三相电压型逆变电路
三相电压型逆变电路120°导电方式_概述及解释说明

三相电压型逆变电路120°导电方式概述及解释说明1. 引言1.1 概述三相电压型逆变电路是一种常见且重要的逆变器拓扑结构,通常被广泛应用于工业控制、电力传输以及可再生能源领域等。
其中,其中采用120°导电方式的三相电压型逆变电路是一种常见的工作模式。
1.2 文章结构本文将按照以下结构进行介绍和说明:首先,在"2. 三相电压型逆变电路120°导电方式"部分中,我们将详细解释该逆变器的定义、原理以及构成元件,并深入探讨其工作原理。
接着,在"3. 概述及解释说明"部分中,我们将针对120°导电方式的三相电压型逆变电路进行特点介绍,同时与其他导通方式进行比较。
最后,在"4. 结论"部分中,我们将对整篇文章进行总结概要,并提供对三相电压型逆变电路未来发展的展望和建议。
1.3 目的本文旨在全面介绍和解释三相电压型逆变电路中采用的120°导通方式,并通过比较不同的导通方式来说明其在实际应用中的优势。
此外,本文还将从技术角度出发,展望该逆变电路的未来发展趋势,并提供相关的建议和改进方向。
通过对三相电压型逆变电路120°导通方式的深入理解,读者将能够更好地应用该技术并在实践中取得更好的效果。
2. 三相电压型逆变电路120°导电方式:2.1 定义及原理:三相电压型逆变电路是一种将直流电转换为交流电的装置,它通过采用特定的脉宽调制技术来实现。
而120°导通方式是其中常用的一种导通控制方式。
在三相电压型逆变电路中,通过控制开关器件(如晶闸管或功率场效应管等)的导通和断开,使得输入直流侧的正、负源极之间交替连接到输出交流侧的不同相,从而产生所需频率和幅值的交流信号。
而120°导通方式则是指通过改变三个开关器件之间的导通角度来实现对交流输出波形进行控制。
此方法将每个周期分为6个相同时间间隔(即360°/6 = 60°),其中A、B、C三相各自占据两个相邻时间间隔。
三相逆变器电路原理和工作过程图文说明

三相逆变器电路原理和工作过程图文说明单相逆变器电路由于受到功率开关器件的容量、零线(中性线)电流、电网负载平衡要求和用电负载性质等的限制,容量一般都在100kV A以下,大容量的逆变电路大多采用三相形式。
三相逆变器按照直流电源的性质不同分为三相电压型逆变器和三相电流型逆变器。
1.三相电压型逆变器。
电压型逆变器就是逆变电路中的输入直流能量由一个稳定的电压源提供,其特点是逆变器在脉宽调制时的输出电压的幅值等于电压源的幅值,而电流波形取决于实际的负载阻抗。
三相电压型逆变器的基本电路如图6-15所示。
该电路主要由6只功率开关器件和6只续流二板管以及带中性点的直流电源构成。
图中负载L和R表示三相负载的各路相电感和相电阻。
图6-15 三相电压型逆变器电路原理图图6-15三相电压型逆变器电路原理图功率开关器件VT1~VT6在控制电路的作用下,控制信号为三相互差1200的脉冲信号时,可以控制每个功率开关器件导通180度或120度,相邻两个开关器件的导通时间互差60度逆变器三个桥臂中上部和下部开关元件以180度间隔交替开通和关断,VT1~VT6以60度的电位差依次开通和关断,在逆变器输出端形成a、b、c三相电压。
控制电路输出的开关控制信号可以是方波、阶梯波、脉宽调制方波、脉宽调制三角波和锯齿波等,其中后三种脉宽调制的波形都是以基础波作为载波,正弦波作为调制波,最后输出正弦波波形。
普通方波和被正弦波调制的方波的区别如图6-16所示,与普通方波信号相比,被调制的方波信号是按照正弦波规律变化的系列方波信号,即普通方波信号是连续导通的,而被调制的方波信号要在正弦波调制的周期内导通和关断N次。
方波调制波形图6-16 方波与被调制方波波形示意图2.三相电流型逆变器。
电流型逆变器的直流输入电源是一个恒定的直流电流源,需要调制的是电流,若一个矩形电流注入负载,电压波形则是在负载阻抗的作用下生成的。
在电流型逆变器中,有两种不同的方法控制基波电流的幅值,一种方法是直流电流源的幅值变化法,这种万法使得交流电输出侧的电流控制比较简单;另一种方法是用脉宽调制来控制基波电流。
三相电压型逆变电路

2-8
精品文档
2-9
精品文档
2-10
• 开关动作与输出电压(diànyā)关 系
• 电压基准点
• 以电源(diànyuán)
中点N’为0电 平基准点
精品文档
2-11
精品文档
2-12
精品文档
2-13
精品文档
2-14
精品文档
2-15
精品文档
2-16
精品文档
2-17
精品文档是全控型器件绝缘栅双极晶体管每个核心控制器件都反并联了一个二极管二极管的作用是什么
• 三相电压型逆变(nìbiàn)电路
1 工作原理分析
2 数量关系分析
精品文档
2-1
• 复习(fùxí)提问
1逆变电路根据什么的不同可以分为电压型逆变电路和电流型逆 变电路? • 直流侧电源性质不同
2 在单相电压型逆变电路中用到的核心控制(kòngzhì)器件是什么管? • 是全控型器件(qìjiàn)(绝缘栅双极晶体管)
三相电压型桥式逆变电路可以看成由三个 半桥逆变电路组成。
精品文档
2-3
三相电压型桥式逆变电路
电路结构(jiégòu)分析
直流侧由直流电压源并联 一个电容。但为了分析方 便,画作串联的两个(liǎnɡ ɡè)电容,并标出假想中点 N’
精品文档
图2-1 单相半波可控整流电路(diànlù)及波 形
2-4
2-7
• 三相电压型桥式逆变(nìbiàn)电路特 点
• 基本工作方式为180度导电。即每个桥臂的导电角度为180度。
• 同一相上下两个桥臂交替导电,各相开始导电的角度相 差(xiānɡ chà)120度,任一瞬间又三个桥臂同时导通。
三相电压型桥式逆变电路的工作原理及过程

三相电压型桥式逆变电路的工作原理及过程三相电压型桥式逆变电路,听起来好像很高大上,其实它就是一个把直流电变成交流电的小小机器。
今天,我们就来聊聊这个“神奇”的逆变电路的工作原理及过程。
让我们来了解一下什么是三相电压型桥式逆变电路。
简单来说,它就是一个由四个二极管组成的电路,分别是两个PNP结构和两个NPN结构的二极管。
这四个二极管组成了一个桥式结构,所以叫做“桥式逆变电路”。
那么,这个电路到底是怎么工作的呢?我们可以先把它分成两个部分来看:一个是将直流电转换成交流电的过程,另一个是将交流电转换成直流电的过程。
1. 将直流电转换成交流电的过程这个过程就像是我们在给手机充电时,手机会发出“嘟嘟嘟”的声音一样。
当我们给手机充电时,其实是在给手机提供一个恒定的直流电。
而手机内部有一个小小的变压器和一个叫做“整流器”的东西,它们会把直流电变成交流电,然后再通过电池给手机供电。
同样地,在三相电压型桥式逆变电路中,也是先把直流电转换成交流电,然后再通过变压器和其他元件把交流电变成我们需要的电压和频率。
2. 将交流电转换成直流电的过程这个过程就像是我们在给手机充电时,如果手机没电了,我们就需要把充电器插到手机上,让充电器给手机提供一个恒定的交流电。
而手机内部有一个小小的变压器和一个叫做“逆变器”的东西,它们会把交流电变成直流电,然后再通过电池给手机供电。
同样地,在三相电压型桥式逆变电路中,也是先把交流电转换成直流电,然后再通过变压器和其他元件把直流电变成我们需要的电压和频率。
好了,现在我们已经知道了三相电压型桥式逆变电路的基本原理和工作过程。
接下来,我们再来聊一聊它的应用场景和优缺点吧!。
第二讲 三相逆变电路

+Vdc
G
+
Vdc /2
-
+
Vdc /2
-
VT1
R
VT4
iR
VT3
Y
VT6
iY
VT5
B
VT2
iR
ZY
ZR
ia
ib
ZB
N
曲阜师范大学 新能源技术研究所
4/21
4.4.2 三相电压型逆变电路
当G点和N点不连接时,180O导电型工作过程,负载为阻性。6个功率 管的驱动信号如图6-20所示,其导通顺序为5、6、1;6、1、2;1、2、 3;2、3、4;3、4、5;4、5、6;5、6、1….;每组管子导通60度。 6个状态的等效电路如图6-21所示。
t
t 2
t
表示为电角度
(5-16) (5-17)
t 2
t
2
(5-18)
ω为电路工作角频率;r、β分别是tr、tβ对应的电角度
曲阜师范大学 新能源技术研究所
22/21
4.4.1 单相电流型逆变电路
➢ 数量分析
忽略换流过程,io可近似成矩形波,展开成傅里叶级数
io
4Id
sin
t
1 sin 3t
解:U UN1
U UN1m 2
0.45Ud =0.45×200=90(V)
U UN1m
2U d
0.637Ud =0.637×200=127.4(V)
2 U UV1m
3U d
1.1Ud = 1.1×200=220(V)
U UV1
U UV1m 2
6
Ud
0.78U d
= 0.78×200=156(V)
三相逆变器电路原理和工作过程图文说明

三相逆变器电路原理和工作过程图文说明单相逆变器电路由于受到功率开关器件的容量、零线(中性线)电流、电网负载平衡要求和用电负载性质等的限制,容量一般都在100kV A以下,大容量的逆变电路大多采用三相形式。
三相逆变器按照直流电源的性质不同分为三相电压型逆变器和三相电流型逆变器。
1.三相电压型逆变器。
电压型逆变器就是逆变电路中的输入直流能量由一个稳定的电压源提供,其特点是逆变器在脉宽调制时的输出电压的幅值等于电压源的幅值,而电流波形取决于实际的负载阻抗。
三相电压型逆变器的基本电路如图6-15所示。
该电路主要由6只功率开关器件和6只续流二板管以及带中性点的直流电源构成。
图中负载L和R表示三相负载的各路相电感和相电阻。
图6-15 三相电压型逆变器电路原理图图6-15三相电压型逆变器电路原理图功率开关器件VT1~VT6在控制电路的作用下,控制信号为三相互差1200的脉冲信号时,可以控制每个功率开关器件导通180度或120度,相邻两个开关器件的导通时间互差60度逆变器三个桥臂中上部和下部开关元件以180度间隔交替开通和关断,VT1~VT6以60度的电位差依次开通和关断,在逆变器输出端形成a、b、c三相电压。
控制电路输出的开关控制信号可以是方波、阶梯波、脉宽调制方波、脉宽调制三角波和锯齿波等,其中后三种脉宽调制的波形都是以基础波作为载波,正弦波作为调制波,最后输出正弦波波形。
普通方波和被正弦波调制的方波的区别如图6-16所示,与普通方波信号相比,被调制的方波信号是按照正弦波规律变化的系列方波信号,即普通方波信号是连续导通的,而被调制的方波信号要在正弦波调制的周期内导通和关断N次。
方波调制波形图6-16 方波与被调制方波波形示意图2.三相电流型逆变器。
电流型逆变器的直流输入电源是一个恒定的直流电流源,需要调制的是电流,若一个矩形电流注入负载,电压波形则是在负载阻抗的作用下生成的。
在电流型逆变器中,有两种不同的方法控制基波电流的幅值,一种方法是直流电流源的幅值变化法,这种万法使得交流电输出侧的电流控制比较简单;另一种方法是用脉宽调制来控制基波电流。
三相电压逆变电路电力二极管作用_解释说明

三相电压逆变电路电力二极管作用解释说明1. 引言1.1 概述三相电压逆变电路是一种常用的电力转换器,广泛应用于工业控制、交流传动和可再生能源等领域。
在三相逆变电路中,电力二极管起到至关重要的作用。
1.2 文章结构本文将分为五个主要部分来讨论三相电压逆变电路中电力二极管的作用及其解释说明。
首先是引言部分,概述了本文的目的、结构以及所讨论的内容。
接下来是对三相电压逆变电路进行原理说明和组成部分介绍,以便为后续讨论奠定基础。
然后,详细分析了电力二极管的基本概念和特性,并探讨了其在电流开关以及逆变电路中的应用。
在实例分析及案例研究部分,我们将引入一个具体实例并讨论其过程和结果,最后从中总结出一些启示。
最后,在结论和展望部分,将对文章进行总结,并展望未来发展趋势提出建议。
1.3 目的本文旨在深入解释和说明三相逆变电路中电力二极管的作用。
通过对二极管基本概念、特性以及在电流开关和逆变电路中的角色和功能进行详细阐述,读者将能更好地理解和掌握电力二极管在三相逆变电路中的重要作用。
同时,通过实例分析和案例研究,读者可以更直观地了解电力二极管在实际应用中的表现,并从中获取一些有价值的经验和启示。
最后,结论和展望部分将对文章进行总结,并提出对未来发展趋势的展望和建议,为相关领域的研究人员提供参考。
2. 三相电压逆变电路2.1 原理说明三相电压逆变电路是一种将直流输入转换为交流输出的电路。
它基于逆变器原理,利用逆变器能够改变输入信号的频率和幅值的性质。
2.2 组成部分介绍三相电压逆变电路通常由多个元件组成,包括整流器、滤波器、逆变器和控制电路等。
其中,整流器将交流输入转换为直流,滤波器对直流信号进行平滑处理,逆变器通过不同的控制方式将直流信号转换为交流输出,并由控制电路对逆变过程进行管理和控制。
2.3 工作原理分析三相电压逆变电路主要通过以下步骤实现工作:首先,交流输入经过整流器转化为直流信号。
整流器通常采用可控硅等元件来实现这一过程。
三项电压型逆变电路实验报告

一、引言: (2)二、交-直-交变压变频器的基本结构 (2)1、三相电压型桥式逆变电路拓扑图 (3)2、交-直-交变压变频器的工作原理 (3)三、三相电压型桥式逆变电路的Simulink建立及模型: 4四、仿真参数及仿真波形设置: (5)1.对脉冲触发器进行参数设置: (5)2. 用subplot作图: (6)3.仿真波形: (7)五、实验结果及分析: (13)六、结论及拓展: (13)七、设计心得: (14)八、参考文献: (14)交-直-交变压变频器中逆变器的仿真一、引言:逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。
相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。
这是与整流相反的变换,因而称为逆变。
逆变电路的作用是将直流电压转换成梯形脉冲波,经低通滤波器滤波后,从而使负载上得到的实际电压为正弦波。
现代逆变技术的种类很多,可以按照不同的形式进行分类。
其主要的分类方式如下:1) 按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。
2) 按逆变器输出能量的去向,可分为有源逆变和无源逆变。
3) 按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。
4) 按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。
5) 按输出稳定的参量,可分为电压型逆变和电流型逆变。
6) 按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。
7) 按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。
日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。
随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。
尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
纵向换流。
2-8
2-9
2-10
• 开关动作与输出电压关系
• 电压基准点
• 以电源中点 N’为0电平基 准点
开关模式 U相上开关管V1导通 U相下开关管V4导通 V相上开关管V3导通
V相下开关管V6导通
W相上开关管V5导通
W相下开关管V2导通
输出电压 UUN‘=Ud/2 UUN‘=-Ud/2 UVN‘=Ud/2 UVN‘=-Ud/2 UWN‘=Ud/2 UWN‘=-Ud/2
• 续流
4 单相逆变电路中每个核心控制器件导通多少度? • 180度
2-2
4.2.2 三相电压型逆变电路
用三个单相逆变电路可组合成一个三相逆变 电路。
在三相逆变电路中,应用最广的是三相桥 式逆变电路。
三相电压型桥式逆变电路可以看成由三个 半桥逆变电路组成。
2-3
三相电压型桥式逆变电路 电路结构分析
• 任一瞬间,有三个桥臂 同时导电。
• 换流为纵向换流。
2-5
2-6
2-7
• 三相电压型桥式逆变电路特点 • 基本工作方式为180度导电。即每个桥臂的导电角度
为180度。 • 同一相上下两个桥臂交替导电,各相开始导电的角度
相差120度,任一瞬间又三个桥臂同时导通。 • 每次换流都是在同一相上下两臂之间进行,所以称为
直流侧由直流电压源并 联一个电容。但为了分 析方便,画作串联的两 个电容,并标出假想中 点N’
图2-1 单相半波可控整流电路及波形 2-4
• V1-V6触发控制信号的波形
• 基本工作方式是180度导 电方式,即每个桥臂导 电角度为180度。
• 同一相上下两个桥臂交 替导电。
• 各相开始导电的角度依 次相差120度
• 三相电压型逆变电路源自1 工作原理分析 2 数量关系分析
2-1
• 复习提问
1逆变电路根据什么的不同可以分为电压型逆变电路和电流 型逆变电路? • 直流侧电源性质不同
2 在单相电压型逆变电路中用到的核心控制器件是什么管?
• 是全控型器件(绝缘栅双极晶体管) 3 每个核心控制器件都反并联了一个二极管,二极管的作用 是什么?