【中小学资料】吉林省长春市2016-2017学年高一数学下学期第二次月考试题(含解析)

合集下载

高一下学期数学第二次月考试卷

高一下学期数学第二次月考试卷

高一下学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题5分,) (共12题;共60分)1. (5分)对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A . 棱柱B . 棱锥C . 棱台D . 一定不是棱柱、棱锥2. (5分) (2016高一下·平罗期末) 已知△ABC的平面直观图△A′B′C′是边长为2的正三角形,则△ABC 的面积为()A . 2B .C . 2D . 43. (5分)三角形ABC中,,AB=3,BC=1 ,以边AB所在直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体的体积为()A .B .C . .D .4. (5分) (2016高三上·沙市模拟) 某几何体的三视图如图所示,则该几何体的体积为()A .B .C .D .5. (5分)一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .B .C .D .6. (5分) (2018高二上·万州期中) 已知水平放置的,按“斜二测画法”得到如图所示的直观图,其中,,那么原的面积是()A .B .C .D .7. (5分)如图,正方体ABCD-A1B1C1D1的棱长为2,动点E、F在棱A1B1上,动点P,Q分别在棱AD,CD 上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积().A . 与x,y,z都有关B . 与x有关,与y,z无关C . 与z有关,与x,y无关D . 与y有关,与x,z无关8. (5分)棱长为a的正方体可任意摆放,则其在水平平面上投影面积的最大值为()A . a2B . a2C . a2D . 2a29. (5分) (2016高一下·辽源期中) 已知{an}为等差数列,a3=7,a1+a7=10,Sn为其前n项和,则使得Sn 达到最大值的n等于()A . 4B . 5C . 6D . 710. (5分)等差数列{an}中,已知前15项的和S15=90,则a8等于()A .B . 12C .D . 611. (5分) (2019高三上·赤峰月考) 已知数列1,1,1,2,2,1,2,4,3,1,2,4,8,4,1,2,4,8,16,5,…,其中第一项是,第二项是1,接着两项为,,接着下一项是2,接着三项是,,,接着下一项是3,依此类推.记该数列的前项和为,则满足的最小的正整数的值为()A . 65B . 67C . 75D . 7712. (5分) (2019高二上·上海月考) 设等差数列前项和为,且满足,,则、、、、中,最大项为()A .B .C .D .二、填空题(本大题共4小题,每小题5分。

吉林省高二数学下学期第二次月考(5月)试题 理(扫描版)(2021年整理)

吉林省高二数学下学期第二次月考(5月)试题 理(扫描版)(2021年整理)

编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(吉林省2016-2017学年高二数学下学期第二次月考(5月)试题理(扫描版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为吉林省2016-2017学年高二数学下学期第二次月考(5月)试题理(扫描版)的全部内容。

版)。

吉林省长春2016-2017学年高二下学期期中数学试卷(文科)Word版含解析

吉林省长春2016-2017学年高二下学期期中数学试卷(文科)Word版含解析

吉林省长春2016-2017学年高二下学期期中试卷(文科数学)一、选择题(每小题5分,共60分)1.已知集合A={1,2,3,4},B={x|x=2n,n∈A},则A∩B=()A.{1,4} B.{1,3} C.{2,4} D.{2,3}2.用反证法证明命题时,对结论“自然数a,b,c中至多有一个奇数”的反设是()A.自然数a,b,c中至少有两个奇数B.自然数a,b,c中至少有两个偶数或都是奇数C.自然数a,b,c都是偶数D.自然数a,b,c都是奇数3.在两个变量y与x的回归模型中,求得回归方程为=lg(4x﹣20),当x=30时()A.y一定等于2 B.y大于2 C.y小于2 D.y的值在2左右4.某校为了研究“学生的性别”和“对待某项运动的喜爱程度”是否有关,运用2×2列联表进行独立性检验,经计算k=6.669,则认为“学生性别与支持活动有关系”的犯错误的概率不超过()5.极坐标方程(ρ﹣3)(θ﹣)=0(ρ≥0)表示的图形是()A.两个圆B.一条直线和一条射线C.两条直线 D.一个圆和一条射线6.若直线的参数方程为(t为参数),则直线的倾斜角为()A.30° B.60° C.120°D.150°7.已知不等式ax2+bx+c>0的解集为{x|3<x<6},则不等式cx2+bx+a<0的解集为()A.{x|x>} B.{x|x<} C.{x|<x<} D.{x|x<或x>}8.关于x的方程lgx3=3sinx的根的个数有()个.A.1 B.2 C.3 D.49.若f(x)=ax2+(b+1)x+1(a≠0)是偶函数,g(x)=x3+(a﹣1)x2﹣2x是奇函数,则a+b=()A.0 B.1 C.﹣1 D.220)10.定义在R上的奇函数f(x)满足f(x)=﹣f(x+1),且当x∈(﹣1,0)时,f(x)=2x﹣,则f(log2=()A.﹣B.﹣C.﹣D.11.已知函数f (x )=,则f (f (﹣1))=( )A .B .C .D .412.若函数是R 上的单调减函数,则实数a 的取值范围是( )A .(﹣∞,2)B .C .(0,2)D .二、填空题(每小题5分,共20分)13.已知函数f (x )=2bx ﹣3b+1,在(﹣1,1)上存在零点,实数b 的取值范围是 .14.已知x ,y 满足约束条件,则z=2x ﹣y 的最大值为 .15.已知数列{a n },a 1=2,a n =2a n ﹣1﹣1(n ≥2),求a n = .16.已知函数f (x )=,则函数y=f (1﹣x )的最大值为 .三、解答题(共70分)17.已知函数y=a 2﹣x +1(a >0,且a ≠1)的图象恒过定点A ,点A 在直线mx+ny=1(mn >0)上,求+的最小值.18.化简下列各式(1)×;(2).19.已知角α的终边落在直线y=﹣2x (x <0)上,求﹣的值. 20.已知函数f (x )=|x+2|﹣|x+a|(1)当a=3时,解不等式f (x )≤;(2)若关于x 的不等式f (x )≤a 解集为R ,求a 的取值范围.21.定义在R 上函数f (x ),且f (x )+f (﹣x )=0,当x <0时,f (x )=()x ﹣8×()x ﹣1(1)求f (x )的解析式;(2)当x ∈[1,3]时,求f (x )的最大值和最小值.22.定义在(﹣∞,0)∪(0,+∞)上的函数f (x ),总有f (mn )=f (m )f (n ),且f (x )>0,当x >1时,f (x )>1.(1)求f (1),f (﹣1)的值;(2)判断函数的奇偶性,并证明;(3)判断函数在(0,+∞)上的单调性,并证明.吉林省长春2016-2017学年高二下学期期中试卷(文科数学)参考答案与试题解析一、选择题(每小题5分,共60分)1.已知集合A={1,2,3,4},B={x|x=2n,n∈A},则A∩B=()A.{1,4} B.{1,3} C.{2,4} D.{2,3}【考点】交集及其运算.【分析】由A中的元素,根据B中x=2n,n∈A,确定出B的元素,进而确定出B,找出两集合的交集即可.【解答】解:∵A={1,2,3,4},∴B={x|x=2n,n∈A}={2,4,6,8},则A∩B={2,4},故选:C.2.用反证法证明命题时,对结论“自然数a,b,c中至多有一个奇数”的反设是()A.自然数a,b,c中至少有两个奇数B.自然数a,b,c中至少有两个偶数或都是奇数C.自然数a,b,c都是偶数D.自然数a,b,c都是奇数【考点】反证法与放缩法.【分析】写出原命题的否定,即为要反设的命题.【解答】解:命题“自然数a,b,c中至多有一个奇数“的否定为“自然数a,b,c中至少有两个奇数“,故选:A.3.在两个变量y与x的回归模型中,求得回归方程为=lg(4x﹣20),当x=30时()A.y一定等于2 B.y大于2 C.y小于2 D.y的值在2左右【考点】回归分析.【分析】把x=30代入回归方程=lg(4x﹣20)中,求出对应的值即可.【解答】解:当x=30时, =lg(4x﹣20)=lg(4×30﹣20)=2,可以预测y的值在2左右.故选:D.4.某校为了研究“学生的性别”和“对待某项运动的喜爱程度”是否有关,运用2×2列联表进行独立性检验,经计算k=6.669,则认为“学生性别与支持活动有关系”的犯错误的概率不超过()【考点】独立性检验的基本思想.【分析】把观测值同临界值进行比较.得到“学生性别与支持活动有关系”的犯错误的概率.【解答】解:因为K2=6.669>6.635,对照表格:所以认为“学生性别与支持活动有关系”的犯错误的概率不超过1%.故选:B.5.极坐标方程(ρ﹣3)(θ﹣)=0(ρ≥0)表示的图形是()A.两个圆B.一条直线和一条射线C.两条直线 D.一个圆和一条射线【考点】简单曲线的极坐标方程.【分析】极坐标方程能转化为x2+y2=9或y轴正半轴,从而得到极坐标方程(ρ﹣3)(θ﹣)=0(ρ≥0)表示的图形是一个圆和一条射线.【解答】解:∵(ρ﹣3)(θ﹣)=0(ρ≥0),∴ρ=3或θ=,∴x2+y2=9或y轴正半轴,∴极坐标方程(ρ﹣3)(θ﹣)=0(ρ≥0)表示的图形是一个圆和一条射线.故选:D.6.若直线的参数方程为(t为参数),则直线的倾斜角为()A.30° B.60° C.120°D.150°【考点】直线的参数方程.【分析】求出直线的普通方程得出直线的斜率,从而求得直线的倾斜角.【解答】解:直线的普通方程为x+y﹣3﹣=0.∴直线的斜率k=﹣,∴直线的倾斜角为120°.故选C.7.已知不等式ax2+bx+c>0的解集为{x|3<x<6},则不等式cx2+bx+a<0的解集为()A.{x|x>} B.{x|x<} C.{x|<x<} D.{x|x<或x>}【考点】一元二次不等式的解法.【分析】不等式ax2+bx+c>0的解集求出b、c与a的关系,由此化不等式cx2+bx+a<0为18x2﹣9x+1>0,求出解集即可.【解答】解:不等式ax2+bx+c>0的解集为{x|3<x<6},∴,解得b=﹣9a,c=18a;所以不等式cx2+bx+a<0可化为18ax2﹣9ax+a<0(a<0),即18x2﹣9x+1>0,解得x<或x>;故所求不等式的解集为{x|x<或x>}.故选:D.8.关于x的方程lgx3=3sinx的根的个数有()个.A.1 B.2 C.3 D.4【考点】根的存在性及根的个数判断.【分析】化简方程lgx3=3sinx,然后转化为求方程sinx=lgx的实根个数,令f(x)=sinx,g(x)=lgx,只需求出函数f(x)与g(x)的交点个数,画出函数的图象,结合图象可求.【解答】解:方程lgx3=3sinx可得sinx=lgx,令f(x)=sinx,g(x)=lgx,做出函数的图象,结合图象可知,函数f(x)=sinx 与g(x)=lgx的图象有3个交点故选:C9.若f(x)=ax2+(b+1)x+1(a≠0)是偶函数,g(x)=x3+(a﹣1)x2﹣2x是奇函数,则a+b=()A.0 B.1 C.﹣1 D.2【考点】函数奇偶性的性质.【分析】根据函数奇偶性的定义和性质建立方程关系进行求解即可.【解答】解:∵f(x)=ax2+(b+1)x+1(a≠0)是偶函数,∴对称轴﹣=0,得b=﹣1,∵g(x)=x3+(a﹣1)x2﹣2x是奇函数,∴g(﹣x)=﹣g(x),则﹣x3+(a﹣1)x2+2x=﹣x3﹣(a﹣1)x2﹣2x,则a﹣1=﹣(a﹣1),则a﹣1=0,a=1,则a+b=1﹣1=0,故选:A10.定义在R 上的奇函数f (x )满足f (x )=﹣f (x+1),且当x ∈(﹣1,0)时,f (x )=2x ﹣,则f (log 220)=( )A .﹣B .﹣C .﹣D .【考点】函数奇偶性的性质.【分析】根据函数奇偶性和条件求出函数的周期性,利用函数的奇偶性和周期性的性质结合对数的运算法则进行化简求解即可.【解答】解:∵定义在R 上的奇函数f (x )满足f (x )=﹣f (x+1),∴f (x+1)=﹣f (x ),即f (x+2)=﹣f (x+1)=﹣[﹣f (x )]=f (x ),则函数f (x )是周期为2的周期函数,则∵4<log 220<5,∴0<log 220﹣4<1,∵当x ∈(﹣1,0)时,f (x )=2x ﹣,∴当x ∈(0,1)时,﹣x ∈(﹣1,0),则f (﹣x )=2﹣x ﹣=﹣f (x ),即f (x )=﹣2﹣x +,x ∈(0,1),则f (log 220)=f (log 220﹣4)=f (log 2)=f (log 2)=﹣+=﹣+==﹣,故选:C11.已知函数f (x )=,则f (f (﹣1))=( )A .B .C .D .4【考点】函数的值.【分析】由已知条件利用分段函数的性质先求出f (﹣1),由此能求出f (f (﹣1)).【解答】解:∵f (x )=,∴f (﹣1)=(﹣1+)4=,f (f (﹣1))=f ()==.故选:A .12.若函数是R上的单调减函数,则实数a的取值范围是()A.(﹣∞,2)B.C.(0,2)D.【考点】函数单调性的性质;指数函数的单调性与特殊点.【分析】由函数是单调减函数,则有a﹣2<0,且注意2(a﹣2)≤.【解答】解:∵函数是R上的单调减函数,∴∴故选B二、填空题(每小题5分,共20分)13.已知函数f(x)=2bx﹣3b+1,在(﹣1,1)上存在零点,实数b的取值范围是(,1).【考点】函数零点的判定定理.【分析】利用零点存在定理,建立不等式,即可求得实数b的取值范围.【解答】解:函数f(x)=2bx﹣3b+1,在(﹣1,1)上存在零点,∴f(﹣1)f(1)<0,即(﹣2b﹣3b+1)(2b﹣3b+1)<0,即(5b﹣1)(b﹣1)<0,解得<b<1,故答案为:.14.已知x,y满足约束条件,则z=2x﹣y的最大值为.【考点】简单线性规划.【分析】首先作出已知不等式组所对应的平面区域如图,然后设直线l:z=2x﹣y,将直线l进行平移,可得当直线l经过可行域的B时,z达到最大值.【解答】解:由约束条件得到可行域如图:直线z=2x﹣y经过图中B时,直线在y轴的截距最小,此时z 最大,且B (),所以z=2x ﹣y 的最大值为2×=;故答案为:.15.已知数列{a n },a 1=2,a n =2a n ﹣1﹣1(n ≥2),求a n = 2n ﹣1+1 .【考点】等比数列的通项公式.【分析】构造可得a n ﹣1=2(a n ﹣1﹣1),从而可得数列{a n ﹣1}是以1为首项,以2为等比数列,可先求a n ﹣1,进而可求a n ,【解答】解:由题意,两边减去1得:a n ﹣1=2(a n ﹣1﹣1),∵a 1﹣1=1∴{a n ﹣1}是以1为首项,以2为等比数列∴a n ﹣1=1•2n ﹣1=2n ﹣1∴a n =2n ﹣1+1(n ≥2)故答案为2n ﹣1+1.16.已知函数f (x )=,则函数y=f (1﹣x )的最大值为 4 .【考点】函数的最值及其几何意义.【分析】运用指数函数和对数函数的单调性,求得f (x )的最大值,再由对称和平移变换可得y=f (1﹣x )的图象,即可得到所求最大值.【解答】解:由函数f (x )=,可得:x ≤2时,2x ≤4,且当x=2时,取得最大值4;x>2时,log x<log2=﹣1.即有函数f(x)的最大值为4;函数f(﹣x)的图象可由f(x)的图象关于y轴对称得到,则函数f(﹣x)的最大值为4,函数y=f(1﹣x)的图象可由函数y=f(﹣x)图象向右平移得到.则函数y=f(1﹣x)的最大值为4.故答案为:4.三、解答题(共70分)17.已知函数y=a2﹣x+1(a>0,且a≠1)的图象恒过定点A,点A在直线mx+ny=1(mn>0)上,求+的最小值.【考点】基本不等式在最值问题中的应用.【分析】由于函数y=a2﹣x+1(a>0,a≠1)图象恒过定点A(2,2),又点A在直线mx+ny=1上(mn>0),可得2m+2n=1.再利用“乘1法”和基本不等式的性质即可得出.【解答】解:x=2时y=2,所以定点A(2,2)( 3分)A在直线上,所以2m+2n=1,且mn>0,所以=,即的最小值为818.化简下列各式(1)×;(2).【考点】对数的运算性质.【分析】(1)利用分数指数幂和根式的性质和运算法则求解.(2)利用对数的性质和运算法则求解.【解答】解:(1)×=2×=.(2)==﹣4.19.已知角α的终边落在直线y=﹣2x(x<0)上,求﹣的值.【考点】三角函数的化简求值;任意角的三角函数的定义.【分析】角α的终边落在直线y=﹣2x(x<0)上,可得α为第二象限角,sinα>0,cosα<0,再利用诱导公式化简去掉绝对值符号即可得出.【解答】解:∵角α的终边落在直线y=﹣2x(x<0)上,∴α为第二象限角,sinα>0,cosα<0,原式=.20.已知函数f(x)=|x+2|﹣|x+a|(1)当a=3时,解不等式f(x)≤;(2)若关于x的不等式f(x)≤a解集为R,求a的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)将a=1代入f(x),得到关于f(x)的分段函数,求出不等式的解集即可;(2)求出f(x)的最大值,得到|a﹣2|≤a,解出即可.【解答】解:(1)当a=3时,f(x)=|x+2|﹣|x+3|,或或,即或或φ或或x≥﹣2,故不等式的解集为:;(2)由x的不等式f(x)≤a解集为R,得函数f(x)≤a,max∵||x+2|﹣|x+a||≤|(x+2)﹣(x+a)|=|2﹣a|=|a﹣2|(当且仅当(x+2)(x+a)≥0取“=”)∴|a﹣2|≤a,∴或,解得:a ≥1.21.定义在R 上函数f (x ),且f (x )+f (﹣x )=0,当x <0时,f (x )=()x ﹣8×()x ﹣1(1)求f (x )的解析式;(2)当x ∈[1,3]时,求f (x )的最大值和最小值.【考点】抽象函数及其应用.【分析】(1)确定f (0)=0,当x >0时,﹣x <0,利用当x <0时,f (x )=()x ﹣8×()x ﹣1,求出函数的解析式,即可求f (x )的解析式;(2)当x ∈[1,3]时,换元,利用配方法求f (x )的最大值和最小值.【解答】解:(1)f (x )+f (﹣x )=0,则函数f (x )是奇函数,则f (0)=0,当x >0时,﹣x <0,则,所以,所以.(2)令t=2x ,则t ∈[2,8],y=﹣t 2+8t+1t ∈[2,8],对称轴为t=4∈[2,8],当t=4,即x=2,f (x )max =﹣16+32+1=17;当t=8,即x=3,f (x )min =﹣64+64+1=1.22.定义在(﹣∞,0)∪(0,+∞)上的函数f (x ),总有f (mn )=f (m )f (n ),且f (x )>0,当x >1时,f (x )>1.(1)求f (1),f (﹣1)的值;(2)判断函数的奇偶性,并证明;(3)判断函数在(0,+∞)上的单调性,并证明.【考点】抽象函数及其应用.【分析】(1)令m=n=1,m=n=﹣1,求f (1),f (﹣1)的值;(2)令m=x ,n=﹣1,判断函数的奇偶性;(3)设x 1>x 2,由已知得出,即可判断出函数f (x )在R 上单调递增.【解答】解:(1)令m=n=1,则有f (1)=f (1)f (1),又f (x )>0,则f (1)=1令m=n=﹣1,则有f (1)=f (﹣1)f (﹣1),又f (1)=1,f (x )>0,则f (﹣1)=1;(2)证明:定义域为(﹣∞,0)∪(0,+∞),令m=x ,n=﹣1,则有f (﹣x )=f (x )f (﹣1)=f (x ), 所以f (x )为偶函数;(3)证明:∀x 1,x 2∈(0,+∞),且x 1>x 2令mn=x 1,m=x 2,则,所以,又f (x )>0,,由x 1>x 2>0,则, 而当x >1时,f (x )>1,所以,即,又f (x )>0,所以f (x 1)>f (x 2),所以函数f (x )在(0,+∞)上是增函数.。

吉林省长春市高一数学上学期第一次月考试题(扫描版,无答案)(new)

吉林省长春市高一数学上学期第一次月考试题(扫描版,无答案)(new)

吉林省长春市2017—2018学年高一数学上学期第一次月考试题(扫描版,
无答案)
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

吉林省吉林市2016-2017学年高一第二学期3月月考数学试卷

吉林省吉林市2016-2017学年高一第二学期3月月考数学试卷

吉林省吉林市2016-2017学年高一数学3月月考试题第Ⅰ卷说明:1、本试卷分第I 试卷(选择题)和第II 卷(非选择题)两部分;2、满分120分,考试时间100分钟。

一、选择题(共12题,每题5分,共60分)1. 直线2210x y -+=的倾斜角是( )A .30︒B .45︒C .120︒D .135︒2. 已知过点(2,)A m -和(,4)B m 的直线与直线210x y +-=平行,则m 的值为() A .2 B .0 C .8- D .103.过点()2,3A 且垂直于直线250x y +-=的直线方程为( )A .240x y -+=B .270x y +-=C .230x y -+=D .250x y -+=4. 已知实数0,0,0><>c b a ,则直线0=-+c by ax 通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5. 已知)0,1,0(),5,0,1(),1,3,3(C B A ,则AB 的中点M 到点C 的距离为( ) A.453 B.253 C. 253 D. 2136. 直线:40l x -=与圆22:4C x y +=的位置关系是( )A.相离B.相切C.相交不过圆心D.相交且过圆心7. 过点)1,1(-A 、点)1,1(-B 且圆心在直线02=-+y x 上的圆的方程是( )A .()()41322=++-y xB . ()()41322=-++y xC .()()41122=+++y xD . ()()41122=-+-y x8.经过圆0222=+-y x x 的圆心且与直线02=+y x 平行的直线方程是( )A .012=-+y xB .220x y --=C .210x y -+=D .022=++y x9. 直线22y x =-被圆22(2)(2)25x y -+-=所截得的弦长为( )A .6B .8C .10D .1210. 两圆224210x y x y +-++=与224410x y x y ++--=的公切线有( ) A .1条 B .2条 C .3条 D .4条11. 圆222210x y x y +--+=上的点到直线2x y -=的距离最大值是( )A .2B .1C .12+D .1+ 12. 直线230x y --=与圆22(2)(3)9x y -++=交于,EF 两点,则EOF ∆ (O 是原点)的面积为( )A .32 B C ..34吉林二中2016-2017学年度下学期3月份月考考试高一数学试卷 命题人:张鑫第II 卷二、填空题(共4题,每题5分,共20分)13. 已知直线l 过点)5,2(-P ,且斜率为43-,则直线l 的方程为_____。

吉林省长春市2016_2017学年高一物理下学期第二次月考试题

吉林省长春市2016_2017学年高一物理下学期第二次月考试题

2016—2017学年下学期高一年级月考物理试卷(理科)考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷分第Ⅰ卷、第Ⅱ卷,共3页。

满分100分,考试用时80分钟。

考试结束后,请将答题卡卷交回,试题卷自己保存。

2.答题前,请您务必将自己的班级、姓名、学号、考号用0.5毫米黑色签字笔填写在答题卡上。

3.作答非选择题必须用0.5毫米的黑色签字笔写在答题卡上的指定位置,在其它位置作答一律无效。

4.保持答题卷清洁、完整,严禁使用涂改液和修正带。

第Ⅰ卷一、单项选择题(本题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一个选项正确)1、下面的实例中,系统机械能守恒的是( )A、小球自由下落,落在竖直弹簧上,将弹簧压缩后又被弹簧弹起来。

B、拉着物体沿光滑的斜面匀速上升。

C、跳伞运动员张开伞后,在空中匀速下降。

D、飞行的子弹击中放在光滑水平桌面上的木块。

2、如果只有重力对物体做功,则下列说法中正确的是( )A、如果重力对物体做正功,则物体的机械能增加;B、如果重力对物体做负功,则物体的机械能减少;C、如果重力对物体做正功,则物体的动能增加;D、如果重力对物体做负功,则物体的重力势能减少。

3、一个人站在阳台上,以相同的速率υ0分别把三个球竖直向上抛出、竖直向下抛出、水平抛出,不计空气阻力,则三个球落地时的速率( )A、上抛球最大B、下抛球最大C、平抛球最大D、三个球一样大4、跳高比赛中,必须在运动员着地处铺上很厚的海绵垫子,这是因为()A、减小运动员着地过程中受到的冲量作用B、减小运动员着地过程中动量的变化量C、减小运动员着地过程中受到的平均冲力D、以上说法均不正确5、如图所示,小球m分别从A点和B点无初速地释放,则经过最低点C时,小球的速率之比V A:V B为(空气阻力不计)( )A、1:2B、2:1C、2:1D、1:26、如图,有一个质量为m的物体,静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数(即滑动摩擦系数)为μ,现使斜面在水平面上向右做匀速直线运动,移动距离L,则摩擦力对物体所做的功为( )A、0;B、gμmgL cosθ;C、mgL sinθcosθ;D、μ mgL sinθ。

2016-2017学年吉林省长春联考高一下期末数学理科试卷(有答案)

2016-2017学年吉林省长春联考高一下期末数学理科试卷(有答案)

2016-2017学年吉林省长春联考高一(下)期末数学试卷(理科)一.选择题:(本大题共计12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项符合题目要求.)1.(4分)△ABC中,若a=1,c=2,B=60°,则△ABC的面积为()A.B.C.1 D.2.(4分)已知,则a10=()A.﹣3 B.C.D.3.(4分)在锐角△ABC中,a=2,b=2,B=45°,则A等于()A.30°B.60°C.60°或120°D.30°或150°4.(4分)不等式组,所表示的平面区域的面积等于()A.B.C.D.5.(4分)在R上定义运算,若成立,则x的取值范围是()A.(﹣4,1)B.(﹣1,4)C.(﹣∞,﹣4)∪(1,+∞)D.(﹣∞,﹣1)∪(4,+∞)6.(4分)在△ABC中,如果sinA:sinB:sinC=2:3:4,那么cosC等于()A.B.C.D.7.(4分)一个等比数列{a n}的前n项和为48,前2n项和为60,则前3n项和为()A.63 B.108 C.75 D.838.(4分)已知x,y是正数,且,则x+y的最小值是()A.6 B.12 C.16 D.249.(4分)对于任意实数a、b、c、d,命题:①若a>b,c<0,则ac>bc;②若a>b,则ac2>bc2;③若ac2<bc2,则a<b;④;⑤若a>b>0,c>d>0,则ac>bd.其中真命题的个数是()A.1 B.2 C.3 D.410.(4分)若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5 D.611.(4分)若不等式ax2+2ax﹣4<2x2+4x对任意实数x均成立,则实数a的取值范围是()A.(﹣2,2)B.(﹣2,2]C.(﹣∞,﹣2)∪[2,∞)D.(∞,2]12.(4分)已知方程(x2﹣mx+2)(x2﹣nx+2)=0的四个根组成一个首项为的等比数列,则|m﹣n|=()A.1 B.C.D.二.填空题(本大题共4小题,每小题4分,共16分)13.(4分)不等式>1的解集是.14.(4分)若等比数列{a n}的各项均为正数,且a7a11+a8a10=2e4,lna1+lna2+lna3+…+lna17=.15.(4分)在△ABC中,面积,则∠C等于.16.(4分)设,利用课本中推导等差数列前n项和公式的方法,可求得f(﹣5)+f(﹣4)+…+f(0)+…+f(5)+f(6)的值是.三、解答题(共56分,需要写出必要的解答和计算步骤)17.(10分)若不等式ax2+5x﹣2>0的解集是,则不等式ax2﹣5x+(a2﹣1)>0的解集是.18.(10分)已知{a n}是等差数列,S n是其前n项和.已知a1+a3=16,S4=28.(1)求数列{a n}的通项公式(2)当n取何值时S n最大,并求出这个最大值.19.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,若向量=(﹣cosB,sinC),=(﹣cosC,﹣sinB),且.(Ⅰ)求角A的大小;(Ⅱ)若b+c=4,△ABC的面积,求a的值.20.(12分)已知在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA+acosB=0.(1)求角B的大小;(2)若b=2,求△ABC面积的最大值.21.(12分)数列{a n}的前n项和为S n,且S n=n(n+1)(n∈N*)(1)求数列{a n}的通项公式;(2)若数列{b n}满足:a n=+++…+,求数列{b n}的通项公式;(3)令c n=(n∈N*),求数列{c n}的前n项和T n.2016-2017学年吉林省长春联考高一(下)期末数学试卷(理科)参考答案与试题解析一.选择题:(本大题共计12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项符合题目要求.)1.(4分)△ABC中,若a=1,c=2,B=60°,则△ABC的面积为()A.B.C.1 D.===.【解答】解:S△ABC故选B.2.(4分)已知,则a10=()A.﹣3 B.C.D.【解答】解:∵,,…写出几项发现数列是一个具有周期性的数列,且周期是3,∴,故选B.3.(4分)在锐角△ABC中,a=2,b=2,B=45°,则A等于()A.30°B.60°C.60°或120°D.30°或150°【解答】解:锐角△ABC中,由正弦定理可得=,∴sinA=.∵B=45°,a>b,再由大边对大角可得A>B,故B=60°,故选:B.4.(4分)不等式组,所表示的平面区域的面积等于()A.B.C.D.【解答】解:由约束条件作出可行域如图,=S△OBA+S△OCA∴S四边形OBAC=.故选:C.5.(4分)在R上定义运算,若成立,则x的取值范围是()A.(﹣4,1)B.(﹣1,4)C.(﹣∞,﹣4)∪(1,+∞)D.(﹣∞,﹣1)∪(4,+∞)【解答】解:因为,所以,化简得;x2+3x<4即x2+3x﹣4<0即(x﹣1)(x+4)<0,解得:﹣4<x<1,故选A.6.(4分)在△ABC中,如果sinA:sinB:sinC=2:3:4,那么cosC等于()A.B.C.D.【解答】解:由正弦定理可得;sinA:sinB:sinC=a:b:c=2:3:4可设a=2k,b=3k,c=4k(k>0)由余弦定理可得,=故选:D7.(4分)一个等比数列{a n}的前n项和为48,前2n项和为60,则前3n项和为()A.63 B.108 C.75 D.83【解答】解:由等比数列的性质可知等比数列中每k项的和也成等比数列.则等比数列的第一个n项的和为48,第二个n项的和为60﹣48=12,∴第三个n项的和为:=3,∴前3n项的和为60+3=63.故选:A.8.(4分)已知x,y是正数,且,则x+y的最小值是()A.6 B.12 C.16 D.24【解答】解:x+y=(x+y)(+)=1+9++≥10+2=10+6=16,当且仅当x=4,y=12时取等号,故x+y的最小值是16,故选:C9.(4分)对于任意实数a、b、c、d,命题:①若a>b,c<0,则ac>bc;②若a>b,则ac2>bc2;③若ac2<bc2,则a<b;④;⑤若a>b>0,c>d>0,则ac>bd.其中真命题的个数是()A.1 B.2 C.3 D.4【解答】解:①根据不等式的性质可知若a>b,c<0,则ac>bc或ac<bc,∴①错误.②当c=0时,ac2=bc2=0,∴②错误.③若ac2>bc2,则c≠0,∴a<b成立,∴③正确.④当a=1,b=﹣1时,满足a>b,但不成立,∴④错误.⑤若a>b>0,c>d>0,则ac>bd>0成立,∴⑤正确.故正确的是③⑤.故选:B.10.(4分)若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5 D.6【解答】解:∵正数x,y满足x+3y=5xy,∴=1∴3x+4y=()(3x+4y)=+++≥+2=5当且仅当=时取等号∴3x+4y≥5即3x+4y的最小值是5故选:C11.(4分)若不等式ax2+2ax﹣4<2x2+4x对任意实数x均成立,则实数a的取值范围是()A.(﹣2,2)B.(﹣2,2]C.(﹣∞,﹣2)∪[2,∞)D.(∞,2]【解答】解:不等式ax2+2ax﹣4<2x2+4x,可化为(a﹣2)x2+2(a﹣2)x﹣4<0,当a﹣2=0,即a=2时,恒成立,合题意.当a﹣2≠0时,要使不等式恒成立,需,解得﹣2<a<2.所以a的取值范围为(﹣2,2].故选B.12.(4分)已知方程(x2﹣mx+2)(x2﹣nx+2)=0的四个根组成一个首项为的等比数列,则|m﹣n|=()A.1 B.C.D.【解答】解:设这四个根为x1,x2,x3,x4,公比为p其所有可能的值为,,,,由得x1x2x3x4=4,即,则p6=64⇒p=±2.当p=2时,四个根为,1,2,4,且,4为一组,1,2为一组,则+4=m,1+2=n,则;当p=﹣2时,不存在任两根使得x1x2=2,或x3x4=2,∴p=﹣2舍去.故选B.二.填空题(本大题共4小题,每小题4分,共16分)13.(4分)不等式>1的解集是{x|﹣2<x<﹣} .【解答】解:不等式,移项得:>0,即<0,可化为:或,解得:﹣2<x<﹣或无解,则原不等式的解集是{x|﹣2<x<﹣}.故答案为:{x|﹣2<x<﹣}14.(4分)若等比数列{a n}的各项均为正数,且a7a11+a8a10=2e4,lna1+lna2+lna3+…+lna17=34.【解答】解:∵数列{a n}为等比数列,且a7a11+a8a10=2e4,∴a7a11+a8a10=2a8a10=2e4,则a8a10=e4,∴lna1+lna2+…lna17=ln(a1a2…a17)=34,故答案为:34.15.(4分)在△ABC中,面积,则∠C等于45°.【解答】解:由三角形的面积公式得:S=absinC,而,所以absinC=,即sinC==cosC,则sinC=cosC,即tanC=1,又∠C∈(0,180°),则∠C=45°.故答案为:45°16.(4分)设,利用课本中推导等差数列前n项和公式的方法,可求得f(﹣5)+f(﹣4)+…+f(0)+…+f(5)+f(6)的值是3.【解答】解:∵,∴f(1﹣x)==∴f(x)+f(1﹣x)=∴f(﹣5)+f(﹣4)+…+f(0)+…+f(5)+f(6)=6×=3故答案为:3三、解答题(共56分,需要写出必要的解答和计算步骤)17.(10分)若不等式ax2+5x﹣2>0的解集是,则不等式ax2﹣5x+(a2﹣1)>0的解集是.【解答】解:∵ax2+5x﹣2>0的解集是,∴a<0,且,2是方程ax2+5x﹣2=0的两根韦达定理×2=,解得a=﹣2;则不等式ax2﹣5x+a2﹣1>0即为﹣2x2﹣5x+3>0,解得故不等式ax2﹣5x+a2﹣1>0的解集.故答案为:18.(10分)已知{a n}是等差数列,S n是其前n项和.已知a1+a3=16,S4=28.(1)求数列{a n}的通项公式(2)当n取何值时S n最大,并求出这个最大值.【解答】解:(1)设等差数列{a n}的公差为d,∵a1+a3=16,S4=28.∴2a1+2d=16,4a1+d=28,联立解得:a1=10,d=﹣2.∴a n=10﹣2(n﹣1)=12﹣2n.(2)令a n=12﹣2n≥0,解得n≤6.∴n=5,或6时,S n取得最大值,为S6==30.19.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,若向量=(﹣cosB,sinC),=(﹣cosC,﹣sinB),且.(Ⅰ)求角A的大小;(Ⅱ)若b+c=4,△ABC的面积,求a的值.【解答】解:(Ⅰ)∵=(﹣cosB,sinC),=(﹣cosC,﹣sinB),∴,即,∵A+B+C=π,∴B+C=π﹣A,可得cos(B+C)=,…(4分)即,结合A∈(0,π),可得.…(6分)(Ⅱ)∵△ABC的面积==,∴,可得bc=4.…(8分)又由余弦定理得:=b2+c2+bc,∴a2=(b+c)2﹣bc=16﹣4=12,解之得(舍负).…(12分)20.(12分)已知在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA+acosB=0.(1)求角B的大小;(2)若b=2,求△ABC面积的最大值.【解答】解:(1)由bsinA+acosB=0及其正弦定理可得:sinBsinA+sinAcosB=0,sinA≠0,∴sinB+cosB=0,即tanB=﹣1,又0<B<π,∴B=.(2)由余弦定理,可得=≥2ac+ac,∴ac≤=2(2﹣),当且仅当a=c时取等号.=sinB≤=﹣1,∴S△ABC故△ABC面积的最大值为:﹣1.21.(12分)数列{a n}的前n项和为S n,且S n=n(n+1)(n∈N*)(1)求数列{a n}的通项公式;(2)若数列{b n}满足:a n=+++…+,求数列{b n}的通项公式;(3)令c n=(n∈N*),求数列{c n}的前n项和T n.【解答】解:(1)∵数列{a n}的前n项和为S n,且S n=n(n+1)(n∈N*),∴n≥2时,a n=S n﹣S n﹣1=n(n+1)﹣n(n﹣1)=2n.n=1时,a1=S1=2,对于上式也成立.∴a n=2n.(2)数列{b n}满足:a n=+++…+,∴n≥2时,a n﹣a n﹣1==2.∴b n=2(3n+1).n=1时,=a1=2,可得b1=8,对于上式也成立.∴b n=2(3n+1).(3)c n===n•3n+n,令数列{n•3n}的前n项和为A n,则A n=3+2×32+3×33+…+n•3n,∴3A n=32+2×33+…+(n﹣1)•3n+n•3n+1,∴﹣2A n=3+32+…+3n﹣n•3n+1=﹣n•3n+1,可得A n=.∴数列{c n}的前n项和T n=+.。

吉林省长春市2016_2017学年高二数学下学期期中试题文201707130384

吉林省长春市2016_2017学年高二数学下学期期中试题文201707130384

吉林省长春市2016-2017学年高二数学下学期期中试题 文一 、选择题(本大题共12小题,每小题5分,共60分)1. 已知集合{}{}5,1,A x R x B x R x =∈≤=∈>那么A B 等于 ( )A.{1,2,3,4,5} B.{2,3,4,5}C.{2,3,4} D.{}15x R x ∈<≤2.设A={x|20≤≤x },B={y|12≤≤y },下列图形表示集合A 到集合B 的函数图形的是( )3.设5.205.2)21(,5.2,2===c b a ,则a,b,c 大小关系()A. a>c>bB. c>a>bC. a>b>cD.b>a>c4.下列图像表示的函数能用二分法求零点的是( )5.不等式11x x +-<1的解集为( ) A.{x|0<x<1,或x>1} B.{x|0<x<1} C.{x|-1<x<0}D.{x|x<0} 6.设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( )A 、 f(-π)>f(3)>f(-2)B 、f(-π) >f(-2)>f(3)C 、 f(-2)>f(3)> f(-π)D 、 f(3)>f(-2)> f(-π)8.已知x ,y如果y 与x 线性相关,且线性回归方程为y ^=b ^x +2,则b ^的值为( ) A .-12 B.12 C .-110 D.110 9.不等式25(1)x x +-≥2的解集是( ) A.13,2⎡⎤-⎢⎥⎣⎦ B.1,32⎡⎤-⎢⎥⎣⎦ C.1,32⎡⎫⎪⎢⎣⎭∪(1,3] D.1,12⎡⎫-⎪⎢⎣⎭∪(1,3] 10. 不等式lg|x+1|<0的解集为( )A.(-∞,-1]B.(-2,0)C.[-2,-1)∪(-1,0)D.(-2,-1)∪(-1,0)11. 若函数xa a a y ⋅+-=)33(2是指数函数,则有 ( )A 、21==a a 或B 、1=aC 、2=aD 、10≠>a a 且12.函数y =)12(log 21-x 的定义域为( )A .(21,+∞)B .[1,+∞)C .( 21,1] D .(-∞,1)二、填空题(本大题共4小题,每题5分,共20分)13、函数2()610f x x x =-+-在区间[0,4]的最大值是14、不等式|2x-1|-|x-2|<0的解集为______________.15、已知关于x 的不等式11ax x -+<0的解集是(-∞,-1)∪1,2⎛+∞⎫- ⎪⎝⎭,则a=______________. 16、已知函数f(x)=2x -3,x∈{1,2,3},则f(x)的值域为________.三、解答题(本大题共4小题,每题10分)17. (在复数范围内)解方程ii i z z z+-=++23)(2 求解复数Z18.已知不等式a x x <-+-|4||3|,(1)当2=a 时,解此不等式;(2)若a x x <-+-|4||3|解集为φ,求a 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长春市2016-2017学年第二学期第二次月考高一数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

考试结束后,将答题卡交回。

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知在△ABC中,,,,则角的度数为()A. B. C. D.【答案】C【解析】在△ABC中,,,.由余弦定理得.所以,故选C.2. 已知向量 ,,若向量⊥,则实数的值为()A. 1B. 2C. 3D. -3【答案】C【解析】向量 ,,因为向量⊥,所以,故选C.3. 已知,,,则向量与的夹角为()A. B. C. D.【答案】D...【解析】由,平方得:,. 设向量与的夹角为,则,所以,故选D.4. 已知等差数列的前项和为,它的前项和为,则前项和为()A. B. C. D.【答案】A【解析】∵等差数列的前10项和为30,它的前30项和为210,由等差数列的性质得:S10,S20−S10,S30−S20成等差数列,∴2(S20−30)=30+(210−S20),解得前20项和S20=100.故选:A.5. 若正实数a,b满足,则( )A. 有最大值4B. 有最大值C. ab有最小值D. 有最小值【答案】B【解析】∵正实数a,b满足a+b=1,∴⩾2+2=4,故有最小值4,故A不正确。

由于,∴⩽,故有最大值为,故B正确。

由基本不等式可得a+b=1⩾2,∴ab⩽,故ab有最大值14,故C不正确。

∵,故有最小值,故D不正确。

故选:B.点睛:本题主要考查基本不等式,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.6. 若一个水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为的等腰梯形,则原平面图形的周长为()A. B. C. D.【答案】A【解析】根据题意,画出图形,如图所示;原来的平面图形上底是1,下底是,高是2的直角梯形,它的周长是1+2+()+.故选:A....7. 对于直线,和平面,以下结论正确的是()A. 如果、是异面直线,那么∥B. 如果与相交,那么、是异面直线C. 如果∥,、共面,那么∥D. 如果∥,∥,、共面,那么∥【答案】C【解析】由直线m,n和平面α,知:在A中,如果m⊂α,n⊄α,m、n是异面直线,那么n与α相交或平行,故A错误;在B中,如果m⊂α,n与α相交,那么m与n相交或异面,故B错误;在C中,如果m⊂α,n∥α,m、n共面,则由直线与平面平行的性质得m∥n,故C正确;在D中,如果m∥α,n∥α,m、n共面,那么m与n相交或平行,故D错误。

故选:C.8. 下列条件能判定平面∥的是()①∥且∥② ⊥且⊥③ ∥且∥④⊥且⊥A. ①③B. ①②C. ②④D. ③④【答案】B【解析】对于①,设l⊥γ,∵α∥γ,β∥γ,则l⊥α,l⊥β,于是α∥β,故①可得出α∥β;对于②,由“垂直于同一条直线的两个平面平行“可得α∥β,故②可得出α∥β;对于③,设α∩β=n,m∥n,m⊄α,m⊄β,则m∥α,m∥β,显然α,β相交,故③不能判断α∥β;对于④,当α,β,γ两两垂直时,显然不能得出α∥β.故选B.9. 一个几何体的三视图如图所示,则这个几何体的体积为()A. B. C. D.【答案】A考点:1.三视图;2.空间几何体的体积.10. 周长为20的矩形绕其一边旋转形成一个圆柱,该圆柱的侧面积的最大值是( )...A. B. C. D.【答案】B【解析】设矩形的长、宽分别是x,y,则x+y=10,所以圆柱的侧面积S侧=,当且仅当x=y=5时,取“=”号。

∴当矩形的长、宽都是5时,旋转所形成的圆柱侧面积最大值是50π.故选:B11. 将一个正方体金属块铸造成一球体,不计损耗,则其先后表面积之比值为()A. B. C. D.【答案】D【解析】设正方体的棱长为a,球的半径为R,则a3=πR3,∴,∴先后表面积之比值为6a2:4πR2=.故选:D.12. 已知一圆锥的母线长为,底面半径为,若该圆锥内有一球,球与圆锥的底面及圆锥的所有母线都相切,则球的表面积为()A. B. C. D.【答案】A【解析】设圆锥的底面半径为r,高为h,母线长为l,∵l=10cm,r=5cm,∴ cm即圆锥的高等于cm;作出圆锥的轴截面如图,球于圆锥侧面相切,则OE⊥AB于E,BD⊥AD于D,OE=OD=R,(R为球的半径)则△AEO∼△ADB,可得,即R=5=,解之得球半径R=cm,因此球的表面积为,故选A.点睛:求解球与棱柱、棱锥等的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.第Ⅱ卷二、填空题:本题共4小题,每小题5分。

13. 已知向量,,则________________;...【答案】5【解析】向量,,..14. 若的最小值为_______________;【答案】9【解析】因为,所以.当且仅当时,即时,的最小值为9.点睛:本题主要考查基本不等式,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.15. 已知单调递减的等比数列满足,且是,的等差中项,则数列的通项公式________________;【答案】 (形式不唯一)【解析】设等比数列{an}的公比为q,依题意:有2()=①,又,将①代入得a3=8,∴a2+a4=20∴,解得或,又{a n}为递减数列。

∴a1=32,q=,∴a n=.16. 在球面上有,,,四个点,如果,,两两垂直,且,则这个球的体积为_______________.【答案】【解析】空间四个点,,,在同一球面上,,,两两垂直,且,则,,可看作是正方体的一个顶点发出的三条棱,所以过空间四个点,,,的球面即为棱长为6的正方体的外接球,球的直径即是正方体的对角线,长为,.所以这个球面的面积 .综上所述答案为: .点睛:本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.三、解答题:本题共6小题,17题10分,18-22题每小题12分,共70分,解答应写出文字说明,证明过程或演算步骤。

17. 已知△ABC的三角成等差数列,三边成等比数列.(1) 求角的度数.(2)若△ABC的面积,求边的长.【答案】(1); (2)2....【解析】解:(1)∵△ABC的三角A,B,C成等差数列,∴2B=A+C,又A+B+C=180°,∴B=60°.(2)∵三边a,b,c成等比数列.∴b2=ac,由余弦定理可得:cos60°=,∴=,化为a=c.∴△ABC是等边三角形.∴△ABC的面积S==×b2,解得b=2.【点评】本题考查了余弦定理、三角形内角和定理、三角函数求值、等边三角形面积计算公式,考查了推理能力与计算能力,属于中档题.18. 已知是等差数列,是其前项和,,,(1)求数列的通项公式;(2)当取何值时最大,并求出这个最大值.【答案】(1) ; (2)时,最大值为30.【解析】试题分析:(1)设等差数列{a n}的公差为d,利用等差数列的通项公式与求和公式即可得出.(2)令a n≥0,解得n≤6.可得n=5,或6时,S n取得最大值.试题解析:(1)设等差数列{a n}的公差为d,∵a1+a3=16,S4=28.∴2a1+2d=16,4a1+d=28,联立解得:a1=10,d=﹣2.∴a n=10﹣2(n﹣1)=12﹣2n.(2)令a n=12﹣2n≥0,解得n≤6.∴n=5或6时,S n取得最大值,为S6==30.19. 已知正三棱柱所有的棱长均为,是的中点,(1)求多面体的体积;(2)求点到平面的距离.【答案】(1) ; (2).【解析】试题分析:(1)体积分割,分别求三棱柱和锥的体积即可;(2)利用等体积法求距离即可.试题解析:(1)正三棱柱所有的棱长均为2,D是的中点, ...,,多面体的体积:•(2)设点到平面的距离d,由,可得:,得到d=.20. 如图在正方体中中,(1)求异面直线所成的角;(2)求直线D1B与底面所成角的正弦值;(3)求二面角大小的正切值.【答案】(1) ; (2); (3).【解析】试题分析:(1)连接AC,AD1,∠AD1C即为BC1与CD1所成角;(2)DD1⊥平面ABCD,∠D1DB为直线D1B与平面ABCD所成的角;(3)连接BD交AC于O,则DO⊥AC,∠D1OD为二面角D1﹣AC﹣D的平面角. 试题解析:(1)连接AC,AD1,如图所示:∵BC1∥AD1,∴∠AD1C即为BC1与CD1所成角,∵△AD1C为等边三角形,∴∠AD1C=60°,故异面直线BC1与CD1所成的角为60°;(2)∵DD1⊥平面ABCD,∴∠D1DB为直线D1B与平面ABCD所成的角,在Rt△D1DB中,sin∠D1DB==∴直线D1B与平面ABCD所成角的正弦值为;(3)连接BD交AC于O,则DO⊥AC,...根据正方体的性质,D1D⊥面AC,∴D1D⊥AC,D1D∩DO=D,∴AC⊥面D1OD,∴AC⊥D1O,∴∠D1OD为二面角D1﹣AC﹣D的平面角.设正方体棱长为1,在直角三角形D1OD中,DO=,DD1=1,∴tan∠D1OD=.点睛:(1)求两条异面直线所成角的关键是作为这两条异面直线所成角,作两条异面直线所成角的方法是:将其中一条一条直线平移与另一条相交相交或是将两条异面直线同时平移到某个位置使他们相交,然后再同一平面内求相交直线所成角,值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.(2)求直线和平面所成角的关键是作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值,当空间关系较为复杂时也可以建立空间直角坐标系,利用向量求解.21. 在四棱锥中,平面,∥,,(1)求证:平面(2)求证:平面平面(3)设点为中点,在棱上是否存在点,使得∥平面?说明理由.【答案】详见解析试题解析:(1)平面平面,,又,且,平面(2) 平面,且∥,平面,又平面,平面平面(3)取中点,连结,,则∥平面.,分别为,中点,则∥,又平面,平面,所以∥平面22. 设等差数列的前项和为,且(是常数,),,(1)求的值及数列的通项公式;(2)设,求数列的项和为;...(3)若对恒成立,求最大正整数的值.【答案】(1);(2);(3)2.【解析】试题分析:(1)利用递推关系、等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前n项和公式即可得出;(3)由知数列单调递增,故成立求m即可.试题解析:(1)解:因为所以当时,,解得当时,即,解得,所以解得则,数列的公差所以.(2)因为所以①②-②得,所以(3)因为所以数列单调递增,最小,最小值为所以,所以故正整数的最大值为.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.。

相关文档
最新文档