*∈N n ).证明:当*∈N n 时, (Ⅰ)0<x n +1<x n ; (Ⅱ)2x n +1− x n ≤12n n x x +;(Ⅲ)112n +≤x n ≤212n +.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】因此)(0*∈>N n x n ,所以111)1ln(+++>++=n n n n x x x x ,因此)(01*+∈<<N n x x n n(Ⅱ)由111)1ln(+++>++=n n n n x x x x 得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数f (x )在[0,+∞)上单调递增,所以()(0)f x f ≥=0,因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥,112(N )2n n n n x x x x n *++-≤∈【考点】不等式证明【名师点睛】本题主要考查数列的概念、递推关系与单调性等基础知识,不等式及其应用,同时考查推理论证能力、分析问题和解决问题的能力,属于难题.本题主要应用:(1)数学归纳法证明不等式;(2)构造函数2()2(2)ln(1)(0)f x x x x x x =-+++≥,利用函数的单调性证明不等式;(3)由递推关系证明.。

2017年普通高等学校招生全国统一考试(浙江卷)数学

2017年普通高等学校招生全国统一考试(浙江卷)数学

A.
B.
C.
D. 解析:根据导数与函数单调性的关系,当 f′(x)<0 时,函数 f(x)单调递减,当 f′(x)>0 时,函数 f(x)单调递增 根据导函数 y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单 调递增,排除 A,C, 且第二个拐点(即函数的极大值点)在 x 轴上的右侧,排除 B, 故答案为 D. 答案:D.
2
c 5 . a 3
)
+1 2 B. +3 2 3 C. +1 2 3 D. +3 2
A. 解析:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成, 圆锥的底面圆的半径为 1,三棱锥的底面是底边长 2 的等腰直角三角形,圆锥的高和棱锥的 高相等均为 3,
故该几何体的体积为 答案:A
a 2
a2 a )=a, 4 2
故 M-m 的值与 a 有关,与 b 无关. 综上可得:M-m 的值与 a 有关,与 b 无关. 答案:B. 6.已知等差数列{an}的公差为 d,前 n 项和为 Sn,则“d>0”是“S4+S6>2S5”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析:根据等差数列的求和公式和 S4+S6>2S5,可以得到 d>0,根据充分必要条件的定义即 可判断. ∵S4+S6>2S5, ∴4a1+6d+6a1+15d>2(5a1+10d), ∴21d>20d, ∴d>0, 故“d>0”是“S4+S6>2S5”充分必要条件. 答案:C 7.函数 y=f(x)的导函数 y=f′(x)的图象如图所示,则函数 y=f(x)的图象可能是( )

2017高考数学浙江卷(精编)

2017高考数学浙江卷(精编)

2017高考数学浙江卷(精编)绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷) 数学本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分3至4页.满分150分.考试用时120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效. 参考公式:球的表面积公式 锥体的体积公式24S R =π13V Sh=球的体积公式 其中S 表示棱锥的底面面积,343V R =π h 表示棱锥的高其中R 表示球的半径 台体的体积公式柱体的体积公式1()3a ab b V h S S S S =+⋅V Sh= 其中S a ,S b 分别表示台体的上、下其中S 表示棱柱的底面面积, 底面积,h 表示台体的高h 表示棱柱的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知}11|{<<-=x x P ,}02{<<-=x Q ,则=Q P ( )A .)1,2(-B .)0,1(-C .)1,0(D .)1,2(--【答案】A ,并集 2.椭圆22194x y +=的离心率是( )A .133B .53C .23D .59 【答案】B ,椭圆性质,945e -==3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A .12π+B .32π+ C .312π+ D .332π+因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关6.已知等差数列{}na 的公差为d ,前n 项和为nS ,则“0d >”是“4652S S S +>”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C ,求和与通项,等差通项,4652S S S d+-=,所以为充要条件7.函数()y f x =的导函数()y f x '=的图象如图所示,则函数()y f x =的图象可能是()【答案】D ,导函数与原函数图象,原函数先减再增,再减再增 8.已知随机变量iξ满足(1)iiP p ξ==,(0)1iiP p ξ==-,1,2i =.若12102p p<<<,则()A .12()()E E ξξ<,12()()D D ξξ< B .12()()E E ξξ<,12()()D D ξξ>C .12()()E E ξξ>,12()()D D ξξ<D .12()()E E ξξ>,12()()D D ξξ>【答案】A ,离散型随机变量分布列,期望,方差,差比法∵11()E p ξ=,22()E p ξ=,∴12()()E E ξξ<,∵111()(1)D p p ξ=-,222()(1)D p p ξ=-,∴121212()()()(1)0D D p p p p ξξ-=---<9.如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),PQR 分别为,,AB BC CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角D PR Q --,D PQ R --,D QR P--的平面较为,,αβγ,则()A .γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【答案】B ,二面角-三垂线定理,观察点到直线距离,空间向量解题计算量较大 设O 为三角形ABC 中心,则O 到PQ 距离最小,O到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<10.如图,已知平面四边形ABCD,AB BC⊥,2AB BC AD ===,3CD =,AC 与BD 交于点O ,记1·I OAOB =,2·I OBOC =,3·I OC OD =,则()A .123I I I <<B .132II I << C .312I I I <<D .213I I I <<【答案】C ,向量数量积,图形认识 因为90AOB COD ∠=∠>,所以0OB OC ⋅>,0OA OB ⋅<,0OC OD ⋅<, 又OA OC <,OB OD <,∴0OC OD OA OB ⋅<⋅<.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 内,S =内________.【答案】33,古代算法,三角形面积,133=611sin 602S ⎛⎫⨯⨯⨯⨯=⎪⎝⎭内12.已知ab ∈R ,2()34a bi i+=+(i 是虚数单位)则22a b +=________,ab =________.【答案】5,2,复数计算 由题意可得22234ab abi i-+=+,则2232a b ab ⎧-=⎨=⎩,解得2241a b ⎧=⎨=⎩13.已知多项式32(1)(2)x x ++5432112345x a x a x a x a x a =+++++,则4a =________,5a =________.【答案】16,4,二项式通项2322r r m m mC x C x -,分别取0,1r m ==和1,0r m ==,可得441216a =+=,令0x =可得325124a=⨯=14.已知△ABC ,4AB AC ==,2BC =.点D 为AB 延长线上一点,2BD =,连结CD ,则△BDC 的面积是________,cos BDC ∠=________. 【答案】151024解三角形,构造直角三角形,应用正余弦定理也可取BC 中点E ,DC 中点F ,由题意:,AE BC BF CD ⊥⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos 4DBC ∠=- ,115sin 1164DBC ∠=-=,∴BC 115sin 22DSBD BC DBC =⋅⋅∠=△,又21cos 12sin4DBC DBF ∠=-∠=-,∴10sin 4DBF ∠=,∴10cos sin BDC DBF ∠=∠=.15.已知向量,a b 满足||1a =,||2b =,则||||a b a b ++-的最小值是________,最大值是________. 【答案】4,25算或余弦定理(限制?)构建函数关系式(同一个),平方构造,三角函数最值,平行四边形对角线性质,数形结合求最值 方法一: 设,a b θ〈〉=,||54cos a b θ-=-||54cos a b θ+=+令||||y a b a b =++-54cos 54cos θθ=+- 则221022516cos yθ=+-,易知2[16,20]y∈,∴[4,25]y ∈方法二:向量||a ,||b ,||a b +,||a b -构成平行四边形的边与对角线(限制?),分别设为,,,m n p q , 则22222()10pq m n +=+=,且1,3p q ≤≤,构成直线与圆相切,得出范围16.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________中不同的选法(用数字作答).【答案】660,排列、组合,分类、分步原理,间接法,具体做法较多 方法一:411411843643C C CC C C -;方法二:22228664A CA C -17.已知α∈R ,函数()4||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是________. 【答案】9(,]2-∞,均值不等式求最值,分段函数,分类讨论,函数图象变换[]1,4x ∈,∴[]44,5x x+∈ 方法一:设4x t x +=,()||g t t a a =-+,图象如下,∴94a ≤ (1,3)10方法二:①当5a ≥时,()442f x a x a a x x x=--+=--, 函数的最大值245a -=,∴92a =,舍去; ②当4a ≤时,()445f x x a a x x x=+-+=+≤,命题成立; ③当45a <<时,(){}maxmax 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或4555a a a aa a ⎧-+<-+⎪⎨-+=⎪⎩, 解得:92a =或92a <,综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦. 方法三:直接观察()4||f x x a a x =+-+的图象关于x a=的翻折关系,可得94a ≤. 5492a =5(,)a a三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)已知函数22()sin cos 23cos f x x x x x =--()x ∈R .(Ⅰ)求2()3f π的值;(Ⅱ)求()f x 的最小正周期及单调递增区间. 【解】倍角公式,化和为一,三角函数周期性、单调性 (Ⅰ)22sincos 3)os (in c x f x x x x -=-cos 232x x=-sin 226x π⎛⎫+= ⎝-⎪⎭则)(2π3f 4ππsin 623⎛⎫+=⎝-⎪⎭2=; (Ⅱ)()f x 的最小正周期为π,令ππππ22π,2622k x k k -≤+≤+∈Z ,得ππππ,36k x k k -≤≤+∈Z , 函数()f x 的单调递增区间为ππππ,36k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.19.(本题满分15分)如图,已知四棱锥P ABCD-,△PAD是以AD为斜边的等腰直角三角形,//BC AD,CD AD⊥,===,E为PD的中点.22PC AD DC CB(Ⅰ)证明://CE平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.【解析】方法一:几何法面面平行判定、性质,线面垂直判定、性质,线面角,点到平面距离-转化,(Ⅰ)取AD的中点F,连接EF,CF,∵E为PD的中点,∴//EF PA,在四边形ABCD中,//==,F为中AD DC CBBC AD,22点,易得//EFC平面ABP,CF AB,∴平面//∵EC⊂平面EFC,∴//EC平面PAB;(Ⅱ)连结BF ,过F 作FM PB ⊥于M ,连结PF , ∵PA PD =,∴PF AD ⊥,易知四边形BCDF 为矩形,∴BF AD ⊥,∴AD ⊥平面PBF ,又//AD BC ,∴BC ⊥平面PBF ,∴BC PB⊥,设1DC CB ==,则2AD PC ==,∴2PB =1BF PF ==, ∴12MF =,又BC ⊥平面PBF ,∴BC MF ⊥, ∴MF ⊥平面PBC ,即点F 到平面PBC 的距离为12, 也即点D 到平面PBC 的距离为12, ∵E 为PD 的中点,∴点E 到平面PBC 的距离为14, 在△PCD 中,2PC =,1CD =,2PD =可得2CE = 设直线CE与平面PBC所成的角为θ,则124sin CE θ==.方法二:解析法,建系困难(Ⅰ)略;构造平行四边形,或用空间向量;(Ⅱ)过P 作PH CD ⊥,交CD 的延长线于点H , 设DH x =,在Rt △PDH 及Rt △PCH 中,易知22222)(1)2x x -++=,解得12DH =, 过H 作BC 的平行线,取1OH BC ==,如图建立坐标系,由题易得3(,0,0)2B ,1(,1,0)2D ,3 (,1,0)2C ,3(0,0,)2P ,113(,42E ,则513(,42CE =-- ,33(,0,2PB =,(0,1,0)BC =,设平面PBC的法向量为(,,)n x y z =,则33020n PB x z n BC y ⎧⋅==⎪⎨⎪⋅==⎩,令1x =,则3t =,故(1,0,3)n =,设直线CE 与平面PBC 所成的角为θ, 则531|32442sin |cos ,251322216416CE n θ-+=〈〉==++⨯,故直线CE 与平面PBC 所成角的正弦值为28.20.(本题满分15分) 已知函数()(21)x f x x x e -=-1()2x ≥.(Ⅰ)求()f x 的导函数;(Ⅱ)求()f x 在区间1[+)2∞,上的取值范围. 【解】复合函数导数,导数判定单调区间求最值,代数式变形 (Ⅰ)'()(21)'(21)()'x x f x x x e x x e --=-+-(1(21)21x x e x x e x --=---(121)21xx x e x -=----(121)21x x x e x -=---(1)(121xx e x -=--;(Ⅱ)由'()0f x =,解得1x =或52x =, 函数121y x =--1(,)2+∞上单调递增(证明?), 当x 变化时,()f x ,'()f x 的变化如下表:x1(,1)21 5(1,)2525(,)2+∞'()f x -+-()f x↘↗5212e -↘又1211()22f e -=,当12x >时,2()021x f x e x x -=>+-则()f x 在区间1[,)2+∞上的最大值为1212e -,最小值为,综上,()f x 在区间1[,)2+∞上的取值范围是121[0,]2e -.21.(本题满分15分) 如图,已知抛物线2xy=,点11()24A -,,39()24B ,,抛物线上的点()P x,y 13()22x -<<,过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求||||PA PQ ⋅的最大值.【解】直线斜率,转化AP PQ ⋅为PA PB -⋅,均值不等式求最值,导数求最值(Ⅰ)由题易得2(,)P x x ,1322x -<<, 故APk21412x x -=+12x =-,故直线AP 斜率的取值范围为(1,1)-;(Ⅱ)方法一:||||PA PQ ⋅||||cos PA PB BPQ =⋅∠||||cos ,PA PB PA PB =-⋅〈〉PA PB =-⋅221139(,)(,)2424x x x x =----⋅--221319()()()()2244x x x x =+----1313()()[1()()]2222x x x x =+---+313()()22x x =+-3119()(3)322x x =+-41119()()()(3)12222[]34x x x x ++++++-≤2716=,当且仅当19322x x +=-,即1x =时,取得最大值. 【化简到313()()22x x +-后可利用导数判定函数单调性求最值】方法二:求直线与抛物线,直线与直线交点坐标计算量太大由(Ⅰ)知2(,)P x x ,1322x -<<, 故211(,)24PA x x =--- 设直线AP 的斜率为k ,则AP :1124y kx k =++,BP :13924y x k k =-++, 由112413924y kx k y x k k ⎧=++⎪⎪⎨⎪=-++⎪⎩222234981(,)2244k k k k Q k k +-++⇒++,故23432221(,)11k k k k k k k PQ k k +----++=++,又2(1,)PA k k k =----,故PA PQ -⋅PA PQ =⋅32322(1)(1)(1)(1)11k k k k k k k +-+-=+++3(1)(1)k k =+-,∴PA PQ ⋅3(1)(1)k k =+-,设()f k 3(1)(1)k k =+-,则2'()2(1)(12)f k k k =-+-,单调性判定12k =时,PA PQ ⋅有最大值2716=. 22.(本题满分15分) 已知数列{}nx 满足:11x=,()11ln 1nn n xx x ++=++(n +∈N ).证明:当n +∈N 时,(Ⅰ)10n nx x +<<;(Ⅱ)1122n n n n x x xx ++-≤;(Ⅲ)121122n n n x --≤≤.【解】数学归纳法,函数单调性应用,转化构造思想,分析法,导数求单调性证明不等式,放缩法,完全归纳,(Ⅰ)证明:令函数()ln(1)f x x x =++,则易得()f x 在[0,)+∞上为增函数.当1n =时,有11>0x =,假设当n k =(k +∈N )时,有0kx >,当1n k =+时,1(0)()ln(1)()kk k k k f x f x x x f x +<=<++=, ∴10k kxx +<<,综上所述,对任意n +∈N ,均有10n nxx +<<;(Ⅱ)要证明1122n n n n x x xx ++-≤,即证1142n nn x xx ++≥+,即证()11114ln 12n n n n x x x x ++++++≥+,即证()21111(2)ln 120n n n n xx x x +++++++-≥,设2()(2)ln(1)2g x x x x x =+++-(0)x >,22'()ln(1)01x xg x x x +=++>+∴()(0)0g x g >=, ∴()21111(2)ln 120n n n n xx x x +++++++->,原命题得证;(Ⅲ)∵()11ln 1nn n x x x ++=++1112n n n x x x +++≤+=,∴112nn x-≥,由1122n n n n x x xx ++-≤,得111112()22n n x x +-≥-0>,∴112nx -1112()2n x -≥-22112()2n x -≥-≥11112()2n x -≥-22n -=,∴212n nx -≥,即212nn x-≤,∴121122n n n x --≤≤.。

浙江省2017届高考模拟数学试题含答案解析

浙江省2017届高考模拟数学试题含答案解析

一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}|04P x R x =∈≤≤,{}|3Q x R x =∈<,则P Q = ( ) A .[]3,4 B .(]3,4- C .(],4-∞ D .()3,-+∞【答案】B. 【解析】试题分析:由题意得,[0,4]P =,(3,3)Q =-,∴(3,4]P Q =- ,故选B. 考点:集合的运算. 2.已知复数1iz i+=,其中i 为虚数单位,则z = ( )A .12 B .2C .2 【答案】C. 【解析】试题分析:由题意得,1z i =-,∴||z = C. 考点:复数的运算.3.“直线l 与平面α内的两条直线都垂直”是“直线l 与平面α垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B.考点:1.线面垂直的判定;2.充分必要条件.4.已知直线y ax =是曲线ln y x =的切线,则实数a =( )A .12 B .12eC .1eD .21e 【答案】C.考点:导数的运用.5. 函数()cos y x x x ππ=-≤≤的图象可能是( )A. B. C. D. 【答案】A. 【解析】试题分析:由题意得,函数为奇函数,图象关于原点对称,故排除B ,C ,又∵2x π=,0y =,排除D ,故选A.考点:函数的性质及其图象.6.若整数x ,y 满足不等式组202407280x y x y x y -≥⎧⎪++≥⎨⎪+-≤⎩,则34x y +的最大值是( )A .-10B .-6C .0D .3 【答案】D. 【解析】试题分析:如下图所示,若x ,y R ∈,画出不等式组所表示的可行域,作直线l :340x y +=, 则可知当1x =,12y =时,34x y +取到最大值,取离其最近的整点,从而可知当1x =,0y =时,max (34)3x y +=,故选D.考点:线性规划. 7.已知10a <<,随机变量ξ的分布如下:当a 增大时,( )A .()E ξ增大 ,()D ξ增大B .()E ξ减小,()D ξ增大C .()E ξ增大 ,()D ξ减小 D .()E ξ减小 ,()D ξ减小 【答案】B.考点:离散型随机变量的期望与方差.8.设a ,b ,c 是非零向量.若1|||||()|2a cbc a b c ⋅=⋅=+⋅,则( )A .()0a b c ⋅+=B .()0a b c ⋅-=C .()0a b c +⋅=D .()0a b c -⋅=【答案】D.9.如图,已知三棱锥D ABC -,记二面角C AB D --的平面角是θ,直线DA 平面ABC 所成的角是1θ,直线DA 与BC 所成的角是2θ,则 ( )A .1θθ≥B .1θθ≤C .2θθ≥D .2θθ≤ 【答案】A. 【解析】试题分析:如下图所示,设D 在平面ABC 的投影为M ,过M 作MN AB ⊥,垂足为N ,连DN ,AM ,∴si n DM DN θ=,1sin DMDAθ=,∵DA D N ≥,∴1s i ns i n θθ≤,∴1θθ≤,而θ与2θ的大小关系是不确定的,故选A.考点:线面角与二面角的求解.【方法点睛】线面角、二面角求法,求这两种空间角的步骤:根据线面角的定义或二面角的平面角的定义,作(找)出该角,再解三角形求出该角,步骤是作(找),证,求(算)三步曲,也可用射影法:设斜线段AB 在平面α内的射影为''A B ,AB 与α所成角为θ,则|''|cos ||A B AB θ=;设ABC ∆在平面α内的射影三角形为'''A B C ∆,平面ABC 与α所成角为θ,则'''c o s A B C ABCS S θ∆∆=.10.已知()f x ,()g x 都是偶函数,且在[)0,+∞上单调递增,设函数()()(1)()(1)F x f x g x f x g x =+----,若0a >,则( )A .()()F a F a -≥且()()11F a F a +≥-B .()()F a F a -≥且()()11F a F a +≤-C .()()F a F a -≤且()()11F a F a +≥-D .()()F a F a -≤且()()11F a F a +≤- 【答案】A.若()(1)f a g a <-:()2()2()F a f a f a -=-=,()2()F a f a =,∴()()F a F a -=, 综上可知()()F a F a -≥,同理可知(1)(1)F a F a +≥-,故选A. 考点:1.函数的性质;2.分类讨论的数学思想.【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致1a -与1a +大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.二、填空题(本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.) 11.抛物线22y x =的焦点坐标是___________,准线方程是___________. 【答案】1(,0)2,12x =-. 【解析】试题分析:由题意得,焦点坐标是1(,0)2,准线方程是12x =-,故填:1(,0)2,12x =-. 考点:抛物线的标准方程及其性质.12.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______2cm ,体积是_____3cm .【答案】20+8.考点:1.三视图;2.空间几何体的表面积与体积.13.在ABC ∆中,内角A ,B ,C 所对的边分别是a ,b ,c ,若a =3C π=,3tan 4A =,则sin A =________,b =__________.【答案】35,4+【解析】试题分析:由33tan sin 45A A =⇒=,由正弦定理得,sin 5sin sin sin a c C c a A C A=⇒==,cos cos 4b c A a C =+=35,4考点:解三角形.14.已知等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,设{}n a ,{}n b 的前n 项和分别为n S ,n T ,若2(1)2n n n n T S +=,*n N ∈,则d =_________,q =________.【答案】2,2.考点:等差数列与等比数列的通项公式及其前n 项和.15.如图所示,某货场有两堆集装箱,一堆2个,一堆3个,现需要全部装运,每次只能从其中一堆取最上面的一个集装箱,则在装运的过程中不同取法的种数是 ____________(用数字作答).【答案】10. 【解析】试题分析:如下图所示,对集装箱编号,则可知排列相对顺序为1,2,3(即1号箱子一定在2号箱子前被取走,2号箱子一定在3号箱子前被取走),4,5,故不同取法的种数是55323210A A A =,故填:10.考点:计数原理.16.已知直线:(0)l y kx k =>,圆221:(1)1C x y -+=与222:(3)1C x y -+=.若直线l 被圆1C ,2C 所截得两弦的长度之比是3,则实数k =____________.【答案】13.17.已知函数2()(,)f x x ax b a b R =++∈在区间(0,1)内有两个零点,是3a b +的取值范围是________. 【答案】(5,0)-. 【解析】试题分析:由题意得,22(0)00(1)010*********f b f a b aa b a a b >>⎧⎧⎪⎪>++>⎪⎪⎪⎪⇔⎨⎨-<<<-<⎪⎪⎪⎪<->⎪⎪⎩⎩,如下图所示,易知直线10a b ++=与抛物线214b a =相切于点(2,1)-,画出不等式组所表示的区域,作直线l :30a b +=,平移l ,从而可知3(5,0)a b +∈-,故填:(5,0)-.考点:1.三角恒等变形;2.平面向量数量积;3.函数的值域.【思路点睛】对一元二次方程根的问题的研究,主要分三个方面:1.根的个数问题,由判别式判断;2.正负根问题,由判别式及韦达定理判断;3.根的分布问题,依函数与方程思想,通过考查开口方向、对称轴、判别式、端点函数值等数形结合求解三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤) 18.(本小题满分14分) 已知函数()sin sin()6f x x x π=+.(1)求()f x 的最小正周期; (2)当[0,]2x π∈时,求()f x 的取值范围.【答案】(1)π;(2)1[0,24+.∴函数()f x 的取值范围为1[0,2. 考点:1.三角恒等变形;2.三角函数的性质. 19.(本题满分15分)如图,已知四棱柱1111ABCD A BC D -的底面是菱形,侧棱1AA ⊥底面ABCD ,M 是AC 的中点,120BAD ∠=,1AA AB =.(1)证明:1//MD 平面11A BC ;(2)求直线1MA 与平面11A BC 所成的角的正弦值.【答案】(1)详见解析;(2设11AA =,∵ABCD 是菱形且120BAD ∠= ,则12AM =,MB =,在1Rt MAA ∆中,由12AM =,11AA =,得1MA =在Rt EMB ∆中,由2MB =,1ME =,得7MH =,∴11sin 35MH MA H MA ∠==考点:1.线面平行的判定;2.线面角的求解.20.(本小题满分15分)设函数2()f x x =+[0,1]x ∈.证明:(1)21()12f x x x ≥-+;(2)15()16f x <≤. 【答案】(1)详见解析;(2)详见解析.(1)208h =->,知存在0(0,1)x ∈,使得0()0h x =,∵()h x 在[0,1]上是增函数,∴()f x 在区间0(0,)x 上是单调递减,在区间0(,1)x 上单调递增,又∵(0)1f =,2(1)2f =从而2()2f x ≤1)得当14x ≠时,2211515()1()241616x f x x x ≥-+=-+>,且115()416f >,故152()162f x <≤. 考点:导数的综合运用.21.(本小题满分15分)如图,已知椭圆2212x y +=的左、右顶点分别是A ,B ,设点)(0)P t t >,连接PA 交椭圆于点C ,坐标原点是O .(1)证明:OP BC ⊥;(2)若四边形OBPC 的面积是5,求t 的值. 【答案】(1)详见解析;(2)1t =.22.(本小题满分15分)已知数列{}n a 满足11a =,121n n na a a +=+,*n N ∈,记n S ,n T 分别是数列{}n a ,{}2n a 的前n 项和,证明:当*n N ∈时,(1)1n n a a +<;(2)21121n n T n a +=--;(3)1n S <【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】试题分析:(1)作差,证明{}n a 单调递减即可得证;(2)将递推公式变形,2221112n n na a a +=++,再求和,即可得证;(2)对{}n a 作出适当放缩,再求和,即可得证..试题解析:(1)由11a =及121n n n a a a -=+知0n a >,故3122011n n n n n n n a a a a a a a +--=-=<++, ∴1n n a a +<,*n N ∈;(2)由111n n n a a a +=+,得2221112n n n a a a +=++,从而 222222112222211111112222n n n n n n n a a a a a a n a a a a -+-=++=+++⨯==+++++ ,。

(完整word版)浙江省新高考2017年6月真题

(完整word版)浙江省新高考2017年6月真题

2017年普通高等学校招生全国统一考试(浙江卷)英语选择题部分第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题纸上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £19.15B. £9.18C. £9.15答案是C.1. What does the woman think of the movie?A. It's amusing.B. It's exciting.C. It's disappointing.2. How will Susan spend most of her time in France?A. Traveling aroundB. Studying at a school.C. Looking after aunt.3. What are the speakers talking about?A. Going out.B. Ordering drinks.C. Preparing for a party.4. Where are the speakers?A. In a classroomB. In a libraryC. In a bookstore5. What is the man going to do?A. Go on the Internet.B. Make a phone call.C. Take a train trip.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

2017浙江数学高考卷

2017浙江数学高考卷

2017年浙江省普通高等学校招生全国统一考试数学试卷一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

)1. 设集合M={x|2≤x≤3},N={x|0<x<4},则M∩N=A. {x|2<x<3}B. {x|0<x<4}C. {x|2<x<0}D. {x|0≤x≤3}2. 复数z满足|z|=1,则|z1|的最小值为()A. 0B. 1C. √2D. 23. 已知等差数列{an}的公差为2,若a1+a3+a5=12,则a4+a6=A. 18B. 20C. 22D. 244. 已知函数f(x)=x^33x,则f'(x)的单调递增区间为()A. (∞,1)B. (1,1)C. (1,+∞)D. (∞,0)∪(0,+∞)5. 在平行六面体ABCDA1B1C1D1中,若AB=2,AD=1,AA1=3,则该平行六面体的体积为()A. 6B. 8C. 10D. 126. 已知a,b,c为等差数列,且a+b+c=12,abc=27,则a^2+b^2+c^2=A. 36B. 45C. 54D. 637. 设函数f(x)=ln(x+1),则f(x)在区间(0,1)上的最小值为()A. ln2B. ln3C. 1D. 08. 在三角形ABC中,a=3,b=4,cosB=3/5,则三角形ABC的面积S=A. 4B. 5C. 6D. 79. 已知数列{an}的通项公式为an=2n+1,则数列的前n项和Sn=A. n^2+nB. n^2+2nC. n^2+3nD. 2n^2+n10. 已知函数f(x)=e^xx1,则f(x)在区间(0,+∞)上的零点个数为()A. 0B. 1C. 2D. 无法确定二、填空题(本大题共5小题,每小题4分,共20分。

)11. 若向量a=(2,1),b=(1,2),则2a+3b=______。

12. 已知函数f(x)=x^22x+3,则f(x)的最小值为______。

2017年高考浙江数学试题及答案(word解析版)

2017年高考浙江数学试题及答案(word解析版)

2017年普通高等学校招生全国统一考试(浙江卷)数学(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2017年浙江,1,4分】已知{|11}P x x =-<<,{20}Q x =-<<,则P Q =( )(A )(2,1)- (B)(1,0)- (C )(0,1) (D )(2,1)-- 【答案】A【解析】取,P Q 所有元素,得P Q =(2,1)-,故选A .【点评】本题考查集合的基本运算,并集的求法,考查计算能力.(2)【2017年浙江,2,4分】椭圆22194x y +=的离心率是( )(A )133 (B )53 (C )23 (D )59【答案】B【解析】94533e -==,故选B . 【点评】本题考查椭圆的简单性质的应用,考查计算能力.(3)【2017年浙江,3,4分】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )(A )12π+ (B )32π+(C)312π+ (D)332π+【答案】A【解析】由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为2111π3(21)13222V π⨯=⨯⨯+⨯⨯=+,故选A .【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.(4)【2017年浙江,4,4分】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是( )(A)[]0,6 (B )[]0,4(C)[]6,+∞ (D )[]4,+∞【答案】D【解析】如图,可行域为一开放区域,所以直线过点()2,1时取最小值4,无最大值,故选D .【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.(5)【2017年浙江,5,4分】若函数()2f x x ax b =++在区间[]01,上的最大值是M ,最小值是m ,则–M m ( ) (A )与a 有关,且与b 有关 (B )与a 有关,但与b 无关(C )与a 无关,且与b 无关 (D )与a 无关,但与b 有关 【答案】B【解析】解法一:因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,故选B .解法二:函数()2f x x ax b =++的图象是开口朝上且以直线2a x =-为对称轴的抛物线,①当12a->或02a-<,即2a <-,或0a >时,函数()f x 在区间[]0,1上单调,此时()()10M m f f a -=-=,故M m -的值与a 有关,与b 无关;②当1122a ≤-≤,即21a -≤≤-时,函数()f x 在区间0,2a ⎡⎤-⎢⎥⎣⎦上递减,在,12a ⎡⎤-⎢⎥⎣⎦上递增,且()()01f f >,此时()2024a aM m f f ⎛⎫-=--= ⎪⎝⎭,故M m -的值与a 有关,与b 无关;③当1022a ≤-<,即10a -<≤时,函数()f x 在区间0,2a ⎡⎤-⎢⎥⎣⎦上递减,在,12a ⎡⎤-⎢⎥⎣⎦上递增,且()()01f f <,此时()2024a a M m f f a ⎛⎫-=--=- ⎪⎝⎭,故M m -的值与a 有关,与b 无关.综上可得:M m -的值与a 有关,与b 无关,故选B .【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键. (6)【2017年浙江,6,4分】已知等差数列[]n a 的公差为d ,前n 项和为n S ,则“0d >"是“4652S S S +>"的( )(A )充分不必要条件 (B )必要不充分条件 (C)充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】由()46511210212510S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“0d >”是“4652S S S +>"的充要条件,故选C .【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题.(7)【2017年浙江,7,4分】函数()y f x =的导函数()y f x '=的图像如图所示,则函数()y f x =的图像可能是( )(A)(B)(C )(D ) 【答案】D 【解析】解法一:由当()0f x '<时,函数f x ()单调递减,当()0f x '>时,函数f x ()单调递增,则由导函数()y f x =' 的图象可知:()f x 先单调递减,再单调递增,然后单调递减,最后单调递增,排除A ,C,且第二个拐点(即函数的极大值点)在x 轴上的右侧,排除B ,,故选D .解法二:原函数先减再增,再减再增,且0x =位于增区间内,故选D .【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.(8)【2017年浙江,8,4分】已知随机变量1ξ满足()11i P p ξ==,()101i P p ξ==-,1,2i =.若12102p p <<<,则( )(A )12E()E()ξξ<,12D()D()ξξ<(B)12E()E()ξξ<,12D()D()ξξ>(C)12E()E()ξξ>,12D()D()ξξ< (D)12E()E()ξξ>,12D()D()ξξ< 【答案】A【解析】112212(),(),()()E p E p E E ξξξξ==∴<111222()(1),()(1)D p p D p p ξξ=-=-,121212()()()(1)0D D p p p p ξξ∴-=---<,故选A .【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.(9)【2017年浙江,9,4分】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),PQR分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角––D PR Q ,––D PQ R ,––D QR P 的平面较为α,β,γ,则( )(A )γαβ<< (B )αγβ<< (C )αβγ<< (D )βγα<< 【答案】B【解析】解法一:如图所示,建立空间直角坐标系.设底面ABC ∆的中心为O .不妨设3OP =.则()0,0,0O ,()0,3,0P -,()0,6,0C -,()0,0,62D ,()3,2,0Q ,()23,0,0R -,()23,3,0PR =-,()0,3,62PD =,()3,5,0PQ =,()33,2,0QR =--,()3,2,62QD =--.设平面PDR 的法向量为(),,n x y z =,则0n PR n PD ⎧⋅=⎪⎨⋅=⎪⎩,可得 23303620x y y z ⎧-+=⎪⎨+=⎪⎩,可得()6,22,1n =-,取平面ABC 的法向量()0,0,1m =. 则1cos ,15m n m n m n⋅==-,取1arccos 15α=.同理可得:3arccos 681β=. 2arccos95γ=.∵1231595681>>.∴αγβ<<.解法二:如图所示,连接OD OQ OR ,,,过点O 发布作垂线:OE DR ⊥,OF DQ ⊥,OG QR ⊥,垂足分别为E F G ,,,连接PE PF PG ,,.设OP h =.则cos ODR PDR S OES PE α∆∆==22OE OE h =+.同理可得:22cos OF OF PF OF h β==+c,22cos OG OG PG OG hγ==+.由已知可得:OE OG OF >>.∴cos cos cos αγβ>>,αβγ,,为锐角.∴α<γ<β,故选B .【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.(10)【2017年浙江,10,4分】如图,已知平面四边形ABCD ,AB BC ⊥,2AB BC AD ===,3CD =,AC 与BD 交于点O ,记1·I OA OB =,2·I OB OC =,3·I OC OD =,则( ) (A )123I I I << (B )132I I I << (C )312I I I << (D )223I I I <<【答案】C【解析】∵AB BC ⊥,2AB BC AD ===,3CD =,∴22AC =,∴90AOB COD ∠=∠>︒,由图象知OA OC <,OB OD <,∴0OA OB OC OD >⋅>⋅,0OB OC ⋅>,即312I I I <<,故选C .【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.(11)【2017年浙江,11,4分】我国古代数学家刘徽创立的“割圆术"可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 内,S =内 . 【答案】332【解析】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF 中,AOB ∆是边长为1的正三角形,所以正六边形ABCDEF 的面积为133=611sin 6022S ⎛⎫⨯⨯⨯⨯=⎪⎝⎭内. 【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.(12)【2017年浙江,12,6分】已知ab ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b += ,ab = . 【答案】5;2【解析】由题意可得222i 34i a b ab -+=+,则2232a b ab ⎧-=⎨=⎩,解得2241a b ⎧=⎨=⎩,则225,2a b ab +==.【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.(13)【2017年浙江,13,6分】已知多项式()()12543211234512x x x a x a x a x a x a +++++++=,则4a = ,5a = .【答案】16;4【解析】由二项式展开式可得通项公式为:32r r m mC x C x ,分别取0,1r m ==和1,0r m ==可得441216a =+=,令0x =可得325124a =⨯=.【点评】本题考查二项式定理的应用,考查计算能力,是基础题.(14)【2017年浙江,14,6分】已知ABC ∆,4AB AC ==,2BC =. 点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是 ;cos BDC ∠= .【答案】152;104【解析】取BC 中点E ,DC 中点F ,由题意:,AE BC BF CD ⊥⊥,ABE ∆中,1cos 4BE ABC AB ∠==,1115cos ,sin 14164DBC DBC ∴∠=-∠=-=,BC 115sin 22D S BD BC DBC ∴=⨯⨯⨯∠=△.又2110cos 12sin ,sin 44DBC DBF DBF ∴∠=-∠=-∴∠=,10cos sin 4BDC DBF ∴∠=∠=,综上可得,BCD ∆面积为152,10cos 4BDC ∠=.【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题. (15)【2017年浙江,15,6分】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是 __;最大值是 __. 【答案】4;25【解析】解法一:设向量a 和b 的夹角为θ,由余弦定理有2212212cos 54cos a b θθ-=+-⨯⨯⨯=-, ()2212212cos 54cos a b πθθ+=+-⨯⨯⨯-=+,则54cos 54cos a b a b θθ++-=++-, 令54cos 54cos y θθ=++-,则[]221022516cos 16,20y θ=+-∈,据此可得:()maxa b a b ++-2025==,()min164a b a b++-==,即a b a b ++-的最小值为4,最大值为25.解法二记AOB α∠=,则0απ≤≤,如图,由余弦定理可得:54cos a b θ-=-,54cos a b θ+=+,令54cos x θ=-,54cos y θ=+,则()2210,1x y x y +=≥, 其图象为一段圆弧MN ,如图,令z x y =+,则y x z =-+,则直线y x z =-+过M 、N 时z 最小为13314min z =+=+=,当直线y x z =-+与圆弧MN 相切时z 最大,由平面几 何知识易知max z 即为原点到切线的距离的2倍,也就是圆弧MN 所在圆的半径的2倍, 所以21025max z =⨯=.综上所述,a b a b ++-的最小值为4,最大值为25.【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.(16)【2017年浙江,16,4分】从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 中不同的选法.(用数字作答) 【答案】660【解析】解法一:由题意可得:“从8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队”中的选择方法为:411843C C C ⨯⨯种方法,其中“服务队中没有女生"的选法有411643C C C ⨯⨯种方法,则满足题意的选法有:411411843643660C C C C C C ⨯⨯-⨯⨯=种.解法二:第一类,先选1女3男,有316240C C =种,这4人选2人作为队长和副队有2412A =种,故有4012480⨯=种,第二类,先选2女2男,有226215C C =种,这4人选2人作为队长和副队有2412A =种, 故有1512180⨯=种,根据分类计数原理共有480180660+=种,故答案为:660.【点评】本题考查了分类计数原理和分步计数原理,属于中档题.(17)【2017年浙江,17,4分】已知α∈R ,函数()4f x x a a x=+-+在区间[]1,4上的最大值是5,则a 的取值 范围是 .【答案】9(,]2-∞【解析】[][]41,4,4,5x x x ∈+∈,分类讨论:①当5a ≥时,()442f x a x a a x x x =--+=--,函数的最大值245a -=,92a ∴=,舍去;②当4a ≤时,()445f x x a a x x x =+-+=+≤,此时命题成立;③当45a <<时,(){}maxmax 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或:4555a a a aa a ⎧-+<-+⎪⎨-+=⎪⎩, 解得:92a =或92a <,综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题. 三、解答题:本大题共5题,共74分.解答应写出文字说明,演算步骤或证明过程.(18)【2017年浙江,18,14分】已知函数()22sin cos 23sin cos fx x x x x x =--∈R (). (1)求23f π⎛⎫⎪⎝⎭的值;(2)求()f x 的最小正周期及单调递增区间.解:(1)()22πsin cos 23sin cos cos 23sin 22sin 26f x x x x x x x x ⎛⎫=--=--=-+ ⎪⎝⎭,4ππsin 232236f π⎛⎫+=⎪⎝⎛⎫=- ⎪⎭⎭⎝. (2)由()π2sin 26f x x ⎛⎫=-+ ⎪⎝⎭,()f x 的最小正周期为π.令πππ2π22π262k x k -≤+≤+,k Z ∈,得ππππ36k x k -≤≤+,k Z ∈,函数()f x 的单调递增区间为ππππ.36k k k Z ,,⎡⎤-+∈⎢⎥⎣⎦.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档. (19)【2017年浙江,19,15分】如图,已知四棱锥–P ABCD ,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点. (1)证明://CE 平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 解:解法一:(1)取AD 的中点F ,连接EF ,CF ,∵E 为PD 的重点,∴//EF PA ,在四边形ABCD 中,//BC AD ,22AD DC CB ==,F 为中点易得//CF AB ,∴平面//EFC 平面ABP , EC ⊂平面EFC ,//EC ∴平面PAB .(2)连结BF ,过F 作FM PB ⊥与M ,连结PF ,因为PA PD =,所以PF AD ⊥,易知四边形BCDF 为矩形,所以BF AD ⊥,所以AD ⊥平面PBF ,又//AD BC , 所以BC ⊥平面PBF ,所以BC PB ⊥,设1DC CB ==,则2AD PC ==,所以2PB =,1BF PF ==,所以12MF =,又BC ⊥平面PBF ,所以BC MF ⊥,所以MF ⊥平面PBC ,即点F 到平面PBC 的距离为12,也即点D 到平面PBC 的距离为12,因为E 为PD 的中点,所以点E 到平面PBC 的距离为14,在PCD ∆中,2PC =,1CD =,2PD =,由余弦定理可得2CE =,设直线CE 与平面PBC 所成的角为θ,则124sin =8CE θ=.解法二:(1)略;构造平行四边形.(2)过P 作PH CD ⊥,交CD 的延长线于点H 在Rt PDH 中,设DH x =,则易知2222(2)(1)2x x -++=(Rt PCH ),解得12DH =,过H 作BC 的平行线,取 1DH BC ==,由题易得3,0,02B ⎛⎫ ⎪⎝⎭,1,1,02D ⎛⎫ ⎪⎝⎭,3,1,02C ⎛⎫⎪⎝⎭,30,0,2P ⎛⎫ ⎪ ⎪⎝⎭, 113,,424E ⎛⎫ ⎪ ⎪⎝⎭,则513(,,)424CE =-- ,33(,0,)22PB =-,(0,1,0)BC =, 设平面PBC 的法向量为(,,)n x y z = ,则330220n PB x z n BC y ⎧⋅=-=⎪⎨⎪⋅==⎩ ,令1x =,则3t =,故(1,0,3)n =, 设直线CE 与平面PBC 所成的角为θ,则531|3|2442sin =|cos <,n|=8251322216416CE θθ-+⨯==++⨯ 故直线CE 与平面PBC 所成角的正弦值为28. 【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.(20)【2017年浙江,20,15分】已知函数()()1212x f x x x e x -⎛⎫=--≥ ⎪⎝⎭.(1)求()f x 的导函数;(2)求()f x 在区间1[+)2∞,上的取值范围.解:(1)()()()11212112111212121x xx x f x e x x e x x e x e x x x ----⎛⎫⎛⎫⎛⎫'=----=--+-=-- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭. (2)令()21g x x x =--,则()1121g x x '=--,当112x ≤<时,()0g x '<,当1x >时,()0g x '>,则()g x在1x =处取得最小值,既最小值为0,又0x e ->,则()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上的最小值为0.当x 变化时,()f x ,()f x '的变化如下表:x 1,12⎛⎫ ⎪⎝⎭ 1 51,2⎛⎫ ⎪⎝⎭ 52 5,2⎛⎫+∞ ⎪⎝⎭ ()f x ' — 0 + 0 — ()f x↘↗↘又121122f e -⎛⎫= ⎪⎝⎭,()10f =,525122f e -⎛⎫= ⎪⎝⎭,则()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上的最大值为1212e -.综上,()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上的取值范围是1210,2e -⎡⎤⎢⎥⎣⎦..【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.(21)【2017年浙江,21,15分】如图,已知抛物线2x y =,点11,24A ⎛⎫- ⎪⎝⎭,39,24B ⎛⎫⎪⎝⎭,抛物线上的点()1124P x y x ⎛⎫-<< ⎪⎝⎭,.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求AP PQ ⋅的最大值.解:(1)由题易得()2,P x x ,1322x -<<,故()21141,1122AP x K x x -==-∈-+,故直线AP 斜率的取值范围为()1,1-. (2)由(1)知()2,P x x ,1322x -<<,所以211,24PA x x ⎛⎫=--- ⎪⎝⎭,设直线AP 的斜率为k ,则11:24AP y kx k =++, 139:24BP y x k k =-++,联立直线AP 、BP 方程可知222234981,2244k k k k Q k k ⎛⎫+-++ ⎪++⎝⎭, 故23432221,11k k k k k k k PQ k k ⎛⎫+----++= ⎪++⎝⎭,又因为()21,PA k k k =----, 故()()()()()()33232211111111k k k k k PA PQ PA PQ k k kk+-+--⋅=⋅=+=+-++,所以()()311PA PQ k k ⋅=+-,令()()()311f x x x =+-,11x -<<,则()()()()()221242121f x x x x x '=+-=-+-,由于当112x -<<-时()0f x '>,当112x <<时()0f x '<,故()max 127216f x f ⎛⎫== ⎪⎝⎭,即PA PQ ⋅的最大值为2716. 【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题. (22)【2017年浙江,22,15分】已知数列{}n x 满足:11x =,()()11ln 1*n n n x x x n N ++=++∈.证明:当*n N ∈时,(1)10n n x x +<<;(2)1122n n n n x x x x++-≤;(3)121122n n n x ++≤≤.解:(1)令函数()ln(1)f x x x =++,则易得()f x 在[0,)+∞上为增函数.又1()n n x f x +=,若0n x >⇒1()(0)0n f x f +>=恒成立10n x +⇒>,又由11ln(1)n n n x x x ++=++可知0n x >,由111111ln(1)ln(1)0n n n n n n n n x x x x x x x x ++++++-=++-=+>⇒>.所以10n n x x +<<.(2)令()()()()22ln 1ln 1ln 1222x x x g x x x x x x x +=++--+=++-⎡⎤⎡⎤⎣⎦⎣⎦,0x >,则()()()()()()()121111ln 11ln 1ln 12212212212x x g x x x x x x x x x x +'=+++-=+-+=+++-+++, 令()()()111ln 12212h x x x x =+++-+,则()()()()2221125210212121x x h x x x x ++'=-+=>+++, 所以()h x 单调递增.所以()()00h x h >=,即()0g x '>,()g x 单调递增.所以()()00g x g >=⇒()()ln 1ln 12xx x x x ++>-+⎡⎤⎣⎦, 所以()()11111112ln 1ln 122n n n n n n n n n x x x x x x x x x +++++++⎡⎤-=-+≤++=⎣⎦,1122n n n n x xx x ++-≤. (3)11112111212222n n n n n n n n x x x x x x x x ++++-≤⇒-≤⇒≥-,即121111222n n n n n x x +++≥-⇒递推得 12+11111(1)11111182122224212n n nk n k n x x -+=-≥-=-=+⇒-∑2211(2)1222n n n x n --≤≤≥+. 由11x =知21(N*)2n n x n -≤∈,又由()ln(1)0h x x x =-+>可知112()()0n n n x x h x h x ++-=>=.即11111112(N*)222n n n n n n n n x x x x x x n ++-->⇒>⇒≥=∈.综上可知,121122n n n x --≤≤. 【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年普通高等学校招生全国统一考试
数学模拟卷
(高考试卷将根据学科考试说明命制,模拟卷仅供参考)
姓名______________ 准考证号______________
本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至3页,非选择题部分3至4页。

满分150分,考试时间120分钟。

考生注意:
1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只
有一项是符合题目要求的。

1.已知集合P={x∈R|0≤x≤4},Q={x∈R||x|< 3},则P Q
A.[3,4] B.(-3,4] C.(-∞,4] D.(-3,+∞)
2.已知复数z=,其中i为虚数单位,则|z|=
A.1 B C D.2
3.“直线l与平面α内的两条直线都垂直”是“直线l与平面α垂直”的
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
4.已知直线y=ax是曲线y=lnx的切线,则实数a=
A.1
2
B.
1
2e
C.
1
e
D.
2
1
e
5.函数y=xcosx(-π≤x≤π)的图象可能是
A .
B .
C .
D .
6.若整数x,y 满足不等式组则3x+4y 的最大值是
A .-10
B .-6
C .0
D .3
7.已知0<a<1.随机变量ξ的分布列如下:
A .E(ξ)增大,D(ξ)增大
B .E(ξ)减小,D(ξ)增大
C .E(ξ)增大,D(ξ)减小
D .E(ξ)减小,D(ξ)减小
8.设a ,b ,c 是非零向量.若|a ·c|=|b ·c |=12
|( a +b )·c |,则 A .a ·(b +c )=0 B .a ·(b -c )=0 C .(a +b )·c =0 D .(a -b )·c =0
9.如图,已知三棱锥D-ABC ,记二面角C -AB -D 的平面角是θ,
直线DA 与平面ABC 所成的角是θ1,直线DA 与BC 所成的角是θ2,

A .θ≥θ1
B .θ≤θ1
C .θ≥θ2
D .θ≤θ2
10.已知f(x),g(x)都是偶函数,且在[0,+∞)上单调递增,设函数
F(x)=f(x)+g(1-x)-|f(x)-g(1-x )|.
若a >0,则
A .F(-a)≥F(a)且F(1+a)≥F(1-a)
B .F(-a)≥F(a)且F(1+a)≤F(1-a)
C .F(-a)≤F(a)且F(1+a)≥F(1-a)
D .F(-a)≤F(a)且F(1+a)≤F(1-a)
非选择题部分 (共110分)
二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分。

11.抛物线y 2=2x 的焦点坐标是______,准线方程是______.
12.某几何体的三视图如图所示(单位:cm),则该几何体的
表面积是______cm 2,体积是______cm 3.
13.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .
若a=3π
,tanA=34
,则sinA=______,b=______. 14.已知等差数列{}n a 公差为d ,等比数列{}n b 的公比为q .设
{}n a ,{}n b 的前n 项和分别为Sn ,Tn .若,n
∈N*,则d ______,q ______.
15.如图所示,某货场有两堆集装箱,一堆2个,一堆3个.
现需要全部装运,每次只能从其中一堆取最上面的一个
集装箱,则在装运的过程中不同取法的种数是______ (用数字作答).
16.已知直线l:y=kx(k>0),圆与.若直线l 被圆C 1,C 2所截得两弦的长度之比是3,则实数k=______.
17.已知函数f(x)=x 2+ax+b(a,b ∈R)在区间(0,1)内有两个零点,则3a +b 的取值范围是 ______.
三、解答题:本大题共5小题,共74分。

解答应写出文字说明、证明过程或演算步骤。

18.(本题满分14分)已知函数f(x)=sinxsin(x+
6π). (Ⅰ)求f(x)的最小正周期;
(Ⅱ)当x ∈[0,2π
]时,求f(x)的取值范围.
19.(本题满分15分)如图,已知四棱柱ABCD -A 1B 1C 1D 1的底
面是菱形,侧棱AA 1⊥底面ABCD ,M 是AC 的中点,∠BAD
=120°,AA 1=AB .
(Ⅰ)证明:MD 1∥平面A 1BC 1;
(Ⅱ)求直线MA 1与平面A 1B 1C 1所成的角的正弦值.
20.(本题满分15分)设函数f(x)=x 2+
,x ∈[0,1].证明: (Ⅰ)f(x)≥x 2+12
x+1; (Ⅱ)1516<f(x)≤.
21.(本题满分15分)如图,已知椭圆
+y 2=1的左、右顶点分别
是A ,B .设点,t) (t >0),连接PA 交椭圆于点C ,坐标原点
是O .
(Ⅰ)证明:OP ⊥BC ;
(Ⅱ)若四边形OBPC 的面积是,求t 的值.
22.(本题满分15分)已知数列{}n a 满足a 1=1,
,n ∈N*.记Sn ,Tn 分别是 数列{}n a ,{}
2n a 的前n 项和.证明:当n ∈N*时, (Ⅰ)a n+1<a n ;
(Ⅱ)T n = ;
-1< S n <。

相关文档
最新文档