2012东城区初三数学一模试题及答案.doc
2012北京市各区中考数学一模试卷及答案试题试卷_1 (2)

顺义区2012届初三第一次统一练习 数学学科参考答案及评分细则二、填空题(本题共16分,每小题4分,)9.4;10.25()x x y -; 11.11.4; 12, 2)π+,π. 三、解答题(本题共30分,每小题5分) 13()12cos303-︒+--1213⎛⎫=+-- ⎪⎝⎭……………………………………………… 4分 113=+ 43= …………………………………………………………………… 5分 14.解: 221x y x y +=⎧⎨-=⎩①②①+②,得 33x =.1x =. …………………………………………………… 2分 把1x =代入①,得 12y +=.1y =. ………………………………………………………… 4分 ∴原方程组的解为 1,1.x y =⎧⎨=⎩ ………………………………………………… 5分15.证明:∵AB=AC ,∴B C ∠=∠. …………………………………………………………… 1分 在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE .……………………………………………………… 3分 ∴ AD=AE . ……………………………………………………………… 4分∴∠ADE =∠AED . ……………………………………………………… 5分16.解:6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭2693x x x x x -+-=÷ …………………………………………………… 2分 2(3)3x xx x -=-3x =- ……………………………………………………………………… 4分当2012x =时,原式=201232009-=.…………………………………… 5分17.解:(1)∵点(4,)A m 在反比例函数4y x=(0x >)的图象上, ∴414m ==. …………………………………………………………… 1分 ∴(4,1)A .将(4,1)A 代入一次函数y x b =-+中,得 5b =.∴一次函数的解析式为5y x =-+. …………………………………… 2分(2)由题意,得 (0,5)B , ∴5OB =.设P 点的横坐标为P x .∵OBP △的面积为5, ∴1552p x ⨯=.…………………………………………………………… 3分 ∴2P x =±.∴点P 的坐标为(2,3)或(-2,7). ………………………………… 5分 18.解:设A 户型的每户窗户改造费用为x 元,则B 户型的每户窗户改造费用为(500)x -元. ……………………………… 1分 根据题意,列方程得5400004800005x x =-. 解得 4500x =.经检验,4500x =是原方程的解,且符合题意.…………………………… 4分 ∴5004000x -=.答:A 户型的每户窗户改造费用为4500元,B 户型的每户窗户改造费用为4000 元.…………………………………… 5分MF EDCBAFE DCO BA四、解答题(本题共20分,每小题5分)19.解:(1)∵在□ABCD 中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD ∥BC . ……………………………… 1分 ∴∠DAC=45°. 过点C 作CM ⊥AD 于M , 在Rt △CDM 中,sin 4sin 6023CM CD D ==︒=cos 4cos602DM CD D ==︒=.………………………………… 2分在Rt △ACM中,∵∠MAC=45°, ∴AM CM==∴2AD AM DM =+=.…………………………………… 3分∵EF ⊥AD ,CM ⊥AD , ∴EF ∥CM .∴12EF CM ==在Rt △AEF 中,AF EF ==4分∴22DF AD AF =-=-=.……………………… 5分20.(1)证明:连结OD .∵AB 是⊙O 的直径,∴∠ADB=90°. ……………………………………………………… 1分 ∵∠A=30°, ∴∠ABD=60°.∴∠BDC =1302ABD ∠=︒. ∵OD=OB ,∴△ODB 是等边三角形. ∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC =90°. 即OD ⊥DC .∴CD 是⊙O 的切线.…………………………………………………… 2分(2)解:∵OF ∥AD ,∠ADB=90°,∴OF ⊥BD ,∠BOE=∠A =30°. ……………………………………… 3分∴112DE BE BD ===. 在Rt △OEB中,OB=2BE=2,OE ==.………… 4分 ∵OD=OB=2,∠C=∠ABD -∠BDC =30°,∠DOF=30°, ∴CD =tan 30DF OD =︒=∴CF CD DF =-== ……………………………5分21.解:(1)此次共调查了100名学生. …………………………………………………1分(2)填表:…………………………………………………3分(3)补全统计图如下:到校方式条形统计图 到校方式扇形统计图.…………………………………………………………………………5分22.解:(1)四边形DFCE 的面积S = 6 ,△DBF 的面积1S = 6 ,△ADE 的面积2S = 32 . …………………………………… 3分(2)2S = 214S S (用含S 、1S 的代数式表示). ………… 4分 (3)□DEFG 的面积为12. ………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)△=244(1)(3)k k k --+=2244812k k k --+=812k -+ ……………………………………………………………… 1分∵方程有两个不相等的实数根, ∴10,0.k -≠⎧⎨∆>⎩ 即 10,8120.k k -≠⎧⎨-+>⎩∴k 的取值范围是32k <且1k ≠. …………………………………… 3分 (2)当方程有两个相等的实数根时,△=812k -+=0.∴32k =. ………………………………………………………………… 4分 ∴关于y 的方程为2(6)10y a y a +-++=.∴2'(6)4(1)a a ∆=--+2123644a a a =-+--21632a a =-+2(8)32a =--.由a 为正整数,当2(8)32a --是完全平方数时,方程才有可能有整数根. 设22(8)32a m --=(其中m 为整数),32p q =(p 、q 均为整数), ∴22(8)32a m --=.即(8)(8)32a m a m -+--=.不妨设8,8.a m p a m q -+=⎧⎨--=⎩两式相加,得 162p q a ++=.∵(8)a m -+与(8)a m --的奇偶性相同,∴32可分解为216⨯,48⨯,(2)(16)-⨯-,(4)(8)-⨯-, ∴18p q +=或12或18-或12-.∴17a =或14或1-(不合题意,舍去)或2.当17a =时,方程的两根为1172y -±=,即12y =-,29y =-.…… 5分 当14a =时,方程的两根为822y -±=,即13y =-,25y =-.…… 6分当2a =时, 方程的两根为422y ±=,即13y =,21y =. ………… 7分24.解:(1)∵抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3),∴1680,3.m m n n -+=⎧⎨=⎩ ∴3,83.m n ⎧=-⎪⎨⎪=⎩. ∴抛物线的解析式为:233384y x x =--+.………………………… 2分 (2)令3y =,得2333384x x --+=,得10x =,22x =-, ∵抛物线向右平移后仍经过点B ,∴抛物线向右平移2个单位.……… 3分∵233384y x x =--+ 233(21)388x x =-++++2327(1)88x =-++. ………… 4分∴平移后的抛物线解析式为2327(1)88y x =--+. …………………… 5分(3)由抛物线向右平移2个单位,得'(2,0)A -,'(2,3)B .∴四边形AA ’B ’B 为平行四边形,其面积'236AA OB ==⨯=.设P 点的纵坐标为P y ,由'OA P △的面积=6, ∴1'62P OA y =,即1262P y ⨯= ∴6P y =, 6P y =±.………………………………………………… 6分当6P y =时,方程2327(1)688x --+=无实根, 当6P y =-时,方程2327(1)688x --+=-的解为16x =,24x =-.∴点P 的坐标为(6,6)-或(4,6)--.……………………………… 7分25.解:(1)完成画图如图2,由BAC ∠的度数为 60°,点E 落在 AB 的中点处 ,容易得出BE 与DE 之间的数量关系 为 BE=DE ;…………… 3分(2)完成画图如图3.猜想:BE DE =.证明:取AB 的中点F ,连结EF .∵90ACB ∠=︒,30ABC ∠=︒,∴160∠=︒,12CF AF AB ==. ∴△ACF 是等边三角形.∴AC AF =. ① …… 4分∵△ADE 是等边三角形,∴260∠=︒, AD AE =. ②∴12∠=∠. ∴12BAD BAD ∠+∠=∠+∠.即CAD FAE ∠=∠.③ ………………………………………… 5分 由①②③得 △ACD ≌△AFE (SAS ). …………………………… 6分 ∴90ACD AFE ∠=∠=︒. ∵F 是AB 的中点,∴EF 是AB 的垂直平分线.∴BE=AE . ……………………………………………………… 7分 ∵△ADE 是等边三角形, ∴DE=AE .∴BE DE =. …………………………………………………… 8分EAB C (D )图221F EDB C A图3。
2012年东城区初三一模数学试卷及答案

2012年东城区初三一模试卷数学卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.计算:2=( )A .-1B . 3C .3D .52.我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为( ) A .316710⨯ B .416.710⨯ C .51.6710⨯ D .60.16710⨯3.已知,如图,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D =40°,那么∠BOD 为( )A .40°B .50°C .60°D .70°4.因式分解()219x --的结果是( )A .()()24x x +-B .()()81x x ++C .()()24x x -+D .()()108x x -+5.如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数有( )A .2个B .3个C .4个D .6个6.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是( ) A .连续抛一枚均匀硬币2次必有1次正面朝上 B .连续抛一枚均匀硬币10次都可能正面朝上C .大量反复抛一枚均匀硬币,平均每100次出现下面朝上50次D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的7.如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC=AOC 为( ) A .120° B .130° C .140°D .150°8.如图,在△ABC 中,∠ACB =90°,AC =BC =2.E 、F 分别是射线AC 、CB 上的动点,且A CB OACEAE =BF ,EF 与AB 交于点G ,EH ⊥AB 于点H ,设AE =x ,GH =y ,下面能够反映y 与x 之间函数关系的图象是( )二、填空题(本题共16分,每小题4分) 9.函数y =自变量的取值范围是__________. 10.如图,点P 在双曲线(0)ky k x=≠上,点(12)P ',与点P 关于y 轴对称,则此双曲线的解析式为.11.如图,在平面直角坐标系中,等边三角形ABC 的顶点B ,C,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM =MN ,则点M 的坐标为______________.12.如图,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ―1在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ―1B n ―1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ―1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ―1A n B n ―1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面积为__________;面积小于2011的阴影三角形共有__________个.三、解答题(本题共30分,每小题5分) 13.计算:1024sin60(-︒-.1 23 4 5 2),DCBA14.(1)解不等式:112x x >+;(2)解方程组20328x y x y -=⎧⎨+=⎩15.已知:如图,A 点坐标为302⎛⎫- ⎪⎝⎭,,B 点坐标为()03,. (1)求过A B ,两点的直线解析式; (2)过B 点作直线BP 与x 轴交于点P ,且使2OP OA =,求ABP ∆的面积.16.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC=30º,EF ⊥AB ,垂足为F ,连结DF . (1)求证:AC =EF ;(2)求证:四边形ADFE 是平行四边形.17.先化简:2313(1)2349223x x x x ÷⋅++--;若结果等于23,求出相应x 的值.18.在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐A DEF x献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题: (1)该班有学生多少人? (2)补全条形统计图;(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?四、解答题(本题共20分,每小题5分)19.某批发商以每件50元的价格购进800件T 恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单位应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x 元. (1)填表(不需要化简)(2)如果批发商希望通过销售这批T 恤获利9000元,那么第二个月的单价应是多少元?20.如图,等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =2,∠C =60°,M 是BC 的中点. (1)求证:△MDC 是等边三角形;(2)将△MDC 绕点M 旋转,当MD (即MD ′)与AB 交于一点E ,MC (即MC ′)同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.C'CBM21.如图,已知ABC △,以BC 为直径,O 为圆心的半圆交AC 于点F ,点E 为弧CF 的中点,连接BE 交AC 于点M ,AD 为△ABC 的角平分线,且AD BE ,垂足为点H .时间 第一个月 第二个月 清仓时 单价(元) 80 ▲ 40 销售量(件) 200 ▲ ▲(1)求证:AB 是半圆O 的切线;(2)若3AB =,4BC =,求BE 的长.22.已知:如图1,矩形ABCD 中,AB =6,BC =8,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 四条边上的点(且不与各边顶点重合),设m =AB +BC +CD +DA ,探索m 的取值范围. (1)如图2,当E 、F 、G 、H 分别是AB 、BC 、CD 、DA 四边中点时,m =________.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD 为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m 的取值范围.①请在图1中补全小贝同学翻折后的图形;②m 的取值范围是__________.H GF ECDBA 图1图2H GF E CD BA 图3ABDCE FGH五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知一元二次方程x 2+ax +a -2=0.(1)求证:不论a 为何实数,此方程总有两个不相等的实数根;(2)设a <0,当二次函数y =x 2+ax +a -2的图象与x出此二次函数的解析式;(3)在(2)的条件下,若此二次函数图象与x 轴交于A 、B 两点,在函数图象上是否存在点P ,使得△PABP 点坐标,若不存在请说明理由.24.如图,在△ABC 中,点D 是BC 上一点,∠B =∠DAC =45°.(1)如图1,当∠C =45°时,请写出图中一对相等的线段;_________________A AA(2)如图2,若BD =2,BAAD 的长及△ACD 的面积.图1CD BA图2AB D C25.巳知二次函数y =a (x 2-6x +8)(a >0)的图象与x 轴分别交于点A 、B ,与y 轴交于点C .点D 是抛物线的顶点.(1)如图①.连接AC ,将△OAC 沿直线AC 翻折,若点O 的对应点0'恰好落在该抛物线的对称轴上,求实数a 的值;(2)如图②,在正方形EFGH 中,点E 、F 的坐标分别是(4,4)、(4,3),边HG 位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P 是边EH 或边HG 上的任意一点,则四条线段PA 、PB 、PC 、PD 不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P 是边EF 或边FG 上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;(3)如图②,当点P 在抛物线对称轴上时,设点P 的纵坐标l 是大于3的常数,试问:是否存在一个正数a ,使得四条线段PA 、PB 、PC 、PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.2012年北京市东城区初三一模试卷参考答案1.A .2.C .3.C .4.A .5.C .6.A .7.A .8.C .9.x ≥3.10.2y x -=.11.(5 4 ,3 4 )12.12;6.13.解:原式=1412+-=12-.14.(1)解:112x x ->,112x >,所以2x >.(2)21x y =⎧⎨=⎩15.(1)23y x =+;(2)设P 点坐标为()0x ,,依题意得3x =±,所以P 点坐标分别为()()123030P P -,,,. 1132733224ABP S ∆⎛⎫=⨯+⨯= ⎪⎝⎭,213933224ABP S ∆⎛⎫=⨯-⨯= ⎪⎝⎭,所以ABP ∆的面积为274或94. 17.原式=(23)(23)1233)233223x x x x x x +--+⋅⋅⋅+-=23x ;由23x =23,可,解得x19.(1)80-x ,200+10x ,800-200-(200+10x );(2)根据题意,得80×200+(80-x )(200+10x )+40[800-200-(200+10x )]-50×800=9000.整理,得x 2-20x +100=0,解这个方程得x 1=x 2=10, 当x =10时,80-x =70>50. 答:第二个月的单价应是70元. 20.解:(1)证明:过点D 作DP ⊥BC ,于点P ,过点A 作AQ ⊥BC于点Q ,∵∠C =∠B =60° ∴CP =BQ =12AB ,CP +BQ =AB ,又∵ADPQ 是矩形,AD =PQ , 故BC =2AD ,由已知,点M 是BC 的中点, BM =CM =AD =AB =CD ,即△MDC 中,CM =CD ,∠C =60°, 故△MDC 是等边三角形.(2)解:△AEF 的周长存在最小值,理由如下: 连接AM ,由(1)平行四边形ABMD 是菱形, △MAB ,△MAD 和△MC ′D ′是等边三角形,∠BMA =∠BME +∠AME =60°,∠EMF =∠AMF +∠AME =60°, ∴∠BME =∠AMF ,在△BME 与△AMF 中,BM =AM ,∠EBM =∠FAM =60°, ∴△BME ≌△AMF (ASA ),∴BE =AF ,ME =MF ,AE +AF =AE +BE =AB ,∵∠EMF =∠DMC =60°,故△EMF 是等边三角形,EF =MF ,∵MF 的最小值为点M 到ADEF △AEF 的周长=AE +AF +EF =AB +EF , △AEF 的周长的最小值为2PQCM B答:存在,△AEF 的周长的最小值为221.(1)连结CE ,过程略;(2)∵3AB =,4BC =.由(1)知,90ABC ∠=,∴5AC =.在ABM △中,AD BM ⊥于H ,AD 平分BAC ∠, ∴3AM AB ==,∴2CM =.由CME △∽BCE △,得12EC MC EB CB ==. ∴2EB EC =,∴BE =22.(1)20;(2)如图所示(虚线可以不画),20≤m <28.23.解:(1)因为△=a 2-4(a -2)=(a -2)2+4>0,所以不论a 为何实数,此方程总有两个不相等的实数根.(2)设x 1、x 2是y =x 2+ax +a -2=0的两个根,则x 1+x 2=-a ,x 1•x 2=a -2,因两交所以|x 1-x 2|(x 1-x 2)2=13变形为:(x 1+x 2)-4x 1•x 2=13所以:(-a )2-4(a -2)=13 整理得:(a -5)(a +1)=0解方程得:a =5或-1 又因为:a <0,所以:a =-1所以:此二次函数的解析式为y =x 2-x -3.(3)设点P 的坐标为(x 0,y 0),因为函数图象与x所以:ABS △PAB =12AB •|y 0|即:|y 0|=3,则y 0=±3当y 0=3时,x 02-x 0-3=3,即(x 0-3)(x 0+2)=0 解此方程得:x 0=-2或3当y 0=-2时,x 02-x 0-3=-3,即x 0(x 0-1)=0 解此方程得:x 0=0或1综上所述,所以存在这样的P 点,P 点坐标是(-2,3),(3,3),(0,-3)或(1,-3). 24.(1)AB =AC 或AD =BD =CD ;H GF E C D B A(2)AD1,S △ACD提示:过点A 作AE ⊥BC ,可以求出AD 的长.过D 作平行线或过C 作垂线,可以利用两次相似求面积. ECDB AFABDC25.解:(1)令y =0,由2(68)0a x x -+=解得122,4x x ==;令x =0,解得y =8a .∴点A 、B 、C 的坐标分别是(2,0)、(4,0)、(0,8a ), 该抛物线对称轴为直线x =3. ∴OA =2.如图①,设抛物线对称轴与x 轴交点为M ,则AM =1. 由题意得:2O A OA '==.∴2O A AM '=,∴∠O ′AM =60°.∴OC AO ==8a =.∴a =(2)若点P 是边EF 或边FG 上的任意一点,结论同样成立. (Ⅰ)如图②,设点P 是边EF 上的任意一点(不与点E 重合),连接PM .∵点E (4,4)、F (4,3)与点B (4,0)在一直线上,点C 在y 轴上, ∴PB <4,PC ≥4,∴PC >PB . 又PD >PM >PB ,PA >PM >PB , ∴PB ≠PA ,PB ≠PC ,PB ≠PD .∴此时线段PA 、PB 、PC 、PD 不能构成平行四边形. (Ⅱ)设P 是边FG 上的任意一点(不与点G 重合), ∵点F 的坐标是(4,3),点G 的坐标是(5,3). ∴FB =3,GB =3≤PB∵PC ≥4,∴PC >PB .GCDBA图①(图②)(3)存在一个正数a ,使得线段PA 、PB 、PC 能构成一个平行四边形. 如图③,∵点A 、B 时抛物线与x 轴交点,点P 在抛物线对称轴上, ∴PA =PB .∴当PC =PD 时,线段PA 、PB 、PC 能构成一个平行四边形. ∵点C 的坐标是(0,8a ),点D 的坐标是(3,-a ). 点P 的坐标是(3,t ),∴PC 2=32+(t -8a )2,PD 2=(t +a )2. 整理得7a 2-2ta +1=0,∴Δ=4t 2-28.∵t 是一个常数且t >3,∴Δ=4t 2-28>0∴方程7a 2-2ta +1=0有两个不相等的实数根27t t a ==. 显然0a =>,满足题意.∵当t 是一个大于3的常数,存在一个正数a =,使得线段PA 、PB 、PC 能构成一个平行四边形.(图③)。
2012年东城区初三数学第一学期期末试题及答案

AE DCBAOCA B东城区2011—2012学年第一学期期末统一检测 初三数学试题 2012.1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.抛物线221y x =-+()的顶点坐标是A .(2,1)B .(-2,-1)C .(-2,1)D .(2,-1)2.下列图形中,是中心对称图形的是A B C D3.如图,在△ABC 中,若DE ∥BC ,AD =5,BD =10,DE =4,则BC 的值为A.8B.9C.10D.12 4.下列事件中,属于必然事件的是A. 随机抛一枚硬币,落地后国徽的一面一定朝上B. 打开电视任选一频道,正在播放北京新闻C. 一个袋中只装有5个黑球,从中摸出一个球是黑球D. 某种彩票的中奖率是10%,则购买该种彩票100张一定中奖5. 如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°, 则∠C 的 度数为A .116°B .58°C .42°D .32°6.已知x =1是方程x 2+bx +b -3=0的一个根,那么此方程的另一个根为A. -2B. -1C. 1D. 2 7. 如图,直径AB 为6的半圆O ,绕A 点逆时针旋转60°,此时点B 到了点B ',则图中阴影部分的面积为A .6πB .5πC .4πD .3π8. 已知二次函数2y ax bx c =++的图象如图所示,那么一次函数24y bx b ac =+-与反比例函数2c b yx-=在同一坐标系内的图象大致为二、填空题(本题共16分,每小题4分)9.已知关于x 的一元二次方程有一个根为0.请你写出一个符合条件的一元二次方程是 . 10. 将抛物线2y x =-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .Q PNMOCBADCBA 12.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,直角∠MON 的顶点O 在AB 上, OM 、ON 分别交CA 、CB 于点P 、Q ,∠MON 绕点O 任意旋转.当12O A O B =时, OPOQ的值为 ;当1O A O Bn =时,OPOQ的值为 .(用含n 的式子表示)三、解答题(本题共30分,每小题5分)13.解方程: . 14.已知排水管的截面为如图所示的圆O ,半径为10,圆心O 到水面的距离是6,求水面宽A B .15D 在边AB 上,满足且∠ACD =∠ABC ,若AC = 2,AD = 1,求DB 的长.17.2(2) 当x 为何值时,y 有最小值,最小值是多少?(3) 若A (m ,y 1),B (m +2, y 2)两点都在该函数的图象上,计算当m 取何值时,12?y y >18.为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A 、标杆顶端F 、树的顶端E 在同一直线上,此同学眼睛距地面1.6米,标杆为3.1米,且BC =1米,CD =5米,请你根据所给出的数据求树高ED .四、解答题(本题共20分,每小题5分)19.如图,邻边不等..的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6m .若矩形的面积为4m 2,请你计算AB 的长度(可利用的围墙长度超过6m ). 22410x x --=20. 如图,已知直线P A 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠P AE ,过C 作C D P A ⊥,垂足为D .(1) 求证:CD 为⊙O 的切线;(2) 若CD =2AD ,⊙O 的直径为10,求线段AC 的长.21. 在一个不透明的口袋里,装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5 . (1)求口袋中红球的个数;(2)若摸到红球记0分,摸到白球记1分,摸到黄球记2分,甲从口袋中摸出一个球不放回,再摸出一个.请用画树状图的方法求甲摸到两个球且得2分的概率.22.李经理在某地以10元/千克的批发价收购了2 000千克核桃,并借一仓库储存.在存放过程中,平均每天有6千克的核桃损耗掉,而且仓库允许存放时间最多为60天.若核桃的市场价格在批发价的基础上每天每千克上涨0.5元。
2012年北京中考一模数学试题分析考试内容

2012初三一模数学试题分析(海、西、东)二、试题特点1、检测功能①突出四基的考查,部分题目以能力立意,突出重点章节和重点知识的考查②既延续着北京中考试题的命题规律,又在此基础上适当创新试题,力争全方位检测考生的数学基础知识水平③试题有区分度2、预测功能充分结合新课标和北京考试说明要求①注重基础知识的灵活应用及基本数学思想在题目中的渗透(如第8题和12题)②相似,勾股,三角函数等基本运算工具在几何题目中的应用(20或21)③代数综合侧重在一元二次方程和二次函数的结合,将运算巧妙融入其中,考查考生的基本运算能力(23)④操作型问题仍然以能力立意,找出解决题目的方向和本质特征成为考查思维的主要特点(22)⑤几何综合题目仍然以重点知识(几何变换为背景),考查考生的综合应用能力.(24)⑥二次函数综合题目均作为压轴题出现,考查初中学生在初中阶段对函数的理解和综合思维能力(25)三、海淀、西城、东城三区的部分试题归类新颖点:考查空间观念的有关题目2012西城5.由n个相同的小正方体堆成的几何体,其主视图、俯视图如下所示,则n的最大值是A.16B.18C.19D.202012海淀8. 8.下列图形中,能通过折叠围成一个三棱柱的是A B C D考查归纳和推理能力从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质2012东城8. 如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度向B 点运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是2012西城8.8.对于实数c、d,我们可用min{ c,d }表示c、d两数中较小的数,如min{3,1-}=1-.若关于x的函数y = min{22x,2()a x t-}的图象关于直线3x=对称,则a、t的值可能是A.3,6 B.2,6-C.2,6 D.2-,62012东城12.如图,正方形ABCD的边长为10,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则DE的长为.2012西城12.12.如图,直角三角形纸片ABC中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B与点C重合,折痕与AB、BC的交点分别为D、E. (1) DE的长为;(2) 将折叠后的图形沿直线AE剪开,原纸片被剪成三块,其中最小一块的面积等于.2012海淀12. 在平面直角坐标系xOy中, 正方形A1B1C1O、A2B2C2B1、A3B3C3B2, …,按右图所示的方式放置. 点A1、A2、A3, …和B1、B2、B3, …分别在直线y=kx+b和x轴上. 已知C1(1, -1),C2(23,27-), 则点A3的坐标是 ;点A n的坐标是.2012西城21.如图,AC 为⊙O 的直径,AC=4,B 、D 分别在两侧的圆上,∠BAD=60°,BD 与AC 的交点为E . (1) 求点O 到BD 的距离及∠OBD 的度数; (2) 若DE=2BE ,求cos O ED ∠的值和CD 的长.2012海淀20.如图,△ABC 内接于⊙O , AD 是⊙O 直径, E 是CB 延长线上一点, 且∠BAE =∠C .(1)求证:直线AE 是⊙O 的切线; (2)若EB =AB , 54cos =E , AE =24,求EB 的长及⊙O 的半径.2012东城21. 如图,△ABC 中,以BC 为直径的⊙O 交AB 于点D ,CA 是⊙O 的切线, AE 平分∠BAC交BC 于点E ,交CD 于点F . (1)求证:CE =CF ; (2)若sin B =35,求D F ∶C F 的值.操作类型问题根据条件信息,结合图形的特征,适当运用几何图形变换按要求进行作图,然后求解。
[数学]2012年北京各城区中考一模数学试题汇编
![[数学]2012年北京各城区中考一模数学试题汇编](https://img.taocdn.com/s3/m/e0e170791ed9ad51f01df2f2.png)
2012年北京各城区一模试题汇编第8题汇总:1.(12海淀一模)2.(12西城一模)对于实数c 、d ,我们可用min{ c ,d }表示c 、d 两数中较小的数,如min{3,1-}=1-.若关于x 的函数y = min{22x ,2()a x t -}的图象关于直线3x =对称,则a 、t 的值可能是A .3,6B .2,6- C.2,6 D .2-,63.(12丰台一模)如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A .B .C .D .E PC’A DBCA 、CA第8题图D7.(12延庆一模) 将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的A .面CDHEB .面BCEFC .面ABFGD .面ADHG8.(12房山一模) 如图,梯形ABCD 中,AB ∥CD ,∠A =30°,∠B =60°,AD =32,CD =2,点P 是线段AB 上一个动点,过点P 作PQ ⊥AB 于P ,交其它边于Q ,设BP 为x ,△BPQ 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( ).xy 6312O xy 6312O A Bxy 6312O xy 6312O C D9.(12密云一模)在正方体的表面上画有如图⑴中所示的粗线,图⑵是其展开图的示意图,但只在A 面上画有粗线,那么将 图⑴中剩余两个面中的粗线画入图⑵中,画法正确的是10.(12通州一模)如图,在平行四边形ABCD中,AC = 4,BD = 6,P是BD上的任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F.设BP=x,EF=y,则能大致反映y与x之间关系的图象为()A B C D11.(12顺义一模)12.(12东城一模)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度向B点运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是A B C D13.(12朝阳一模)已知关于x 的一元二次方程02=++n mx x 的两个实数根分别为a x =1,b x =2(b a <),则二次函数n mx x y ++=2中,当0<y 时,x 的取值范围是 A .a x < B .b x > C .b x a << D .a x <或b x >第12题汇总:1.(12海淀一模)2.(12西城一模)如图,直角三角形纸片ABC 中,∠ACB =90°,AC=8,BC =6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E . (1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .3.(12丰台一模)在数学校本活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A 出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D ,第二次逆时针方向跳2步到达顶点B ,第三次顺时针方向跳3步到达顶点C ,第四次逆时针方向跳4步到达顶点C ,… ,以此类推,跳动第10次到达的顶点是 ,跳动第2012次到达的顶点是 .ADCB4.(12石景山一模)一个正整数数表如下(表中下一行中数的个数是上一行中数的个数的2倍):则第4行中的最后一个数是 ,第n 行中共有 个数, 第n 行的第n 个数是 .5.(12昌平一模)己知□ABCD 中,AD =6,点E 在直线AD 上,且DE =3,连结BE 与对角线AC 相交于点M ,则MCAM= .6.(12平谷一模)abc 是一个三位的自然数,已知195abc ab a --=,这个三位数是_____________;聪明的小亮在解决这种问题时,采取列成连减竖式的方法(见右图)确定要求的自然数,请你仿照小亮的作法,解决这种问题.如果abcd 是一个四位的自然数,且2993abcd abc ab a ---=那么,这个四位数是_____________.7.(12延庆一模) 将1、2、3、6按右侧方式排列.若规定(m,n )表示第m 排从左向右第n 个数,则(7,3)所表示的数是 ;(5,2)与(20,17)表示的两数之积是111122663263323第1排第2排第3排第4排第5排8.(12房山一模)如图,已知Rt △ABC 中,∠ACB =90°,AC =6,BC = 8,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直作下去,得到了一组线段CA 1,A 1C 1,C 1A 2,A 2C 2,…,A n C n ,则A 1C 1= ,A n C n = .9.(12密云一模)在∠A (0°<∠A <90°)的内部画线段,并使线段的两端点分别落在角的两边AB 、AC 上,如图所示,从点A 1开始,依次向右画线段,使线段与线段在两端点处互相垂直,A 1A 2为第1条线段.设AA 1=A 1A 2=A 2A 3=1,则∠A = ;若记线段A 2n-1A 2n 的长度为a n (n 为正整数),如A 1A 2=a 1,A 3A 4=a 2,则此时a 2= ,a n = (用含n 的式子表示).10.(12通州一模)已知如图,△ABC 和△DCE 都是等边三角形,若△ABC 的边长为1,则△BAE 的面积是 .四边形ABCD 和四边形BEFG 都是正方形,若正方形ABCD 的边长为4,则△FAC 的面积是 .……如果两个正多边形ABCDE …和BPKGY …是正n (n ≥3)边形,正多边形ABCDE …的边长是2a ,则△KCA 的面积是 .(结果用含有a 、n 的代数式表示)ABCA 1A 2A 3A 4A 5 C 1 23 4 5 12题图第12题图E11.(12顺义一模)12.(12东城一模) 如图,正方形ABCD 的边长为10,内部有6个全等的正方形,小正方形的顶点E 、F 、G 、H 分别落在边AD 、AB 、BC 、CD 上,则DE 的长为 .13.(12朝阳一模)如图,在正方形ABCD 中,AB =1,E 、F 分别是BC 、CD 边上点,(1)若CE =12CB ,CF =12CD ,则图中阴影部分的面积是 ;(2)若CE =1n CB ,CF =1nCD ,则图中阴影部分的面积是 (用含n 的式子表示,n 是正整数).第22题汇总: 1.(12海淀一模)A2.(12西城一模)阅读下列材料:问题:如图1,在正方形ABCD内有一点P,PA=5,PB=2,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.请你参考小明同学的思路,解决下列问题:(1) 图2中∠BPC的度数为;(2) 如图3,若在正六边形ABCDEF内有一点P,且P A=132,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.图1 图3CB A D3.(12丰台一模) 将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼 成一个等腰三角形(不能有重叠和缝隙).小明的做法是:如图1所示,在矩形ABCD 中,分别取AD 、AB 、CD 的中点P 、E 、F ,并沿直线PE 、PF 剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2). (1)在图3中画出另一种剪拼成等腰三角形的示意图;(2)以矩形ABCD 的顶点B 为原点,BC 所在直线为x 轴建立平面直角坐标系(如图4),矩形ABCD 剪拼后得到等腰三角形△PMN ,点P 在边AD 上(不与点A 、D 重合),点M 、N 在x 轴上(点M 在N 的左边).如果点D 的坐标为(5,8),直线PM 的解析式为=y kx b ,则所有满足条件的k 的值为 .图1 图2 图3图4 备用P E FDAPE FD A4.(12石景山一模)生活中,有人用纸条可以折成正五边形的形状,折叠过程是将图①中.(1)将,若将展开,展开后的平面图形是 ;(2)若原长方形纸条(图①)宽为2cm ,求(1)中展开后平面图形的周长(可以用三角函数表示).5.(12昌平一模) 问题探究:(1)如图1,在边长为3的正方形ABCD 内(含边)画出使∠BPC =90°的一个点P ,保留作图痕迹;(2)如图2,在边长为3的正方形ABCD 内(含边)画出使∠BPC =60°的所有的点P ,保留作图痕迹并简要说明作法;(3)如图3,已知矩形ABCD ,AB =3,BC =4,在矩形ABCD 内(含边)画出使∠BPC =60°,且使△BPC 的面积最大的所有点P ,保留作图痕迹.图① 图② 图③图3图2图1A DCBABCDD CBA图1图26.(12平谷一模)如图①,在矩形ABCD 中,将矩形折叠,使点B 落在AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端点)交于点F .然后再展开铺平,则以B E F 、、为顶点的BEF △称为矩形ABCD 的“折痕三角形”.(1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕BEF △”一定是一个________三角形;(2)如图②,在矩形ABCD 中,24AB BC ==,,当它的“折痕BEF △”的顶点E 位于边AD 的中点时,画出这个“折痕BEF △”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中,24AB BC ==,.当点F 在OC 上时,在图③中画出该矩形中面积最大的“折痕BEF △”,并直接写出这个最大面积.7.(12延庆一模)阅读下面材料:小红遇到这样一个问题,如图1:在△ABC 中,AD ⊥BC ,BD=4,DC=6,且∠BAC=45°,求线段AD 的长.图3小红是这样想的:作△ABC 的外接圆⊙O ,如图2:利用同弧所对圆周角和圆心角的关系,可以知道∠BOC=90°,然后过O 点作OE ⊥BC 于E ,作OF ⊥AD 于F ,在Rt △BOC 中可以求出⊙O 半径及 OE ,在Rt △AOF 中可以求出AF,最后利用AD=AF+DF 得以解决此题。
东城区2012-2013初三上期末试题答案(最终稿)

东城区2012-2013学年第一学期期末统一检测初三数学试题参考答案及评分标准 2013.1三、解答题(本题共30分,每小题5分) 13. 解方程:2316x x -= . 解:移项,得2361x x -= . ………………..1分 二次项系数化为1,得 2123x x -= . ………………..2分 配方 24(1)3x -= . ………………..4分 由此可得11x =21x = ………………..5分 14. 解:根据题意,由勾股定理可知222BC BO CO =+.∴ 5BC =cm. ………………..2分∴ 圆锥形漏斗的侧面积=15OB BC ππ⋅⋅= cm 2 . ………………..5分 15.解:△ABC 和△DEF 相似. ………………..1分由勾股定理,得AB =AC =BC =5,DE =4,DF =2,EF = ………………..3分22AB AC BC DE DF EF ==== ………………..4分∴△ABC ∽△DEF . ………………..5分 16.(1)………………..3分(2)………………..5分17.解:(1) ∵ 关于x 的一元二次方程(m -2)x 2 + 2mx + m +3 = 0 有两个不相等的实数根, ∴ 20m -≠,即2m ≠. ………………..1分 又 ∵ 2(2)4(2)(3)4(6)m m m m ∆=--+=--, ∴ 0∆>即4(6)0m -->.解得 6m <.∴ m 的取值范围是6m <且m ≠ -2. ………………..2分(2)在6m <且m ≠ -2的范围内,最大整数m 为5. ………………..3分 此时,方程化为231080x x ++=.∴ 方程的根为 12x =-, 243x =- . ………………..5分18.解: ∵ 四边形ABCD 是圆内接四边形,∴ ∠B +∠D =180°. ………………..1分 ∵ 四边形OABC 为平行四边形,∴ ∠AOC =∠B . ………………..2分 又由题意可知 ∠AOC =2∠D .∴可求∠D=60°.………………..3分连结OD,可得AO=OD,CO=OD.∴∠OAD=∠ODA,∠OCD=∠ODC.………………..4分∴∠OAD+∠OCD=∠ODA+∠ODC=∠D=60°.………………..5分四、解答题(本题共20分,每小题5分)20.解:(1)证明:如图,连接OB.∵PB是⊙O的切线,∴∠PBO=90°.∵ OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB.又∵PO=PO,∴△P AO≌△PBO.∴∠P AO=∠PBO=90°.∴直线P A为⊙O的切线.………………..2分(2)∵OA=OC,AD=BD,BC=6,∴OD=12BC=3.设AD=x.∵AD∶FD=1∶2,∴FD=2x,OA=OF=2x-3.在Rt△AOD中,由勾股定理,得(2x-3)2=x2+32.解之得,x1=4,x2=0(不合题意,舍去).∴AD=4,OA=2x-3=5.即⊙O的半径的长5.………………..5分21. 解:(1)三类垃圾随机投入三类垃圾箱的树状图如下:………………..2分由树状图可知垃圾投放正确的概率为3193=;………………..3分 (2)“厨余垃圾”投放正确的概率为40024001001003=++. ………………..5分 22. 解:(1)当280≤<x 时,80=V . ………………..1分当18828≤<x 时,设b kx V +=,由图象可知,⎩⎨⎧+=+=.1880,2880b k b k解得:⎪⎩⎪⎨⎧=-=.94,21b k∴ 当18828≤<x 时,9421+-=x V . ………………..3分 (2)根据题意,得211-+94-9422P Vx x x x x ⎛⎫===+ ⎪⎝⎭=()21--9444182x +.答:当车流密度x 为94辆/千米时,车流量P 最大,为4418辆/时. …………..5分 23. 解:(1) 二次函数的对称轴方程为1x =,由二次函数的图象可知二次函数的顶点坐标为(1,-3),二次函数与x 轴的交点坐标为(0,0),(2,0),于是得到方程组3,420.a b a b +=-⎧⎨+=⎩ ……………………………………..2分解方程得3,6.a b =⎧⎨=-⎩二次函数的解析式为 236y x =-. ……………………………………..3分 (2)由(1)得二次函数解析式为236y x =-.依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为1和53,由此可得交点坐标为(1,3)-和55(,)33-. …………………………..4分将交点坐标分别代入一次函数解析式y kx n =+中,得 355 .33k n k n +=-⎧⎪⎨+=-⎪⎩,解得 2 5k n =⎧⎨=-⎩,.∴ 一次函数的解析式为25y x =-. ……………………………..6分 (3)3. ……………………………………………..7分 24.解:(1)∵ ∠BAC =90°,AB =AC =2,∴ ∠B =∠C,BC =又∵FEB FED DEB EQC C ∠=∠+∠=∠+∠,DEF C ∠=∠, ∴ ∠DEB =∠EQC . ∴ △BPE ∽△CEQ . ∴BP CE BE CQ=. 设BP 为x ,CQ 为y , ∴y =. ∴ 2y x=. 自变量x 的取值范围是0<x <1. ……………………………..3分(2)解:∵ ∠AEF =∠B =∠C ,且∠AQE >∠C ,∴ ∠AQE >∠AEF . ∴ AE ≠AQ .当AE =EQ 时,可证△ABE ≌ECQ . ∴ CE =AB =2 .∴ BE =BC -EC=2.当AQ =EQ 时,可知∠QAE =∠QEA =45°. ∴ AE ⊥BC .∴ 点E 是BC 的中点.∴ BE综上,在∠DEF 运动过程中,△AEQ 能成等腰三角形,此时BE 的长为2 或……………………………..7分25.解:(1) 抛物线22(1)6y x m x m =---+-与y 轴交于点B (0 , 3),∴ 26 3.m -= ∴ 3.m =±抛物线的顶点在第二象限,∴ 3.m =∴ 抛物线的解析式为223y x x =--+. ………2分(2)猜想:CD AC ⊥. ………3分证明如下:A (-3 , 0),B (0 , 3),C (-1 , 4),∴ AB AC BC ===∴ 222AB BC AC +=. ∴ 90ABC ∠=︒.∴ 90CAB ACB ∠+∠=︒.又CAB DCB ∠=∠ , ∴ 90DCB ACB ∠+∠=︒. ∴ CD AC ⊥. ………4分 (3)当0<t ≤32时,如图, EF 交AB于点Q ,GF 交AC 于点N ,过N 做MP //F E 交x 轴于P 点,交BF 的延长线点M , BF 的延长线交AC 于点K . 由△AGN ∽△KFN ,得AG PNKF MN=,即332t PNPNt =--. 解得PN =2t .∴231113=33(3)232222FGE QAE AGN S S S S t t t t t ∆∆∆--=⨯⨯---⨯=-+阴影.当32<t ≤3时,如图, EF 交AB 于点N ,交AC 于点M ,BF 交AC 于点P . 由△AME ∽△PMF ,得AE MEPF MF =. 即3332t ME ME t -=--. 解得ME =2(3-t ).∴221119=(3)2(3)(3)32222MAE NAE S S S t t t t t ∆∆-=⨯-⨯---=-+阴影. 综上所述:S =22333 0),221933 (3).222t t t t t t ⎧-+<⎪⎪⎨⎪-+<⎪⎩≤≤( ………………………………………….8分。
北京东城区2011-2012学年中考数学模拟试卷(含答案)

14.一连串分数,共有 6 个,是按照一种简单规律排成的 . 由于抄写的人笔头较慢,别人抄下来前 3 个,
他只抄了前两个,把第 3 个空着;别人把后面 3 个也抄好了,他才抄了第 4 个和第 5 个,把第 6 个也空
着 . 请你帮他补上:
1、 1、 20 10
、1、1、
.
54
15.如图,该图形经过折叠可以围成一个正方体,折好以后,与“静”字相对的字是
( 6 分)
( 8 分) ( 9 分) ( 10 分)
25.(本题 10 分)
- 11 - / 14
. ⑴ r =5 (3 分) ⑵ CF= 20 ( 3 分) ⑶ tan ∠BAD= 6 (4 分)
3
17
26.(本题 10 分)
解:( 1)政府没出台补贴政策前,这种蔬菜的收益额为
3000 800 2400000(元). ·················· 2 分
上,小圆在正方形的外部且与 CD切于点 N,则正方形 ABCD的边长为
▲.
三、解答题: ( 本大题共 10 小题,共 96 分,解答应写出必要的计算过程、推演步骤或文字说明
)
19. ( 本小题满分 8 分 ) 计算
(
2)0
1 tan 600
1 ()
1
6
2
3
20. ( 本小题满分 8 分 ) 请先将下式化简,再选择一个适当的无理数...代入求值.
7260000 元.
································
10 分
注:本卷只在第 26 题中,学生若出现答题时未写单位或未答分别扣除
1 分.
27.(本题 10 分)
2012年九年级中考一模数学试卷(含答案)

俯视图
(第 6 题)
6.已知二次函数 y=ax2+bx+c 的图象如图所示,则下列结论:①c=2; ③2a+b=0; ④a-b+c<0.其中正确的为(▲)
②b2-4ac>0;
A.①②③
B.①②④
C.①②
D.③④
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直 接填写在答题卡相应位置 上) ....... 7.函数 y= 1-x 中,自变量 x 的取值范围是 ▲ .
2.下列运算正确的是(▲) A.(a3)2=a9 B.a2+a3=a5 C.a6÷a2=a3 D.a3·a4=a7
3.人体最小的细胞是血小板.5 000 000 个血小板紧密排成一直线长约 1m,则 1 个血小板 的直径用科学计数法表示为(▲) A.5×106 m B.5×107 m C.2×10
-7
22.(7 分) 班主任老师让同学们为班会活动设计一个抽奖方案,拟使中奖概率为 60%. (1)小明的设计方案:在一个不透明的盒子中,放入 10 个球,这些球除颜色外都相同,搅 匀后从中任意摸出 1 个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师 要求,则盒子中黄球应有 ▲ 个,白球应有 ▲ 个; (2)小兵的设计方案:在一个不透明的盒子中,放入 4 个黄球和 1 个白球,这些球除颜色外 都相同, 搅匀后从中任意摸出 2 个球, 摸到的 2 个球都是黄球则表示中奖, 否则不中奖. 该 设计方案是否符合老师的要求?试说明理由.
D级 15% C级 35%
A级 45%
B 级 5% (第 21 题)
(1)此次竞赛中(2)班成绩在 C 级以上(包括 C 级)的人数为 ▲ ; (2)请你将表格补充完整: (1)班 (2)班 88 平均数(分) 中位数(分) 众数 (分) 90 90 100
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市东城区2012年第二学期初三综合练习(一)数学试卷2012.5一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.15-的相反数是 A. 5 B. 15 C. 15- D. -5 2.根据国家财政部公布的2011年全国公共财政收入情况的数据显示,全国财政收入103 740亿元,这是我国年度财政收入首次突破10万亿. 将103 740用科学记数法表示应为A. 10.374×104B. 0.10374×105C. 1.0374×105D. 1.0374×106 3.如图,已知//,,33AB CD BC ABE C BED ∠∠=︒∠平分,则的度数是A.16︒B. 33︒C. 49︒D. 66︒4.如图,已知平行四边形ABCD 中,AB =3,AD =2,=150B ∠︒,则平行四边形ABCD 的面积为A. 2B. 3C. 33D. 65. 某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛.小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的A. 中位数B. 众数C. 平均数D. 极差 6.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°, 则∠C 等于A. 116°B. 64°C. 58°D. 32° 7. 甲盒子中有编号为1,2,3的3个白色乒乓球,乙盒子中有编号为4,5,6的3个黄色 乒乓球.现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为A .94B .95C .32D .97 8. 如图,在正方形ABCD 中,AB =3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度向B 点运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (cm 2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是二、填空题(本题共16分,每小题4分)9. 不等式512422x x ->+的解集为________________. 10. 分解因式:214x y xy y -+ =________________.11. 若把代数式242x x -+化为2()x m k -+的形式,其中m 、k 为常数,则m k = .12. 如图,正方形ABCD 的边长为10,内部有6个全等的正方形,小正方形的顶点E 、F 、G 、H 分别落在边AD 、AB 、BC 、CD 上,则DE 的长为 .三、解答题(本题共30分,每小题5分) 13.计算:01124tan60(2)3--︒--+.14. 解分式方程 312212x x x -=++.15.先化简,再求值:已知2320x x --=,求代数式(1)(1)(23)x x x x +---的值.16. 如图,点B C F E 、、、在同一直线上,12∠=∠,BF EC =,要使ABC ∆≌DEF ∆,还需添加的一个条件是(只需写出一个即可),并加以证明.17. 定义[]p q ,为一次函数y px q =+的特征数.(1)若特征数是[]21m +,的一次函数为正比例函数,求m 的值;(2)已知抛物线()(2)y x n x =+-与x 轴交于点A B 、,其中0n >,点A 在点B 的左侧,与y 轴交于点C ,且OA C △的面积为4,O 为原点,求图象过A C 、两点的一次函数的特征数.18.列方程或方程组解应用题:食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A 、B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A 、B 两种饮料共100瓶,问A 、B 两种饮料各生产了多少瓶?四、解答题(本题共20分,每小题5分)19. 如图,已知矩形ABCD 中,E 是AD 上的一点,过点E 作EF ⊥EC 交边AB 于点F ,交CB 的延长线于点G , 且EF =EC . (1)求证:CD =AE ;(2)若DE =4cm ,矩形ABCD 的周长为 32cm ,求CG 的长.20. 为了了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有 人,抽测成绩的众数是 ; (2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标, 则该校350名九年级男生中,估计有多少人体能达标?21. 在△ABC 中,以BC 为直径的⊙O 交AB 于点D ,CA 是⊙O 的切线, AE 平分∠BA C 交BC 于点E ,交CD 于点F . (1)求证:CE =CF ;(2)若sin B =35,求DF ∶CF 的值.22. 在ABC △中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC △(即ABC △三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC △的高,而借用网格就能计算出它的面积.(1)请你将ABC △的面积直接填写在横线上__________________; 思维拓展: (2)我们把上述求ABC △面积的方法叫做构图法....若ABC △三边的长分别为2a 、13a 、17a (0a >),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的ABC △,并求出它的面积填写在横线上__________________; 探索创新:(3)若ABC △中有两边的长分别为2a 、10a (0a >),且ABC △的面积为22a ,试运用构图法...在图3的正方形网格(每个小正方形的边长为a )中画出所有符合题意的ABC △(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上__________________.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程22(41)30x m x m m -+++=. (1)求证:无论m 取何实数时,原方程总有两个实数根;(2)若原方程的两个实数根一个大于2,另一个小于7,求m 的取值范围;(3)抛物线22(41)3y x m x m m =-+++与x 轴交于点A 、B ,与y 轴交于点C ,当m 取(2)中符合题意的最小整数时,将此抛物线向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边界),求n 的取值范围(直接写出答案即可).24. 已知∠ABC =90°,点P 为射线BC 上任意一点(点P 与点B 不重合),分别以AB 、AP 为边在∠ABC 的内部作等边△ABE 和△APQ,连结QE 并延长交BP 于点F .(1)如图1,若AB =32,点A 、E 、P 恰好在一条直线上时,求此时EF 的长(直接写出结果);(2)如图2,当点P 为射线BC 上任意一点时,猜想EF 与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB =32,设BP =x ,以QF 为边的等边三角形的面积y ,求y 关于x 的函数关系式.25. 如图,在平面直角坐标系xOy 中,二次函数232y x bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C . (1) 求此二次函数解析式;(2) 点D 为点C 关于x 轴的对称点,过点A 作直线l :3333y x =+交BD 于点E ,过点B 作直线BK ∥AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN N M M K ++和的最小值.北京市东城区2011--2012学年第二学期初三综合练习(一)数学试卷参考答案2012.5一、选择题(本题共32分,每小题4分)题 号1 2 3 45 6 7 8 答 案B C D BA DC C二、填空题(本题共16分,每小题4分)题 号9 10 11 12 答 案x >321()2y x -42三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分) 解: 原式1234313=--+………………4分 2233=--. ………………5分 14.(本小题满分5分) 解:312212x x x -=++去分母得321x x -=+ ………………3分解得23x =. ………………4分经检验:23x =是原方程的解. 所以 原方程的解是23x =. ………………5分 15.(本小题满分5分)解:原式=(1)(1)(23)x x x x +---=22123x x x --+ ………………2分 =231x x -+-. ………………3分∵ 2320x x --=,∴ 232x x -=. ………………4分 ∴原式=-3 . ………………5分 16.(本小题满分5分)解:可添加的条件为:AC DF B E A D =∠=∠∠=∠或或(写出其中一个即可). …1分证明:∵ BF EC =, ∴ BF CF EC CF -=-.即 B C E F = . -------2分 在△ABC 和△D EF 中,,12,AC DF =⎧⎪∠=∠⎨∴ △ABC ≌△DEF . --------5分17.(本小题满分5分)解:(1) 由题意得 10m +=.∴ 1m =-. -------1分(2)由题意得 点A 的坐标为(-n ,0),点C 的坐标为(0,-2n ). ………………2分∵ OAC △的面积为4,∴1242n n ⨯= . ∴ 2n =.∴ 点A 的坐标为(-2,0),点C 的坐标为(0,-4). …………………………3分 设直线AC 的解析式为 y kx b =+.∴ 02,4.k b b =-+⎧⎨-=⎩∴ 2,4.k b =-⎧⎨=-⎩ …………………………4分 ∴ 直线AC 的解析式为 24y x =--. ∴ 图象过A C 、两点的一次函数的特征数为[]24--,. ………………………5分18.(本小题满分5分)解法一:设A 饮料生产了x 瓶,则B 饮料生产了(100-x )瓶.…………………………2分 依题意,得 2x +3(100-x )=270 . …………………………3分 解得 x =30, 100-x =70 . …………………………4分 答:A 饮料生产了30瓶,B 饮料生产了70瓶. …………………………………5分 解法二:设A 饮料生产了x 瓶,B 饮料生产了y 瓶.…………………………………1分 依题意,得 10023270.x y x y +=⎧⎨+=⎩,…………………………………3分解得 30,70.x y =⎧⎨=⎩…………………………………4分答:A 饮料生产了30瓶,B 饮料生产了70瓶. …………………………………5分四、解答题(本题共20分,每小题5分) 19.(本小题满分5分) 解:(1)证明:在Rt △AEF 和Rt △DEC 中, ∵ EF ⊥CE , ∴ ∠FEC =90°.∴ ∠AEF +∠DEC =90°,而∠ECD +∠DEC =90°, ∴ ∠AEF =∠ECD . …………………………1分 又∠F AE =∠EDC =90°,EF =EC ,∴ Rt △AEF ≌Rt △DCE . ∴ AE =CD . …………………………2分(2)∵ AD =AE +4,∵ 矩形ABCD 的周长为32 cm , ∴ 2(AE +AE +4)=32. .解得 AE =6. …………………………3分∴ AF =4,BF =2. 由AD ∥BC 可证 △AEF ∽△BGF .…………………………4分 ∴2AE AFBG BF==. ∴ BG =3.(2) 如图所示:…………………………3分(3) 252)501041(350=+-⨯ . 答:估计有252人体能达标. ………………………………5分21.(本小题满分5分) 解:(1)证明:∵ BC 是直径,∴ ∠ADC =90°.∴∠1+∠3=90°. ………………1分∵ CA 是圆的切线, ∴ ∠ACB =90°.∴∠2+∠4=90°. ………………2分∵ AE 平分∠BAC ,∴ ∠1=∠2.∴ ∠3=∠4. ∵ ∠3=∠5, ∴ ∠4=∠5.∴ CE =CF . ………………3分(2)过点E 作EG ⊥AB 于点G . ………………4分 ∴ EG =EC ,CD ∥EG . ∴ EG = CF .∴DF AD EG AG =. 又易证 AG =AC . ∴DF ADFC AC=. 又可证 ∠ACD =∠B . 35. ………………5分 ∴DF∶CF的值为22.(本小题满分5分)72; …………………… 1分 解:(1)ABC △的面积为(2)ABC △的面积为252a ;…………………………5分五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分) 23.(本小题满分7分)解:(1)证明: Δ=[]22(41)4(3)m m m -+-+=2441m m ++ =2(21)m +∵ 2(21)m +≥0, ∴ 无论m 取何实数时,原方程总有两个实数根. ………………2分(2) 解关于x 的一元二次方程22(41)30x m x m m -+++=,得 1231,= x m x m =+. ………………3分 由题意得 312,3177. 2.m mm m +>+>⎧⎧⎨⎨<<⎩⎩或 ………………4分 解得173m <<. ………………5分 (3)符合题意的n 的取值范围是 91544n <<. ……………7分24. (本小题满分7分)解:(1)EF =2. ……………1分(2)EF =BF . ……………2分证明: ∵ ∠BAP=∠BAE -∠EAP=60°-∠EAP ,∠EAQ=∠QAP-∠EAP=60°-∠EAP , ∴ ∠BAP=∠EAQ . 在△ABP 和△AEQ 中, AB=AE ,∠BAP=∠EAQ , AP=AQ , ∴ △ABP ≌△AEQ . ∴ ∠AEQ=∠ABP=90°. ∴ ∠BEF 180180906030AEQ AEB =︒-∠-∠=︒-︒-︒=︒. 又∵ ∠EBF =90°-60°=30°, ∴EF =BF . ……………4分(3) 在图1中,过点F 作FD ⊥BE 于点D . ∵ △ABE 是等边三角形, ∴ BE=AB=32.由(2)得 =∠EBF 30°, 在Rt △BDF 中,3BD = .∴ BF=2cos30BG=︒.∴ EF =2 . ∵ △ABP ≌△AEQ , ∴ QE=BP=x .∴ QF =QE +EF 2x =+. ∴ 以QF 为边的等边三角形的面积y=2233(2)3344x x x +=++ .…7分解:(1) ∵ 点A 、B 的坐标分别为(-1,0)、(3,0),∴ 30,29330.2b c b c ⎧-+=⎪⎪⎨⎪++=⎪⎩解得 3,33.2b c ⎧=-⎪⎨=-⎪⎩∴ 二次函数解析式为2333322y x x =--. ……………2分 (2)可求点C 的坐标为(1,23-)∴ 点D 的坐标为(1,23).可求 直线AD 的解析式为 33y x =+ . 由题意可求 直线BK 的解析式为333y x =-. ∵ 直线l 的解析式为3333y x =+, ∴ 可求出点K 的坐标为(5,23).易求 4AB BK KD DA ==== . ∴ 四边形ABKD 是菱形. ∵ 菱形的中心到四边的距离相等,∴ 点P 与点E 重合时,即是满足题意的点,坐标为(2,3 ) . ……………5分(3) ∵ 点D 、B 关于直线AK 对称, ∴ DN MN +的最小值是MB .过K 作KF ⊥x 轴于F 点.过点K 作直线AD 的对称点P ,连接KP ,交直线AD 于点Q , ∴ KP ⊥AD . ∵ AK 是∠DAB 的角平分线, ∴ 23KF KQ PQ ===. ∴MB MK +的最小值是BP .即BP 的长是DN NM MK ++的最小值.∵ BK ∥AD , ∴ 90BKP ∠=︒.在Rt △BKP 中,由勾股定理得BP =8.∴DN NM MK ++的最小值为8. ……………8分。